12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426 |
- #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/IntervalMap.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/UniqueVector.h"
- #include "llvm/Analysis/Interval.h"
- #include "llvm/BinaryFormat/Dwarf.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/PrintPasses.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include <assert.h>
- #include <cstdint>
- #include <optional>
- #include <sstream>
- #include <unordered_map>
- using namespace llvm;
- #define DEBUG_TYPE "debug-ata"
- STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
- STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
- STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
- STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
- static cl::opt<unsigned>
- MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
- cl::desc("Maximum num basic blocks before debug info dropped"),
- cl::Hidden);
- /// Option for debugging the pass, determines if the memory location fragment
- /// filling happens after generating the variable locations.
- static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
- cl::Hidden);
- /// Print the results of the analysis. Respects -filter-print-funcs.
- static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
- cl::Hidden);
- // Implicit conversions are disabled for enum class types, so unfortunately we
- // need to create a DenseMapInfo wrapper around the specified underlying type.
- template <> struct llvm::DenseMapInfo<VariableID> {
- using Wrapped = DenseMapInfo<unsigned>;
- static inline VariableID getEmptyKey() {
- return static_cast<VariableID>(Wrapped::getEmptyKey());
- }
- static inline VariableID getTombstoneKey() {
- return static_cast<VariableID>(Wrapped::getTombstoneKey());
- }
- static unsigned getHashValue(const VariableID &Val) {
- return Wrapped::getHashValue(static_cast<unsigned>(Val));
- }
- static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
- return LHS == RHS;
- }
- };
- /// Helper class to build FunctionVarLocs, since that class isn't easy to
- /// modify. TODO: There's not a great deal of value in the split, it could be
- /// worth merging the two classes.
- class FunctionVarLocsBuilder {
- friend FunctionVarLocs;
- UniqueVector<DebugVariable> Variables;
- // Use an unordered_map so we don't invalidate iterators after
- // insert/modifications.
- std::unordered_map<const Instruction *, SmallVector<VarLocInfo>>
- VarLocsBeforeInst;
- SmallVector<VarLocInfo> SingleLocVars;
- public:
- /// Find or insert \p V and return the ID.
- VariableID insertVariable(DebugVariable V) {
- return static_cast<VariableID>(Variables.insert(V));
- }
- /// Get a variable from its \p ID.
- const DebugVariable &getVariable(VariableID ID) const {
- return Variables[static_cast<unsigned>(ID)];
- }
- /// Return ptr to wedge of defs or nullptr if no defs come just before /p
- /// Before.
- const SmallVectorImpl<VarLocInfo> *getWedge(const Instruction *Before) const {
- auto R = VarLocsBeforeInst.find(Before);
- if (R == VarLocsBeforeInst.end())
- return nullptr;
- return &R->second;
- }
- /// Replace the defs that come just before /p Before with /p Wedge.
- void setWedge(const Instruction *Before, SmallVector<VarLocInfo> &&Wedge) {
- VarLocsBeforeInst[Before] = std::move(Wedge);
- }
- /// Add a def for a variable that is valid for its lifetime.
- void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
- Value *V) {
- VarLocInfo VarLoc;
- VarLoc.VariableID = insertVariable(Var);
- VarLoc.Expr = Expr;
- VarLoc.DL = DL;
- VarLoc.V = V;
- SingleLocVars.emplace_back(VarLoc);
- }
- /// Add a def to the wedge of defs just before /p Before.
- void addVarLoc(Instruction *Before, DebugVariable Var, DIExpression *Expr,
- DebugLoc DL, Value *V) {
- VarLocInfo VarLoc;
- VarLoc.VariableID = insertVariable(Var);
- VarLoc.Expr = Expr;
- VarLoc.DL = DL;
- VarLoc.V = V;
- VarLocsBeforeInst[Before].emplace_back(VarLoc);
- }
- };
- void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
- // Print the variable table first. TODO: Sorting by variable could make the
- // output more stable?
- unsigned Counter = -1;
- OS << "=== Variables ===\n";
- for (const DebugVariable &V : Variables) {
- ++Counter;
- // Skip first entry because it is a dummy entry.
