Browse Source

Merge remote-tracking branch 'origin/master' into ys_new_features

YuSanka 5 years ago
parent
commit
7fe8965c53

+ 8 - 1
resources/shaders/variable_layer_height.vs

@@ -15,6 +15,7 @@ const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
 #define INTENSITY_AMBIENT    0.3
 
 uniform mat4 volume_world_matrix;
+uniform float object_max_z;
 
 // x = tainted, y = specular;
 varying vec2 intensity;
@@ -42,6 +43,12 @@ void main()
     intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
 
     // Scaled to widths of the Z texture.
-    object_z = (volume_world_matrix * gl_Vertex).z;
+    if (object_max_z > 0.0)
+        // when rendering the overlay
+        object_z = object_max_z * gl_MultiTexCoord0.y;
+    else
+        // when rendering the volumes
+        object_z = (volume_world_matrix * gl_Vertex).z;
+        
     gl_Position = ftransform();
 }

+ 34 - 75
src/libslic3r/SLA/SLABasePool.cpp

@@ -53,7 +53,7 @@ Contour3D walls(const Polygon& lower, const Polygon& upper,
 
     // Shorthand for the vertex arrays
     auto& upoints = upper.points, &lpoints = lower.points;
-    auto& rpts = ret.points; auto& rfaces = ret.indices;
+    auto& rpts = ret.points; auto& ind = ret.indices;
 
     // If the Z levels are flipped, or the offset difference is negative, we
     // will interpret that as the triangles normals should be inverted.
@@ -61,10 +61,11 @@ Contour3D walls(const Polygon& lower, const Polygon& upper,
 
     // Copy the points into the mesh, convert them from 2D to 3D
     rpts.reserve(upoints.size() + lpoints.size());
-    rfaces.reserve(2*upoints.size() + 2*lpoints.size());
-    const double sf = SCALING_FACTOR;
-    for(auto& p : upoints) rpts.emplace_back(p.x()*sf, p.y()*sf, upper_z_mm);
-    for(auto& p : lpoints) rpts.emplace_back(p.x()*sf, p.y()*sf, lower_z_mm);
+    ind.reserve(2 * upoints.size() + 2 * lpoints.size());
+    for (auto &p : upoints)
+        rpts.emplace_back(unscaled(p.x()), unscaled(p.y()), upper_z_mm);
+    for (auto &p : lpoints)
+        rpts.emplace_back(unscaled(p.x()), unscaled(p.y()), lower_z_mm);
 
     // Create pointing indices into vertex arrays. u-upper, l-lower
     size_t uidx = 0, lidx = offs, unextidx = 1, lnextidx = offs + 1;
@@ -121,9 +122,9 @@ Contour3D walls(const Polygon& lower, const Polygon& upper,
         case Proceed::UPPER:
             if(!ustarted || uidx != uendidx) { // there are vertices remaining
                 // Get the 3D vertices in order
-                const Vec3d& p_up1 = rpts[size_t(uidx)];
-                const Vec3d& p_low = rpts[size_t(lidx)];
-                const Vec3d& p_up2 = rpts[size_t(unextidx)];
+                const Vec3d& p_up1 = rpts[uidx];
+                const Vec3d& p_low = rpts[lidx];
+                const Vec3d& p_up2 = rpts[unextidx];
 
                 // Calculate fitness: the average of the two connecting edges
                 double a = offsdiff2 - (distfn(p_up1, p_low) - zdiff2);
@@ -133,8 +134,9 @@ Contour3D walls(const Polygon& lower, const Polygon& upper,
                 if(current_fit > prev_fit) { // fit is worse than previously
                     proceed = Proceed::LOWER;
                 } else {    // good to go, create the triangle
-                    inverted? rfaces.emplace_back(unextidx, lidx, uidx) :
-                              rfaces.emplace_back(uidx, lidx, unextidx) ;
+                    inverted
+                        ? ind.emplace_back(int(unextidx), int(lidx), int(uidx))
+                        : ind.emplace_back(int(uidx), int(lidx), int(unextidx));
 
