mm_gouraud.fs 2.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. #version 110
  2. #define INTENSITY_CORRECTION 0.6
  3. // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
  4. const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
  5. #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
  6. #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
  7. #define LIGHT_TOP_SHININESS 20.0
  8. // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
  9. const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
  10. #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
  11. #define INTENSITY_AMBIENT 0.3
  12. const vec3 ZERO = vec3(0.0, 0.0, 0.0);
  13. const float EPSILON = 0.0001;
  14. uniform vec4 uniform_color;
  15. uniform bool volume_mirrored;
  16. uniform mat4 view_model_matrix;
  17. uniform mat3 view_normal_matrix;
  18. varying vec3 clipping_planes_dots;
  19. varying vec4 model_pos;
  20. void main()
  21. {
  22. if (any(lessThan(clipping_planes_dots, ZERO)))
  23. discard;
  24. vec3 color = uniform_color.rgb;
  25. float alpha = uniform_color.a;
  26. vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
  27. #ifdef FLIP_TRIANGLE_NORMALS
  28. triangle_normal = -triangle_normal;
  29. #endif
  30. if (volume_mirrored)
  31. triangle_normal = -triangle_normal;
  32. // First transform the normal into camera space and normalize the result.
  33. vec3 eye_normal = normalize(view_normal_matrix * triangle_normal);
  34. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
  35. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
  36. float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
  37. // x = diffuse, y = specular;
  38. vec2 intensity = vec2(0.0);
  39. intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
  40. vec3 position = (view_model_matrix * model_pos).xyz;
  41. intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
  42. // Perform the same lighting calculation for the 2nd light source (no specular applied).
  43. NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
  44. intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
  45. gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
  46. }