- if (Counter == 0) {
- continue;
- }
- OS << "[" << Counter << "] " << V.getVariable()->getName();
- if (auto F = V.getFragment())
- OS << " bits [" << F->OffsetInBits << ", "
- << F->OffsetInBits + F->SizeInBits << ")";
- if (const auto *IA = V.getInlinedAt())
- OS << " inlined-at " << *IA;
- OS << "\n";
- }
- auto PrintLoc = [&OS](const VarLocInfo &Loc) {
- OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
- << " Expr=" << *Loc.Expr << " V=" << *Loc.V << "\n";
- };
- // Print the single location variables.
- OS << "=== Single location vars ===\n";
- for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
- ++It) {
- PrintLoc(*It);
- }
- // Print the non-single-location defs in line with IR.
- OS << "=== In-line variable defs ===";
- for (const BasicBlock &BB : Fn) {
- OS << "\n" << BB.getName() << ":\n";
- for (const Instruction &I : BB) {
- for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
- PrintLoc(*It);
- }
- OS << I << "\n";
- }
- }
- }
- void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
- // Add the single-location variables first.
- for (const auto &VarLoc : Builder.SingleLocVars)
- VarLocRecords.emplace_back(VarLoc);
- // Mark the end of the section.
- SingleVarLocEnd = VarLocRecords.size();
- // Insert a contiguous block of VarLocInfos for each instruction, mapping it
- // to the start and end position in the vector with VarLocsBeforeInst.
- for (auto &P : Builder.VarLocsBeforeInst) {
- unsigned BlockStart = VarLocRecords.size();
- for (const VarLocInfo &VarLoc : P.second)
- VarLocRecords.emplace_back(VarLoc);
- unsigned BlockEnd = VarLocRecords.size();
- // Record the start and end indices.
- if (BlockEnd != BlockStart)
- VarLocsBeforeInst[P.first] = {BlockStart, BlockEnd};
- }
- // Copy the Variables vector from the builder's UniqueVector.
- assert(Variables.empty() && "Expect clear before init");
- // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
- // are one-based) so reserve an extra and insert a dummy.
- Variables.reserve(Builder.Variables.size() + 1);
- Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
- Variables.append(Builder.Variables.begin(), Builder.Variables.end());
- }
- void FunctionVarLocs::clear() {
- Variables.clear();
- VarLocRecords.clear();
- VarLocsBeforeInst.clear();
- SingleVarLocEnd = 0;
- }
- /// Walk backwards along constant GEPs and bitcasts to the base storage from \p
- /// Start as far as possible. Prepend \Expression with the offset and append it
- /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
- /// value and modified expression.
- static std::pair<Value *, DIExpression *>
- walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
- DIExpression *Expression) {
- APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
- Value *End =
- Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
- SmallVector<uint64_t, 3> Ops;
- if (OffsetInBytes.getBoolValue()) {
- Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
- Expression = DIExpression::prependOpcodes(
- Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
- }
- Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
- return {End, Expression};
- }
- /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
- /// doesn't explicitly describe a memory location with DW_OP_deref or if the
- /// expression is too complex to interpret.
- static std::optional<int64_t>
- getDerefOffsetInBytes(const DIExpression *DIExpr) {
- int64_t Offset = 0;
- const unsigned NumElements = DIExpr->getNumElements();
- const auto Elements = DIExpr->getElements();
- unsigned NextElement = 0;
- // Extract the offset.
- if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
- Offset = Elements[1];
- NextElement = 2;
- } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
- NextElement = 3;
- if (Elements[2] == dwarf::DW_OP_plus)
- Offset = Elements[1];
- else if (Elements[2] == dwarf::DW_OP_minus)
- Offset = -Elements[1];
- else
- return std::nullopt;
- }
- // If that's all there is it means there's no deref.
- if (NextElement >= NumElements)
- return std::nullopt;
- // Check the next element is DW_OP_deref - otherwise this is too complex or
- // isn't a deref expression.
- if (Elements[NextElement] != dwarf::DW_OP_deref)
- return std::nullopt;
- // Check the final operation is either the DW_OP_deref or is a fragment.