                     // Increment the iterators, rotate if necessary
                     ++uidx; ++unextidx;
@@ -150,9 +152,9 @@ Contour3D walls(const Polygon& lower, const Polygon& upper,
         case Proceed::LOWER:
             // Mode with lower segment, upper vertex. Same structure:
             if(!lstarted || lidx != lendidx) {
-                const Vec3d& p_low1 = rpts[size_t(lidx)];
-                const Vec3d& p_low2 = rpts[size_t(lnextidx)];
-                const Vec3d& p_up   = rpts[size_t(uidx)];
+                const Vec3d& p_low1 = rpts[lidx];
+                const Vec3d& p_low2 = rpts[lnextidx];
+                const Vec3d& p_up   = rpts[uidx];
 
                 double a = offsdiff2 - (distfn(p_up, p_low1) - zdiff2);
                 double b = offsdiff2 - (distfn(p_up, p_low2) - zdiff2);
@@ -161,8 +163,9 @@ Contour3D walls(const Polygon& lower, const Polygon& upper,
                 if(current_fit > prev_fit) {
                     proceed = Proceed::UPPER;
                 } else {
-                    inverted? rfaces.emplace_back(uidx, lnextidx, lidx) :
-                              rfaces.emplace_back(lidx, lnextidx, uidx);
+                    inverted
+                        ? ind.emplace_back(int(uidx), int(lnextidx), int(lidx))
+                        : ind.emplace_back(int(lidx), int(lnextidx), int(uidx));
 
                     ++lidx; ++lnextidx;
                     if(lnextidx == rpts.size()) lnextidx = offs;
@@ -200,7 +203,7 @@ void offset(ExPolygon& sh, coord_t distance) {
     }
 
     ClipperOffset offs;
-    offs.ArcTolerance = 0.01*mm(1);
+    offs.ArcTolerance = 0.01*scaled(1.0);
     Paths result;
     offs.AddPath(ctour, jtRound, etClosedPolygon);
     offs.AddPaths(holes, jtRound, etClosedPolygon);
@@ -303,16 +306,6 @@ ExPolygons unify(const ExPolygons& shapes) {
     return retv;
 }
 
-/// Only a debug function to generate top and bottom plates from a 2D shape.
-/// It is not used in the algorithm directly.
-inline Contour3D roofs(const ExPolygon& poly, coord_t z_distance) {
-    auto lower = triangulate_expolygon_3d(poly);
-    auto upper = triangulate_expolygon_3d(poly, z_distance*SCALING_FACTOR, true);
-    Contour3D ret;
-    ret.merge(lower); ret.merge(upper);
-    return ret;
-}
-
 /// This method will create a rounded edge around a flat polygon in 3d space.
 /// 'base_plate' parameter is the target plate.
 /// 'radius' is the radius of the edges.
@@ -358,7 +351,7 @@ Contour3D round_edges(const ExPolygon& base_plate,
         double x2 = xx*xx;
         double stepy = std::sqrt(r2 - x2);
 
-        offset(ob, s*mm(xx));
+        offset(ob, s*scaled(xx));
         wh = ceilheight_mm - radius_mm + stepy;
 
         Contour3D pwalls;
@@ -382,7 +375,7 @@ Contour3D round_edges(const ExPolygon& base_plate,
             double xx = radius_mm - i*stepx;
             double x2 = xx*xx;
             double stepy = std::sqrt(r2 - x2);
-            offset(ob, s*mm(xx));
+            offset(ob, s*scaled(xx));
             wh = ceilheight_mm - radius_mm - stepy;
 
             Contour3D pwalls;
@@ -402,41 +395,6 @@ Contour3D round_edges(const ExPolygon& base_plate,
     return curvedwalls;
 }
 
-/// Generating the concave part of the 3D pool with the bottom plate and the
-/// side walls.
-Contour3D inner_bed(const ExPolygon& poly,
-                    double depth_mm,
-                    double begin_h_mm = 0)
-{
-    Contour3D bottom;
-    Pointf3s triangles = triangulate_expolygon_3d(poly, -depth_mm + begin_h_mm);
-    bottom.merge(triangles);
-
-    coord_t depth = mm(depth_mm);
-    coord_t begin_h = mm(begin_h_mm);
-
-    auto lines = poly.lines();
-
-    // Generate outer walls
-    auto fp = [](const Point& p, Point::coord_type z) {
-        return unscale(x(p), y(p), z);
-    };
-
-    for(auto& l : lines) {
-        auto s = coord_t(bottom.points.size());
-
-        bottom.points.emplace_back(fp(l.a, -depth + begin_h));
-        bottom.points.emplace_back(fp(l.b, -depth + begin_h));
-        bottom.points.emplace_back(fp(l.a, begin_h));
-        bottom.points.emplace_back(fp(l.b, begin_h));
-
-        bottom.indices.emplace_back(s + 3, s + 1, s);
-        bottom.indices.emplace_back(s + 2, s + 3, s);
-    }
-
-    return bottom;
-}
-
 inline Point centroid(Points& pp) {
     Point c;
     switch(pp.size()) {
@@ -518,7 +476,7 @@ ExPolygons concave_hull(const ExPolygons& polys, double max_dist_mm = 50,
         double dx = x(c) - x(cc), dy = y(c) - y(cc);
         double l = std::sqrt(dx * dx + dy * dy);
         double nx = dx / l, ny = dy / l;
-        double max_dist = mm(max_dist_mm);
+        double max_dist = scaled(max_dist_mm);
 
