mm_gouraud.fs 2.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. #version 110
  2. #define INTENSITY_CORRECTION 0.6
  3. // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
  4. const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
  5. #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
  6. #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
  7. #define LIGHT_TOP_SHININESS 20.0
  8. // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
  9. const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
  10. #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
  11. #define INTENSITY_AMBIENT 0.3
  12. const vec3 ZERO = vec3(0.0, 0.0, 0.0);
  13. const float EPSILON = 0.0001;
  14. uniform vec4 uniform_color;
  15. varying vec3 clipping_planes_dots;
  16. varying vec4 model_pos;
  17. uniform bool volume_mirrored;
  18. void main()
  19. {
  20. if (any(lessThan(clipping_planes_dots, ZERO)))
  21. discard;
  22. vec3 color = uniform_color.rgb;
  23. float alpha = uniform_color.a;
  24. vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
  25. #ifdef FLIP_TRIANGLE_NORMALS
  26. triangle_normal = -triangle_normal;
  27. #endif
  28. if (volume_mirrored)
  29. triangle_normal = -triangle_normal;
  30. // First transform the normal into camera space and normalize the result.
  31. vec3 eye_normal = normalize(gl_NormalMatrix * triangle_normal);
  32. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
  33. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
  34. float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
  35. // x = diffuse, y = specular;
  36. vec2 intensity = vec2(0.0, 0.0);
  37. intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
  38. vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
  39. intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
  40. // Perform the same lighting calculation for the 2nd light source (no specular applied).
  41. NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
  42. intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
  43. gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
  44. }