- if (NumElements == NextElement + 1)
- return Offset; // Ends with deref.
- else if (NumElements == NextElement + 3 &&
- Elements[NextElement] == dwarf::DW_OP_LLVM_fragment)
- return Offset; // Ends with deref + fragment.
- // Don't bother trying to interpret anything more complex.
- return std::nullopt;
- }
- /// A whole (unfragmented) source variable.
- using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
- static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
- return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
- }
- static DebugAggregate getAggregate(const DebugVariable &Var) {
- return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
- }
- namespace {
- /// In dwarf emission, the following sequence
- /// 1. dbg.value ... Fragment(0, 64)
- /// 2. dbg.value ... Fragment(0, 32)
- /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
- /// the intersection of the fragments to having "no location"). This makes
- /// sense for implicit location values because splitting the computed values
- /// could be troublesome, and is probably quite uncommon. When we convert
- /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
- /// a location (memory) rather than a value means we don't need to worry about
- /// splitting any values, so we try to recover the rest of the fragment
- /// location here.
- /// This class performs a(nother) dataflow analysis over the function, adding
- /// variable locations so that any bits of a variable with a memory location
- /// have that location explicitly reinstated at each subsequent variable
- /// location definition that that doesn't overwrite those bits. i.e. after a
- /// variable location def, insert new defs for the memory location with
- /// fragments for the difference of "all bits currently in memory" and "the
- /// fragment of the second def".
- class MemLocFragmentFill {
- Function &Fn;
- FunctionVarLocsBuilder *FnVarLocs;
- const DenseSet<DebugAggregate> *VarsWithStackSlot;
- // 0 = no memory location.
- using BaseAddress = unsigned;
- using OffsetInBitsTy = unsigned;
- using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
- using FragsInMemMap = IntervalMap<
- OffsetInBitsTy, BaseAddress,
- IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
- FragTraits>;
- FragsInMemMap::Allocator IntervalMapAlloc;
- using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
- /// IDs for memory location base addresses in maps. Use 0 to indicate that
- /// there's no memory location.
- UniqueVector<Value *> Bases;
- UniqueVector<DebugAggregate> Aggregates;
- DenseMap<const BasicBlock *, VarFragMap> LiveIn;
- DenseMap<const BasicBlock *, VarFragMap> LiveOut;
- struct FragMemLoc {
- unsigned Var;
- unsigned Base;
- unsigned OffsetInBits;
- unsigned SizeInBits;
- DebugLoc DL;
- };
- using InsertMap = MapVector<Instruction *, SmallVector<FragMemLoc>>;
- /// BBInsertBeforeMap holds a description for the set of location defs to be
- /// inserted after the analysis is complete. It is updated during the dataflow
- /// and the entry for a block is CLEARED each time it is (re-)visited. After
- /// the dataflow is complete, each block entry will contain the set of defs
- /// calculated during the final (fixed-point) iteration.
- DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
- static bool intervalMapsAreEqual(const FragsInMemMap &A,
- const FragsInMemMap &B) {
- auto AIt = A.begin(), AEnd = A.end();
- auto BIt = B.begin(), BEnd = B.end();
- for (; AIt != AEnd; ++AIt, ++BIt) {
- if (BIt == BEnd)
- return false; // B has fewer elements than A.
- if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
- return false; // Interval is different.
- if (*AIt != *BIt)
- return false; // Value at interval is different.
- }
- // AIt == AEnd. Check BIt is also now at end.
- return BIt == BEnd;
- }
- static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
- if (A.size() != B.size())
- return false;
- for (const auto &APair : A) {
- auto BIt = B.find(APair.first);
- if (BIt == B.end())
- return false;
- if (!intervalMapsAreEqual(APair.second, BIt->second))
- return false;
- }
- return true;
- }
- /// Return a string for the value that \p BaseID represents.
- std::string toString(unsigned BaseID) {
- if (BaseID)
- return Bases[BaseID]->getName().str();
- else
- return "None";
- }
- /// Format string describing an FragsInMemMap (IntervalMap) interval.