         ExPolygon& expo = punion[idx++];
         BoundingBox querybb(expo);
@@ -534,10 +492,10 @@ ExPolygons concave_hull(const ExPolygons& polys, double max_dist_mm = 50,
         ctour.reserve(3);
         ctour.emplace_back(cc);
 
-        Point d(coord_t(mm(1)*nx), coord_t(mm(1)*ny));
+        Point d(coord_t(scaled(1.)*nx), coord_t(scaled(1.)*ny));
         ctour.emplace_back(c + Point( -y(d),  x(d) ));
         ctour.emplace_back(c + Point(  y(d), -x(d) ));
-        offset(r, mm(1));
+        offset(r, scaled(1.));
 
         return r;
     });
@@ -569,15 +527,16 @@ void base_plate(const TriangleMesh &mesh, ExPolygons &output, float h,
     // Now we have to unify all slice layers which can be an expensive operation
     // so we will try to simplify the polygons
     ExPolygons tmp; tmp.reserve(count);
-    for(ExPolygons& o : out) for(ExPolygon& e : o) {
-        auto&& exss = e.simplify(0.1/SCALING_FACTOR);
-        for(ExPolygon& ep : exss) tmp.emplace_back(std::move(ep));
-    }
+    for(ExPolygons& o : out)
+        for(ExPolygon& e : o) {
+            auto&& exss = e.simplify(scaled(0.1));
+            for(ExPolygon& ep : exss) tmp.emplace_back(std::move(ep));
+        }
 
     ExPolygons utmp = unify(tmp);
 
     for(auto& o : utmp) {
-        auto&& smp = o.simplify(0.1/SCALING_FACTOR);
+        auto&& smp = o.simplify(scaled(0.1));
         output.insert(output.end(), smp.begin(), smp.end());
     }
 }
@@ -607,11 +566,11 @@ Contour3D create_base_pool(const ExPolygons &ground_layer,
     const double bottom_offs    = (thickness + wingheight) / std::tan(slope);
 
     // scaled values
-    const coord_t s_thickness   = mm(thickness);
-    const coord_t s_eradius     = mm(cfg.edge_radius_mm);
+    const coord_t s_thickness   = scaled(thickness);
+    const coord_t s_eradius     = scaled(cfg.edge_radius_mm);
     const coord_t s_safety_dist = 2*s_eradius + coord_t(0.8*s_thickness);
-    const coord_t s_wingdist    = mm(wingdist);
-    const coord_t s_bottom_offs = mm(bottom_offs);
+    const coord_t s_wingdist    = scaled(wingdist);
+    const coord_t s_bottom_offs = scaled(bottom_offs);
 
     auto& thrcl = cfg.throw_on_cancel;
 

+ 1 - 8
src/libslic3r/SLA/SLABoilerPlate.hpp

@@ -11,11 +11,6 @@
 namespace Slic3r {
 namespace sla {
 
-using coord_t = Point::coord_type;
-
-/// get the scaled clipper units for a millimeter value
-inline coord_t mm(double v) { return coord_t(v/SCALING_FACTOR); }
-
 /// Get x and y coordinates (because we are eigenizing...)
 inline coord_t x(const Point& p) { return p(0); }
 inline coord_t y(const Point& p) { return p(1); }
@@ -36,12 +31,10 @@ inline coord_t x(const Vec3crd& p) { return p(0); }
 inline coord_t y(const Vec3crd& p) { return p(1); }
 inline coord_t z(const Vec3crd& p) { return p(2); }
 
-using Indices = std::vector<Vec3crd>;
-
 /// Intermediate struct for a 3D mesh
 struct Contour3D {
     Pointf3s points;
-    Indices indices;
+    std::vector<Vec3i> indices;
 
     void merge(const Contour3D& ctr) {
         auto s3 = coord_t(points.size());

+ 2 - 2
src/libslic3r/SLA/SLASupportTree.cpp

@@ -236,13 +236,13 @@ Contour3D cylinder(double r, double h, size_t ssteps, const Vec3d sp = {0,0,0})
     // According to the slicing algorithms, we need to aid them with generating
     // a watertight body. So we create a triangle fan for the upper and lower
     // ending of the cylinder to close the geometry.
-    points.emplace_back(jp); size_t ci = points.size() - 1;
+    points.emplace_back(jp); int ci = int(points.size() - 1);
     for(int i = 0; i < steps - 1; ++i)
         indices.emplace_back(i + offs + 1, i + offs, ci);
 
     indices.emplace_back(offs, steps + offs - 1, ci);
 
