123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 |
- package Slic3r::Geometry;
- use strict;
- use warnings;
- require Exporter;
- our @ISA = qw(Exporter);
- # Exported by this module. The last section starting with convex_hull is exported by Geometry.xsp
- our @EXPORT_OK = qw(
- PI epsilon
- angle3points
- collinear
- dot
- line_intersection
- normalize
- point_in_segment
- polyline_lines
- polygon_is_convex
- polygon_segment_having_point
- scale
- unscale
- scaled_epsilon
- size_2D
- X Y Z
- convex_hull
- chained_path_from
- deg2rad
- rad2deg
- rad2deg_dir
- );
- use constant PI => 4 * atan2(1, 1);
- use constant A => 0;
- use constant B => 1;
- use constant X1 => 0;
- use constant Y1 => 1;
- use constant X2 => 2;
- use constant Y2 => 3;
- sub epsilon () { 1E-4 }
- sub scaled_epsilon () { epsilon / &Slic3r::SCALING_FACTOR }
- sub scale ($) { $_[0] / &Slic3r::SCALING_FACTOR }
- sub unscale ($) { $_[0] * &Slic3r::SCALING_FACTOR }
- # used by geometry.t, polygon_segment_having_point
- sub point_in_segment {
- my ($point, $line) = @_;
-
- my ($x, $y) = @$point;
- my $line_p = $line->pp;
- my @line_x = sort { $a <=> $b } $line_p->[A][X], $line_p->[B][X];
- my @line_y = sort { $a <=> $b } $line_p->[A][Y], $line_p->[B][Y];
-
- # check whether the point is in the segment bounding box
- return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon)
- && $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon);
-
- # if line is vertical, check whether point's X is the same as the line
- if ($line_p->[A][X] == $line_p->[B][X]) {
- return abs($x - $line_p->[A][X]) < epsilon ? 1 : 0;
- }
-
- # calculate the Y in line at X of the point
- my $y3 = $line_p->[A][Y] + ($line_p->[B][Y] - $line_p->[A][Y])
- * ($x - $line_p->[A][X]) / ($line_p->[B][X] - $line_p->[A][X]);
- return abs($y3 - $y) < epsilon ? 1 : 0;
- }
- # used by geometry.t
- sub polyline_lines {
- my ($polyline) = @_;
- my @points = @$polyline;
- return map Slic3r::Line->new(@points[$_, $_+1]), 0 .. $#points-1;
- }
- # given a $polygon, return the (first) segment having $point
- # used by geometry.t
- sub polygon_segment_having_point {
- my ($polygon, $point) = @_;
-
- foreach my $line (@{ $polygon->lines }) {
- return $line if point_in_segment($point, $line);
- }
- return undef;
- }
- # polygon must be simple (non complex) and ccw
- sub polygon_is_convex {
- my ($points) = @_;
- for (my $i = 0; $i <= $#$points; $i++) {
- my $angle = angle3points($points->[$i-1], $points->[$i-2], $points->[$i]);
- return 0 if $angle < PI;
- }
- return 1;
- }
- sub normalize {
- my ($line) = @_;
-
- my $len = sqrt( ($line->[X]**2) + ($line->[Y]**2) + ($line->[Z]**2) )
- or return [0, 0, 0]; # to avoid illegal division by zero
- return [ map $_ / $len, @$line ];
- }
- # 2D dot product
- # used by 3DScene.pm
- sub dot {
- my ($u, $v) = @_;
- return $u->[X] * $v->[X] + $u->[Y] * $v->[Y];
- }
- sub line_intersection {
- my ($line1, $line2, $require_crossing) = @_;
- $require_crossing ||= 0;
-
- my $intersection = _line_intersection(map @$_, @$line1, @$line2);
- return (ref $intersection && $intersection->[1] == $require_crossing)
- ? $intersection->[0]
- : undef;
- }
- # Used by test cases.
- sub collinear {
- my ($line1, $line2, $require_overlapping) = @_;
- my $intersection = _line_intersection(map @$_, @$line1, @$line2);
- return 0 unless !ref($intersection)
- && ($intersection eq 'parallel collinear'
- || ($intersection eq 'parallel vertical' && abs($line1->[A][X] - $line2->[A][X]) < epsilon));
-
- if ($require_overlapping) {
- my @box_a = bounding_box([ $line1->[0], $line1->[1] ]);
- my @box_b = bounding_box([ $line2->[0], $line2->[1] ]);
- return 0 unless bounding_box_intersect( 2, @box_a, @box_b );
- }
-
- return 1;
- }
- sub _line_intersection {
- my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ) = @_;
- my ($x, $y); # The as-yet-undetermined intersection point.
- my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences
- my $dx10 = $x1 - $x0; # between the points P and Q.