- std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
- std::string String;
- std::stringstream S(String);
- if (It.valid()) {
- S << "[" << It.start() << ", " << It.stop()
- << "): " << toString(It.value());
- } else {
- S << "invalid iterator (end)";
- }
- if (Newline)
- S << "\n";
- return S.str();
- };
- FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
- FragsInMemMap Result(IntervalMapAlloc);
- for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
- LLVM_DEBUG(dbgs() << "a " << toString(AIt));
- // This is basically copied from process() and inverted (process is
- // performing something like a union whereas this is more of an
- // intersect).
- // There's no work to do if interval `a` overlaps no fragments in map `B`.
- if (!B.overlaps(AIt.start(), AIt.stop()))
- continue;
- // Does StartBit intersect an existing fragment?
- auto FirstOverlap = B.find(AIt.start());
- assert(FirstOverlap != B.end());
- bool IntersectStart = FirstOverlap.start() < AIt.start();
- LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
- << ", IntersectStart: " << IntersectStart << "\n");
- // Does EndBit intersect an existing fragment?
- auto LastOverlap = B.find(AIt.stop());
- bool IntersectEnd =
- LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
- LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
- << ", IntersectEnd: " << IntersectEnd << "\n");
- // Check if both ends of `a` intersect the same interval `b`.
- if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
- // Insert `a` (`a` is contained in `b`) if the values match.
- // [ a ]
- // [ - b - ]
- // -
- // [ r ]
- LLVM_DEBUG(dbgs() << "- a is contained within "
- << toString(FirstOverlap));
- if (*AIt && *AIt == *FirstOverlap)
- Result.insert(AIt.start(), AIt.stop(), *AIt);
- } else {
- // There's an overlap but `a` is not fully contained within
- // `b`. Shorten any end-point intersections.
- // [ - a - ]
- // [ - b - ]
- // -
- // [ r ]
- auto Next = FirstOverlap;
- if (IntersectStart) {
- LLVM_DEBUG(dbgs() << "- insert intersection of a and "
- << toString(FirstOverlap));
- if (*AIt && *AIt == *FirstOverlap)
- Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
- ++Next;
- }
- // [ - a - ]
- // [ - b - ]
- // -
- // [ r ]
- if (IntersectEnd) {
- LLVM_DEBUG(dbgs() << "- insert intersection of a and "
- << toString(LastOverlap));
- if (*AIt && *AIt == *LastOverlap)
- Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
- }
- // Insert all intervals in map `B` that are contained within interval
- // `a` where the values match.
- // [ - - a - - ]
- // [ b1 ] [ b2 ]
- // -
- // [ r1 ] [ r2 ]
- while (Next != B.end() && Next.start() < AIt.stop() &&
- Next.stop() <= AIt.stop()) {
- LLVM_DEBUG(dbgs()
- << "- insert intersection of a and " << toString(Next));
- if (*AIt && *AIt == *Next)
- Result.insert(Next.start(), Next.stop(), *Next);
- ++Next;
- }
- }
- }
- return Result;
- }
- /// Meet \p A and \p B, storing the result in \p A.
- void meetVars(VarFragMap &A, const VarFragMap &B) {
- // Meet A and B.
- //
- // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
- for (auto It = A.begin(), End = A.end(); It != End; ++It) {
- unsigned AVar = It->first;
- FragsInMemMap &AFrags = It->second;
- auto BIt = B.find(AVar);
- if (BIt == B.end()) {
- A.erase(It);
- continue; // Var has no bits defined in B.
- }
- LLVM_DEBUG(dbgs() << "meet fragment maps for "
- << Aggregates[AVar].first->getName() << "\n");
- AFrags = meetFragments(AFrags, BIt->second);
- }
- }
- bool meet(const BasicBlock &BB,
- const SmallPtrSet<BasicBlock *, 16> &Visited) {
- LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
- << "\n");
- VarFragMap BBLiveIn;
- bool FirstMeet = true;
- // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
- // locs.
- for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
- // Ignore preds that haven't been processed yet. This is essentially the
- // same as initialising all variables to implicit top value (⊤) which is
- // the identity value for the meet operation.