-    points.emplace_back(endp); ci = points.size() - 1;
+    points.emplace_back(endp); ci = int(points.size() - 1);
     for(int i = 0; i < steps - 1; ++i)
         indices.emplace_back(ci, i, i + 1);
 

+ 74 - 51
src/libslic3r/SLAPrint.cpp

@@ -28,14 +28,16 @@ namespace Slic3r {
 
 using SupportTreePtr = std::unique_ptr<sla::SLASupportTree>;
 
-class SLAPrintObject::SupportData {
+class SLAPrintObject::SupportData
+{
 public:
-    sla::EigenMesh3D emesh;              // index-triangle representation
-    std::vector<sla::SupportPoint> support_points;     // all the support points (manual/auto)
-    SupportTreePtr   support_tree_ptr;   // the supports
-    SlicedSupports   support_slices;     // sliced supports
+    sla::EigenMesh3D emesh;             // index-triangle representation
+    std::vector<sla::SupportPoint>
+                   support_points;      // all the support points (manual/auto)
+    SupportTreePtr support_tree_ptr;    // the supports
+    SlicedSupports support_slices;      // sliced supports
 
-    inline SupportData(const TriangleMesh& trmesh): emesh(trmesh) {}
+    inline SupportData(const TriangleMesh &trmesh) : emesh(trmesh) {}
 };
 
 namespace {
@@ -666,11 +668,11 @@ void SLAPrint::process()
     double ilhd = m_material_config.initial_layer_height.getFloat();
     auto   ilh  = float(ilhd);
 
-    auto ilhs = coord_t(ilhd / SCALING_FACTOR);
+    auto ilhs = scaled(ilhd);
     const size_t objcount = m_objects.size();
 
-    const unsigned min_objstatus = 0;   // where the per object operations start
-    const unsigned max_objstatus = 50;  // where the per object operations end
+    static const unsigned min_objstatus = 0;   // where the per object operations start
+    static const unsigned max_objstatus = 50;  // where the per object operations end
 
     // the coefficient that multiplies the per object status values which
     // are set up for <0, 100>. They need to be scaled into the whole process
@@ -687,31 +689,32 @@ void SLAPrint::process()
 
     // Slicing the model object. This method is oversimplified and needs to
     // be compared with the fff slicing algorithm for verification
-    auto slice_model = [this, ilhs, ilh, ilhd](SLAPrintObject& po) {
+    auto slice_model = [this, ilhs, ilh](SLAPrintObject& po) {
         const TriangleMesh& mesh = po.transformed_mesh();
 
         // We need to prepare the slice index...
 
         double lhd  = m_objects.front()->m_config.layer_height.getFloat();
         float  lh   = float(lhd);
-        auto   lhs  = coord_t(lhd  / SCALING_FACTOR);
+        auto   lhs  = scaled(lhd);
 
-        auto&& bb3d = mesh.bounding_box();
-        double minZ = bb3d.min(Z) - po.get_elevation();
-        double maxZ = bb3d.max(Z);
+        auto &&bb3d  = mesh.bounding_box();
+        double minZ  = bb3d.min(Z) - po.get_elevation();
+        double maxZ  = bb3d.max(Z);
+        auto   minZf = float(minZ);
 
-        auto minZs = coord_t(minZ / SCALING_FACTOR);
-        auto maxZs = coord_t(maxZ / SCALING_FACTOR);
+        auto minZs = scaled(minZ);
+        auto maxZs = scaled(maxZ);
 
         po.m_slice_index.clear();
         
         size_t cap = size_t(1 + (maxZs - minZs - ilhs) / lhs);
         po.m_slice_index.reserve(cap);
         
-        po.m_slice_index.emplace_back(minZs + ilhs, minZ + ilhd / 2.0, ilh);
+        po.m_slice_index.emplace_back(minZs + ilhs, minZf + ilh / 2.f, ilh);
 
-        for(coord_t h = minZs + ilhs + lhs; h <= maxZs; h += lhs) 
-            po.m_slice_index.emplace_back(h, h*SCALING_FACTOR - lhd / 2.0, lh);
+        for(coord_t h = minZs + ilhs + lhs; h <= maxZs; h += lhs)
+            po.m_slice_index.emplace_back(h, unscaled<float>(h) - lh / 2.f, lh);
        