- my $dy32 = $y3 - $y2;
- my $dx32 = $x3 - $x2;
- my $dy10z = abs( $dy10 ) < epsilon; # Is the difference $dy10 "zero"?
- my $dx10z = abs( $dx10 ) < epsilon;
- my $dy32z = abs( $dy32 ) < epsilon;
- my $dx32z = abs( $dx32 ) < epsilon;
- my $dyx10; # The slopes.
- my $dyx32;
-
- $dyx10 = $dy10 / $dx10 unless $dx10z;
- $dyx32 = $dy32 / $dx32 unless $dx32z;
- # Now we know all differences and the slopes;
- # we can detect horizontal/vertical special cases.
- # E.g., slope = 0 means a horizontal line.
- unless ( defined $dyx10 or defined $dyx32 ) {
- return "parallel vertical";
- }
- elsif ( $dy10z and not $dy32z ) { # First line horizontal.
- $y = $y0;
- $x = $x2 + ( $y - $y2 ) * $dx32 / $dy32;
- }
- elsif ( not $dy10z and $dy32z ) { # Second line horizontal.
- $y = $y2;
- $x = $x0 + ( $y - $y0 ) * $dx10 / $dy10;
- }
- elsif ( $dx10z and not $dx32z ) { # First line vertical.
- $x = $x0;
- $y = $y2 + $dyx32 * ( $x - $x2 );
- }
- elsif ( not $dx10z and $dx32z ) { # Second line vertical.
- $x = $x2;
- $y = $y0 + $dyx10 * ( $x - $x0 );
- }
- elsif ( abs( $dyx10 - $dyx32 ) < epsilon ) {
- # The slopes are suspiciously close to each other.
- # Either we have parallel collinear or just parallel lines.
- # The bounding box checks have already weeded the cases
- # "parallel horizontal" and "parallel vertical" away.
- my $ya = $y0 - $dyx10 * $x0;
- my $yb = $y2 - $dyx32 * $x2;
-
- return "parallel collinear" if abs( $ya - $yb ) < epsilon;
- return "parallel";
- }
- else {
- # None of the special cases matched.
- # We have a "honest" line intersection.
- $x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32);
- $y = $y0 + $dyx10 * ($x - $x0);
- }
- my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1);
- my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1);
- return [Slic3r::Point->new($x, $y), $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1];
- }
- # 2D
- sub bounding_box {
- my ($points) = @_;
-
- my @x = map $_->x, @$points;
- my @y = map $_->y, @$points; #,,
- my @bb = (undef, undef, undef, undef);
- for (0..$#x) {
- $bb[X1] = $x[$_] if !defined $bb[X1] || $x[$_] < $bb[X1];
- $bb[X2] = $x[$_] if !defined $bb[X2] || $x[$_] > $bb[X2];
- $bb[Y1] = $y[$_] if !defined $bb[Y1] || $y[$_] < $bb[Y1];
- $bb[Y2] = $y[$_] if !defined $bb[Y2] || $y[$_] > $bb[Y2];
- }
-
- return @bb[X1,Y1,X2,Y2];
- }
- # used by ExPolygon::size
- sub size_2D {
- my @bounding_box = bounding_box(@_);
- return (
- ($bounding_box[X2] - $bounding_box[X1]),
- ($bounding_box[Y2] - $bounding_box[Y1]),
- );
- }
- # Used by sub collinear, which is used by test cases.
- # bounding_box_intersect($d, @a, @b)
- # Return true if the given bounding boxes @a and @b intersect
- # in $d dimensions. Used by sub collinear.
- sub bounding_box_intersect {
- my ( $d, @bb ) = @_; # Number of dimensions and box coordinates.
- my @aa = splice( @bb, 0, 2 * $d ); # The first box.
- # (@bb is the second one.)
-
- # Must intersect in all dimensions.
- for ( my $i_min = 0; $i_min < $d; $i_min++ ) {
- my $i_max = $i_min + $d; # The index for the maximum.
- return 0 if ( $aa[ $i_max ] + epsilon ) < $bb[ $i_min ];
- return 0 if ( $bb[ $i_max ] + epsilon ) < $aa[ $i_min ];
- }
-
- return 1;
- }
- # Used by test cases.
- # this assumes a CCW rotation from $p2 to $p3 around $p1
- sub angle3points {
- my ($p1, $p2, $p3) = @_;
- # p1 is the center
-
- my $angle = atan2($p2->[X] - $p1->[X], $p2->[Y] - $p1->[Y])
- - atan2($p3->[X] - $p1->[X], $p3->[Y] - $p1->[Y]);
-
- # we only want to return only positive angles
- return $angle <= 0 ? $angle + 2*PI() : $angle;
- }
- 1;
|