- const BasicBlock *Pred = *I;
- if (!Visited.count(Pred))
- continue;
- auto PredLiveOut = LiveOut.find(Pred);
- assert(PredLiveOut != LiveOut.end());
- if (FirstMeet) {
- LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
- BBLiveIn = PredLiveOut->second;
- FirstMeet = false;
- } else {
- LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
- << "\n");
- meetVars(BBLiveIn, PredLiveOut->second);
- }
- // An empty set is ⊥ for the intersect-like meet operation. If we've
- // already got ⊥ there's no need to run the code - we know the result is
- // ⊥ since `meet(a, ⊥) = ⊥`.
- if (BBLiveIn.size() == 0)
- break;
- }
- auto CurrentLiveInEntry = LiveIn.find(&BB);
- // If there's no LiveIn entry for the block yet, add it.
- if (CurrentLiveInEntry == LiveIn.end()) {
- LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
- << "\n");
- LiveIn[&BB] = std::move(BBLiveIn);
- return /*Changed=*/true;
- }
- // If the LiveIn set has changed (expensive check) update it and return
- // true.
- if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
- LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
- CurrentLiveInEntry->second = std::move(BBLiveIn);
- return /*Changed=*/true;
- }
- LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
- return /*Changed=*/false;
- }
- void insertMemLoc(BasicBlock &BB, Instruction &Before, unsigned Var,
- unsigned StartBit, unsigned EndBit, unsigned Base,
- DebugLoc DL) {
- assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
- if (!Base)
- return;
- FragMemLoc Loc;
- Loc.Var = Var;
- Loc.OffsetInBits = StartBit;
- Loc.SizeInBits = EndBit - StartBit;
- assert(Base && "Expected a non-zero ID for Base address");
- Loc.Base = Base;
- Loc.DL = DL;
- BBInsertBeforeMap[&BB][&Before].push_back(Loc);
- LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
- << " bits [" << StartBit << ", " << EndBit << ")\n");
- }
- void addDef(const VarLocInfo &VarLoc, Instruction &Before, BasicBlock &BB,
- VarFragMap &LiveSet) {
- DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
- if (skipVariable(DbgVar.getVariable()))
- return;
- // Don't bother doing anything for this variables if we know it's fully
- // promoted. We're only interested in variables that (sometimes) live on
- // the stack here.
- if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
- return;
- unsigned Var = Aggregates.insert(
- DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
- // [StartBit: EndBit) are the bits affected by this def.
- const DIExpression *DIExpr = VarLoc.Expr;
- unsigned StartBit;
- unsigned EndBit;
- if (auto Frag = DIExpr->getFragmentInfo()) {
- StartBit = Frag->OffsetInBits;
- EndBit = StartBit + Frag->SizeInBits;
- } else {
- assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
- StartBit = 0;
- EndBit = *DbgVar.getVariable()->getSizeInBits();
- }
- // We will only fill fragments for simple memory-describing dbg.value
- // intrinsics. If the fragment offset is the same as the offset from the
- // base pointer, do The Thing, otherwise fall back to normal dbg.value
- // behaviour. AssignmentTrackingLowering has generated DIExpressions
- // written in terms of the base pointer.
- // TODO: Remove this condition since the fragment offset doesn't always
- // equal the offset from base pointer (e.g. for a SROA-split variable).
- const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
- const unsigned Base =
- DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
- ? Bases.insert(VarLoc.V)
- : 0;
- LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
- << StartBit << ", " << EndBit << "): " << toString(Base)
- << "\n");
- // First of all, any locs that use mem that are disrupted need reinstating.
- // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
- // with existing intervals so this code involves a lot of fiddling around
- // with intervals to do that manually.
- auto FragIt = LiveSet.find(Var);
- // Check if the variable does not exist in the map.
- if (FragIt == LiveSet.end()) {
- // Add this variable to the BB map.
- auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
- assert(P.second && "Var already in map?");
- // Add the interval to the fragment map.
- P.first->second.insert(StartBit, EndBit, Base);
- return;
- }
- // The variable has an entry in the map.