         // Just get the first record that is form the model:
         auto slindex_it =
@@ -737,15 +740,15 @@ void SLAPrint::process()
 
         auto mit = slindex_it;
         double doffs = m_printer_config.absolute_correction.getFloat();
-        coord_t clpr_offs = coord_t(doffs / SCALING_FACTOR);
+        coord_t clpr_offs = scaled(doffs);
         for(size_t id = 0;
             id < po.m_model_slices.size() && mit != po.m_slice_index.end();
             id++)
         {
             // We apply the printer correction offset here.
             if(clpr_offs != 0)
-                po.m_model_slices[id] = 
-                        offset_ex(po.m_model_slices[id], clpr_offs);
+                po.m_model_slices[id] =
+                    offset_ex(po.m_model_slices[id], float(clpr_offs));
             
             mit->set_model_slice_idx(po, id); ++mit;
         }
@@ -949,15 +952,15 @@ void SLAPrint::process()
         }
 
         double doffs = m_printer_config.absolute_correction.getFloat();
-        coord_t clpr_offs = coord_t(doffs / SCALING_FACTOR);
+        coord_t clpr_offs = scaled(doffs);
         for(size_t i = 0;
             i < sd->support_slices.size() && i < po.m_slice_index.size();
             ++i)
         {
             // We apply the printer correction offset here.
             if(clpr_offs != 0)
-                sd->support_slices[i] = 
-                        offset_ex(sd->support_slices[i], clpr_offs);
+                sd->support_slices[i] =
+                    offset_ex(sd->support_slices[i], float(clpr_offs));
             
             po.m_slice_index[i].set_support_slice_idx(po, i);
         }
@@ -1063,8 +1066,8 @@ void SLAPrint::process()
 
         const int    fade_layers_cnt    = m_default_object_config.faded_layers.getInt();// 10 // [3;20]
 
-        const double width              = m_printer_config.display_width.getFloat() / SCALING_FACTOR;
-        const double height             = m_printer_config.display_height.getFloat() / SCALING_FACTOR;
+        const double width              = scaled(m_printer_config.display_width.getFloat());
+        const double height             = scaled(m_printer_config.display_height.getFloat());
         const double display_area       = width*height;
 
         // get polygons for all instances in the object
@@ -1170,13 +1173,20 @@ void SLAPrint::process()
             ClipperPolygons model_polygons;
             ClipperPolygons supports_polygons;
 
-            size_t c = std::accumulate(layer.slices().begin(), layer.slices().end(), 0u, [](size_t a, const SliceRecord& sr) {
-                                           return a + sr.get_slice(soModel).size();
+            size_t c = std::accumulate(layer.slices().begin(),
+                                       layer.slices().end(),
+                                       size_t(0),
+                                       [](size_t a, const SliceRecord &sr) {
+                                           return a + sr.get_slice(soModel)
+                                                        .size();
                                        });
 
             model_polygons.reserve(c);
 
-            c = std::accumulate(layer.slices().begin(), layer.slices().end(), 0u, [](size_t a, const SliceRecord& sr) {
+            c = std::accumulate(layer.slices().begin(),
+                                layer.slices().end(),
+                                size_t(0),
+                                [](size_t a, const SliceRecord &sr) {
                                     return a + sr.get_slice(soModel).size();
                                 });
 
@@ -1264,8 +1274,9 @@ void SLAPrint::process()
         // for(size_t i = 0; i < m_printer_input.size(); ++i) printlayerfn(i);
         tbb::parallel_for<size_t, decltype(printlayerfn)>(0, m_printer_input.size(), printlayerfn);
 
-        m_print_statistics.support_used_material = supports_volume * SCALING_FACTOR * SCALING_FACTOR;
-        m_print_statistics.objects_used_material = models_volume  * SCALING_FACTOR * SCALING_FACTOR;
+        auto SCALING2 = SCALING_FACTOR * SCALING_FACTOR;
+        m_print_statistics.support_used_material = supports_volume * SCALING2;
+        m_print_statistics.objects_used_material = models_volume  * SCALING2;
 
         // Estimated printing time
         // A layers count o the highest object
@@ -1281,7 +1292,7 @@ void SLAPrint::process()
     };
 
     // Rasterizing the model objects, and their supports
-    auto rasterize = [this, max_objstatus]() {
+    auto rasterize = [this]() {
         if(canceled()) return;
 
         // collect all the keys
@@ -1376,11 +1387,12 @@ void SLAPrint::process()
         tbb::parallel_for<unsigned, decltype(lvlfn)>(0, lvlcnt, lvlfn);
 
         // Set statistics values to the printer
-        m_printer->set_statistics({(m_print_statistics.objects_used_material + m_print_statistics.support_used_material)/1000,
-                                double(m_default_object_config.faded_layers.getInt()),
-                                double(m_print_statistics.slow_layers_count),
-                                double(m_print_statistics.fast_layers_count)
-                                });
+        m_printer->set_statistics(
+            {(m_print_statistics.objects_used_material
+              + m_print_statistics.support_used_material) / 1000,
+             double(m_default_object_config.faded_layers.getInt()),
+             double(m_print_statistics.slow_layers_count),
+             double(m_print_statistics.fast_layers_count)});
     };
 
     using slaposFn = std::function<void(SLAPrintObject&)>;
@@ -1408,25 +1420,36 @@ void SLAPrint::process()
 
     // TODO: this loop could run in parallel but should not exhaust all the CPU
     // power available
-    // Calculate the support structures first before slicing the supports, so that the preview will get displayed ASAP for all objects.
-    std::vector<SLAPrintObjectStep> step_ranges = { slaposObjectSlice, slaposSliceSupports, slaposCount };
-    for (size_t idx_range = 0; idx_range + 1 < step_ranges.size(); ++ idx_range) {
-        for(SLAPrintObject * po : m_objects) {
+    // Calculate the support structures first before slicing the supports,
+    // so that the preview will get displayed ASAP for all objects.
+    std::vector<SLAPrintObjectStep> step_ranges = {slaposObjectSlice,
+                                                   slaposSliceSupports,
+                                                   slaposCount};
+
+    for (size_t idx_range = 0; idx_range + 1 < step_ranges.size(); ++idx_range) {
+        for (SLAPrintObject *po : m_objects) {
 
-            BOOST_LOG_TRIVIAL(info) << "Slicing object " << po->model_object()->name;
+            BOOST_LOG_TRIVIAL(info)
+                << "Slicing object " << po->model_object()->name;
 
-            for (int s = int(step_ranges[idx_range]); s < int(step_ranges[idx_range + 1]); ++s) {
+            for (int s = int(step_ranges[idx_range]);
+                 s < int(step_ranges[idx_range + 1]);
+                 ++s) {
                 auto currentstep = static_cast<SLAPrintObjectStep>(s);
 
-                // Cancellation checking. Each step will check for cancellation
-                // on its own and return earlier gracefully. Just after it returns
-                // execution gets to this point and throws the canceled signal.
+                // Cancellation checking. Each step will check for
+                // cancellation on its own and return earlier gracefully.
+                // Just after it returns execution gets to this point and
+                // throws the canceled signal.
                 throw_if_canceled();
 
                 st += incr * ostepd;
 
-                if(po->m_stepmask[currentstep] && po->set_started(currentstep)) {
-                    m_report_status(*this, st, OBJ_STEP_LABELS(currentstep));
+                if (po->m_stepmask[currentstep]
+                    && po->set_started(currentstep)) {
+                    m_report_status(*this,
+                                    st,
+                                    OBJ_STEP_LABELS(currentstep));
                     pobj_program[currentstep](*po);
                     throw_if_canceled();
                     po->set_done(currentstep);
@@ -1786,8 +1809,8 @@ std::vector<sla::SupportPoint> SLAPrintObject::transformed_support_points() cons
     ret.reserve(spts.size());
 
     for(sla::SupportPoint& sp : spts) {
-        Vec3d transformed_pos = trafo() * Vec3d(sp.pos(0), sp.pos(1), sp.pos(2));
-        ret.emplace_back(transformed_pos(0), transformed_pos(1), transformed_pos(2), sp.head_front_radius, sp.is_new_island);
+        Vec3f transformed_pos = trafo().cast<float>() * sp.pos;
+        ret.emplace_back(transformed_pos, sp.head_front_radius, sp.is_new_island);
     }
 
     return ret;

+ 22 - 18
src/libslic3r/SLAPrint.hpp

@@ -54,15 +54,15 @@ public:
     bool                        is_left_handed() const { return m_left_handed; }
 
     struct Instance {
-    	Instance(ModelID instance_id, const Point &shift, float rotation) : instance_id(instance_id), shift(shift), rotation(rotation) {}
-		bool operator==(const Instance &rhs) const { return this->instance_id == rhs.instance_id && this->shift == rhs.shift && this->rotation == rhs.rotation; }
-    	// ID of the corresponding ModelInstance.
-		ModelID instance_id;
-		// Slic3r::Point objects in scaled G-code coordinates
-    	Point 	shift;
-    	// Rotation along the Z axis, in radians.
-    	float 	rotation;
-	};
+        Instance(ModelID instance_id, const Point &shift, float rotation) : instance_id(instance_id), shift(shift), rotation(rotation) {}
+        bool operator==(const Instance &rhs) const { return this->instance_id == rhs.instance_id && this->shift == rhs.shift && this->rotation == rhs.rotation; }
+        // ID of the corresponding ModelInstance.
+        ModelID instance_id;
+        // Slic3r::Point objects in scaled G-code coordinates
+        Point 	shift;
+        // Rotation along the Z axis, in radians.
+        float 	rotation;
+    };
     const std::vector<Instance>& instances() const { return m_instances; }
 