- FragsInMemMap &FragMap = FragIt->second;
- // First check the easy case: the new fragment `f` doesn't overlap with any
- // intervals.
- if (!FragMap.overlaps(StartBit, EndBit)) {
- LLVM_DEBUG(dbgs() << "- No overlaps\n");
- FragMap.insert(StartBit, EndBit, Base);
- return;
- }
- // There is at least one overlap.
- // Does StartBit intersect an existing fragment?
- auto FirstOverlap = FragMap.find(StartBit);
- assert(FirstOverlap != FragMap.end());
- bool IntersectStart = FirstOverlap.start() < StartBit;
- // Does EndBit intersect an existing fragment?
- auto LastOverlap = FragMap.find(EndBit);
- bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
- // Check if both ends of `f` intersect the same interval `i`.
- if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
- LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
- // Shorten `i` so that there's space to insert `f`.
- // [ f ]
- // [ - i - ]
- // +
- // [ i ][ f ][ i ]
- // Save values for use after inserting a new interval.
- auto EndBitOfOverlap = FirstOverlap.stop();
- unsigned OverlapValue = FirstOverlap.value();
- // Shorten the overlapping interval.
- FirstOverlap.setStop(StartBit);
- insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
- OverlapValue, VarLoc.DL);
- // Insert a new interval to represent the end part.
- FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
- insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
- VarLoc.DL);
- // Insert the new (middle) fragment now there is space.
- FragMap.insert(StartBit, EndBit, Base);
- } else {
- // There's an overlap but `f` may not be fully contained within
- // `i`. Shorten any end-point intersections so that we can then
- // insert `f`.
- // [ - f - ]
- // [ - i - ]
- // | |
- // [ i ]
- // Shorten any end-point intersections.
- if (IntersectStart) {
- LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
- // Split off at the intersection.
- FirstOverlap.setStop(StartBit);
- insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
- *FirstOverlap, VarLoc.DL);
- }
- // [ - f - ]
- // [ - i - ]
- // | |
- // [ i ]
- if (IntersectEnd) {
- LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
- // Split off at the intersection.
- LastOverlap.setStart(EndBit);
- insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
- VarLoc.DL);
- }
- LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
- // FirstOverlap and LastOverlap have been shortened such that they're
- // no longer overlapping with [StartBit, EndBit). Delete any overlaps
- // that remain (these will be fully contained within `f`).
- // [ - f - ] }
- // [ - i - ] } Intersection shortening that has happened above.
- // | | }
- // [ i ] }
- // -----------------
- // [i2 ] } Intervals fully contained within `f` get erased.
- // -----------------
- // [ - f - ][ i ] } Completed insertion.
- auto It = FirstOverlap;
- if (IntersectStart)
- ++It; // IntersectStart: first overlap has been shortened.
- while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
- LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
- It.erase(); // This increments It after removing the interval.
- }
- // We've dealt with all the overlaps now!
- assert(!FragMap.overlaps(StartBit, EndBit));
- LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
- FragMap.insert(StartBit, EndBit, Base);
- }
- }
- bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
- void process(BasicBlock &BB, VarFragMap &LiveSet) {
- BBInsertBeforeMap[&BB].clear();
- for (auto &I : BB) {
- if (const auto *Locs = FnVarLocs->getWedge(&I)) {
- for (const VarLocInfo &Loc : *Locs) {
- addDef(Loc, I, *I.getParent(), LiveSet);
- }
- }
- }
- }
- public:
- MemLocFragmentFill(Function &Fn,
- const DenseSet<DebugAggregate> *VarsWithStackSlot)
- : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot) {}
- /// Add variable locations to \p FnVarLocs so that any bits of a variable
- /// with a memory location have that location explicitly reinstated at each
- /// subsequent variable location definition that that doesn't overwrite those
- /// bits. i.e. after a variable location def, insert new defs for the memory
- /// location with fragments for the difference of "all bits currently in
- /// memory" and "the fragment of the second def". e.g.