     bool                    has_mesh(SLAPrintObjectStep step) const;
@@ -142,15 +142,19 @@ public:
     };
 
 private:
-
-    template <class T> inline static T level(const SliceRecord& sr) {
+    template<class T> inline static T level(const SliceRecord &sr)
+    {
         static_assert(std::is_arithmetic<T>::value, "Arithmetic only!");
-        return std::is_integral<T>::value ? T(sr.print_level()) : T(sr.slice_level());
+        return std::is_integral<T>::value ? T(sr.print_level())
+                                          : T(sr.slice_level());
     }
 
-    template <class T> inline static SliceRecord create_slice_record(T val) {
+    template<class T> inline static SliceRecord create_slice_record(T val)
+    {
         static_assert(std::is_arithmetic<T>::value, "Arithmetic only!");
-        return std::is_integral<T>::value ? SliceRecord{ coord_t(val), 0.f, 0.f } : SliceRecord{ 0, float(val), 0.f };
+        return std::is_integral<T>::value
+                   ? SliceRecord{coord_t(val), 0.f, 0.f}
+                   : SliceRecord{0, float(val), 0.f};
     }
 
     // This is a template method for searching the slice index either by
@@ -241,11 +245,11 @@ protected:
     ~SLAPrintObject();
 
     void                    config_apply(const ConfigBase &other, bool ignore_nonexistent = false) { this->m_config.apply(other, ignore_nonexistent); }
-    void                    config_apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent = false) 
-    	{ this->m_config.apply_only(other, keys, ignore_nonexistent); }
+    void                    config_apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent = false)
+        { this->m_config.apply_only(other, keys, ignore_nonexistent); }
 
     void                    set_trafo(const Transform3d& trafo, bool left_handed) {
-		m_transformed_rmesh.invalidate([this, &trafo, left_handed](){ m_trafo = trafo; m_left_handed = left_handed; });
+        m_transformed_rmesh.invalidate([this, &trafo, left_handed](){ m_trafo = trafo; m_left_handed = left_handed; });
     }
 
     template<class InstVec> inline void set_instances(InstVec&& instances) { m_instances = std::forward<InstVec>(instances); }
@@ -380,7 +384,7 @@ public:
     void                set_task(const TaskParams &params) override;
     void                process() override;
     void                finalize() override;
-    // Returns true if an object step is done on all objects and there's at least one object.    
+    // Returns true if an object step is done on all objects and there's at least one object.
     bool                is_step_done(SLAPrintObjectStep step) const;
     // Returns true if the last step was finished with success.
     bool                finished() const override { return this->is_step_done(slaposSliceSupports) && this->Inherited::is_step_done(slapsRasterize); }

+ 23 - 0
src/libslic3r/libslic3r.h

@@ -48,10 +48,33 @@ typedef double  coordf_t;
 //FIXME Better to use an inline function with an explicit return type.
 //inline coord_t scale_(coordf_t v) { return coord_t(floor(v / SCALING_FACTOR + 0.5f)); }
 #define scale_(val) ((val) / SCALING_FACTOR)
+
 #define SCALED_EPSILON scale_(EPSILON)
 
 #define SLIC3R_DEBUG_OUT_PATH_PREFIX "out/"
 
+#if defined(_MSC_VER) &&  _MSC_VER < 1900
+# define SLIC3R_CONSTEXPR
+# define SLIC3R_NOEXCEPT
+#else
+#define SLIC3R_CONSTEXPR constexpr
+#define SLIC3R_NOEXCEPT  noexcept
+#endif
+
+template<class Tf> inline SLIC3R_CONSTEXPR coord_t scaled(Tf val)
+{
+    static_assert (std::is_floating_point<Tf>::value, "Floating point only");
+    return coord_t(val / Tf(SCALING_FACTOR));
+}
+
+template<class Tf = double> inline SLIC3R_CONSTEXPR Tf unscaled(coord_t val)
+{
+    static_assert (std::is_floating_point<Tf>::value, "Floating point only");
+    return Tf(val * Tf(SCALING_FACTOR));
+}
+
+inline SLIC3R_CONSTEXPR float unscaledf(coord_t val) { return unscaled<float>(val); }
+
 inline std::string debug_out_path(const char *name, ...)
 {
 	char buffer[2048];