- ///
- /// Before:
- ///
- /// var x bits 0 to 63: value in memory
- /// more instructions
- /// var x bits 0 to 31: value is %0
- ///
- /// After:
- ///
- /// var x bits 0 to 63: value in memory
- /// more instructions
- /// var x bits 0 to 31: value is %0
- /// var x bits 32 to 61: value in memory ; <-- new loc def
- ///
- void run(FunctionVarLocsBuilder *FnVarLocs) {
- if (!EnableMemLocFragFill)
- return;
- this->FnVarLocs = FnVarLocs;
- // Prepare for traversal.
- //
- ReversePostOrderTraversal<Function *> RPOT(&Fn);
- std::priority_queue<unsigned int, std::vector<unsigned int>,
- std::greater<unsigned int>>
- Worklist;
- std::priority_queue<unsigned int, std::vector<unsigned int>,
- std::greater<unsigned int>>
- Pending;
- DenseMap<unsigned int, BasicBlock *> OrderToBB;
- DenseMap<BasicBlock *, unsigned int> BBToOrder;
- { // Init OrderToBB and BBToOrder.
- unsigned int RPONumber = 0;
- for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
- OrderToBB[RPONumber] = *RI;
- BBToOrder[*RI] = RPONumber;
- Worklist.push(RPONumber);
- ++RPONumber;
- }
- LiveIn.init(RPONumber);
- LiveOut.init(RPONumber);
- }
- // Perform the traversal.
- //
- // This is a standard "intersect of predecessor outs" dataflow problem. To
- // solve it, we perform meet() and process() using the two worklist method
- // until the LiveIn data for each block becomes unchanging.
- //
- // This dataflow is essentially working on maps of sets and at each meet we
- // intersect the maps and the mapped sets. So, initialized live-in maps
- // monotonically decrease in value throughout the dataflow.
- SmallPtrSet<BasicBlock *, 16> Visited;
- while (!Worklist.empty() || !Pending.empty()) {
- // We track what is on the pending worklist to avoid inserting the same
- // thing twice. We could avoid this with a custom priority queue, but
- // this is probably not worth it.
- SmallPtrSet<BasicBlock *, 16> OnPending;
- LLVM_DEBUG(dbgs() << "Processing Worklist\n");
- while (!Worklist.empty()) {
- BasicBlock *BB = OrderToBB[Worklist.top()];
- LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
- Worklist.pop();
- bool InChanged = meet(*BB, Visited);
- // Always consider LiveIn changed on the first visit.
- InChanged |= Visited.insert(BB).second;
- if (InChanged) {
- LLVM_DEBUG(dbgs()
- << BB->getName() << " has new InLocs, process it\n");
- // Mutate a copy of LiveIn while processing BB. Once we've processed
- // the terminator LiveSet is the LiveOut set for BB.
- // This is an expensive copy!
- VarFragMap LiveSet = LiveIn[BB];
- // Process the instructions in the block.
- process(*BB, LiveSet);
- // Relatively expensive check: has anything changed in LiveOut for BB?
- if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
- LLVM_DEBUG(dbgs() << BB->getName()
- << " has new OutLocs, add succs to worklist: [ ");
- LiveOut[BB] = std::move(LiveSet);
- for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
- if (OnPending.insert(*I).second) {
- LLVM_DEBUG(dbgs() << I->getName() << " ");
- Pending.push(BBToOrder[*I]);
- }
- }
- LLVM_DEBUG(dbgs() << "]\n");
- }
- }
- }
- Worklist.swap(Pending);
- // At this point, pending must be empty, since it was just the empty
- // worklist
- assert(Pending.empty() && "Pending should be empty");
- }
- // Insert new location defs.
- for (auto Pair : BBInsertBeforeMap) {
- InsertMap &Map = Pair.second;
- for (auto Pair : Map) {
- Instruction *InsertBefore = Pair.first;
- assert(InsertBefore && "should never be null");
- auto FragMemLocs = Pair.second;
- auto &Ctx = Fn.getContext();
- for (auto FragMemLoc : FragMemLocs) {
- DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
- Expr = *DIExpression::createFragmentExpression(
- Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
- Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
- FragMemLoc.OffsetInBits / 8);
- DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
- FragMemLoc.DL.getInlinedAt());
- FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
- Bases[FragMemLoc.Base]);
- }
- }
- }
- }
- };
- /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
- /// that interprets assignment tracking debug info metadata and stores in IR to
- /// create a map of variable locations.