+ 10 - 12
src/slic3r/GUI/GLCanvas3D.cpp

@@ -63,11 +63,6 @@ static const float GROUND_Z = -0.02f;
 static const float GIZMO_RESET_BUTTON_HEIGHT = 22.0f;
 static const float GIZMO_RESET_BUTTON_WIDTH = 70.f;
 
-static const float UNIT_MATRIX[] = { 1.0f, 0.0f, 0.0f, 0.0f,
-                                     0.0f, 1.0f, 0.0f, 0.0f,
-                                     0.0f, 0.0f, 1.0f, 0.0f,
-                                     0.0f, 0.0f, 0.0f, 1.0f };
-
 static const float DEFAULT_BG_DARK_COLOR[3] = { 0.478f, 0.478f, 0.478f };
 static const float DEFAULT_BG_LIGHT_COLOR[3] = { 0.753f, 0.753f, 0.753f };
 static const float ERROR_BG_DARK_COLOR[3] = { 0.478f, 0.192f, 0.039f };
@@ -452,8 +447,7 @@ void GLCanvas3D::LayersEditing::_render_active_object_annotations(const GLCanvas
 	m_shader.set_uniform("z_texture_row_to_normalized", 1.0f / (float)m_layers_texture.height);
     m_shader.set_uniform("z_cursor", m_object_max_z * this->get_cursor_z_relative(canvas));
     m_shader.set_uniform("z_cursor_band_width", band_width);
-    // The shader requires the original model coordinates when rendering to the texture, so we pass it the unit matrix
-    m_shader.set_uniform("volume_world_matrix", UNIT_MATRIX);
+    m_shader.set_uniform("object_max_z", m_object_max_z);
 
     glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
     glsafe(::glBindTexture(GL_TEXTURE_2D, m_z_texture_id));
@@ -466,10 +460,10 @@ void GLCanvas3D::LayersEditing::_render_active_object_annotations(const GLCanvas
 
     ::glBegin(GL_QUADS);
     ::glNormal3f(0.0f, 0.0f, 1.0f);
-    ::glVertex3f(l, b, 0.0f);
-    ::glVertex3f(r, b, 0.0f);
-    ::glVertex3f(r, t, m_object_max_z);
-    ::glVertex3f(l, t, m_object_max_z);
+    ::glTexCoord2f(0.0f, 0.0f); ::glVertex2f(l, b);
+    ::glTexCoord2f(1.0f, 0.0f); ::glVertex2f(r, b);
+    ::glTexCoord2f(1.0f, 1.0f); ::glVertex2f(r, t);
+    ::glTexCoord2f(0.0f, 1.0f); ::glVertex2f(l, t);
     glsafe(::glEnd());
     glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
 
@@ -522,6 +516,7 @@ void GLCanvas3D::LayersEditing::render_volumes(const GLCanvas3D& canvas, const G
     GLint z_cursor_id                       = ::glGetUniformLocation(shader_id, "z_cursor");
     GLint z_cursor_band_width_id            = ::glGetUniformLocation(shader_id, "z_cursor_band_width");
     GLint world_matrix_id                   = ::glGetUniformLocation(shader_id, "volume_world_matrix");
+    GLint object_max_z_id                   = ::glGetUniformLocation(shader_id, "object_max_z");
     glcheck();
 
     if (z_to_texture_row_id != -1 && z_texture_row_to_normalized_id != -1 && z_cursor_id != -1 && z_cursor_band_width_id != -1 && world_matrix_id != -1) 
@@ -548,7 +543,10 @@ void GLCanvas3D::LayersEditing::render_volumes(const GLCanvas3D& canvas, const G
             // Render the object using the layer editing shader and texture.
             if (! glvolume->is_active || glvolume->composite_id.object_id != this->last_object_id || glvolume->is_modifier)
                 continue;
-            glsafe(::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)glvolume->world_matrix().cast<float>().data()));
+            if (world_matrix_id != -1)
+                glsafe(::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)glvolume->world_matrix().cast<float>().data()));
+            if (object_max_z_id != -1)
+                glsafe(::glUniform1f(object_max_z_id, GLfloat(0)));
             glvolume->render();
         }
         // Revert back to the previous shader.

+ 2 - 1
src/slic3r/GUI/MainFrame.cpp

@@ -976,7 +976,8 @@ void MainFrame::load_config(const DynamicPrintConfig& config)
 				if (! boost::algorithm::ends_with(opt_key, "_settings_id"))
 					tab->get_config()->option(opt_key)->set(config.option(opt_key));
         }
-	wxGetApp().load_current_presets();
+    
+    wxGetApp().load_current_presets();
 #endif
 }