- class AssignmentTrackingLowering {
- public:
- /// The kind of location in use for a variable, where Mem is the stack home,
- /// Val is an SSA value or const, and None means that there is not one single
- /// kind (either because there are multiple or because there is none; it may
- /// prove useful to split this into two values in the future).
- ///
- /// LocKind is a join-semilattice with the partial order:
- /// None > Mem, Val
- ///
- /// i.e.
- /// join(Mem, Mem) = Mem
- /// join(Val, Val) = Val
- /// join(Mem, Val) = None
- /// join(None, Mem) = None
- /// join(None, Val) = None
- /// join(None, None) = None
- ///
- /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
- /// to name assignments and are not tracking the actual stored values.
- /// Therefore currently there's no way to ensure that Mem values and Val
- /// values are the same. This could be a future extension, though it's not
- /// clear that many additional locations would be recovered that way in
- /// practice as the likelihood of this sitation arising naturally seems
- /// incredibly low.
- enum class LocKind { Mem, Val, None };
- /// An abstraction of the assignment of a value to a variable or memory
- /// location.
- ///
- /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
- /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
- /// can't) know the ID of the last assignment that took place.
- ///
- /// The Status of the Assignment (Known or NoneOrPhi) is another
- /// join-semilattice. The partial order is:
- /// NoneOrPhi > Known {id_0, id_1, ...id_N}
- ///
- /// i.e. for all values x and y where x != y:
- /// join(x, x) = x
- /// join(x, y) = NoneOrPhi
- struct Assignment {
- enum S { Known, NoneOrPhi } Status;
- /// ID of the assignment. nullptr if Status is not Known.
- DIAssignID *ID;
- /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
- /// May be nullptr.
- DbgAssignIntrinsic *Source;
- bool isSameSourceAssignment(const Assignment &Other) const {
- // Don't include Source in the equality check. Assignments are
- // defined by their ID, not debug intrinsic(s).
- return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
- }
- void dump(raw_ostream &OS) {
- static const char *LUT[] = {"Known", "NoneOrPhi"};
- OS << LUT[Status] << "(id=";
- if (ID)
- OS << ID;
- else
- OS << "null";
- OS << ", s=";
- if (Source)
- OS << *Source;
- else
- OS << "null";
- OS << ")";
- }
- static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
- return Assignment(Known, ID, Source);
- }
- static Assignment makeFromMemDef(DIAssignID *ID) {
- return Assignment(Known, ID, nullptr);
- }
- static Assignment makeNoneOrPhi() {
- return Assignment(NoneOrPhi, nullptr, nullptr);
- }
- // Again, need a Top value?
- Assignment()
- : Status(NoneOrPhi), ID(nullptr), Source(nullptr) {
- } // Can we delete this?
- Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
- : Status(Status), ID(ID), Source(Source) {
- // If the Status is Known then we expect there to be an assignment ID.
- assert(Status == NoneOrPhi || ID);
- }
- };
- using AssignmentMap = DenseMap<VariableID, Assignment>;
- using LocMap = DenseMap<VariableID, LocKind>;
- using OverlapMap = DenseMap<VariableID, SmallVector<VariableID, 4>>;
- using UntaggedStoreAssignmentMap =
- DenseMap<const Instruction *,
- SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
- private:
- /// Map a variable to the set of variables that it fully contains.
- OverlapMap VarContains;
- /// Map untagged stores to the variable fragments they assign to. Used by
- /// processUntaggedInstruction.
- UntaggedStoreAssignmentMap UntaggedStoreVars;
- // Machinery to defer inserting dbg.values.
- using InsertMap = MapVector<Instruction *, SmallVector<VarLocInfo>>;
- InsertMap InsertBeforeMap;
- /// Clear the location definitions currently cached for insertion after /p
- /// After.
- void resetInsertionPoint(Instruction &After);
- void emitDbgValue(LocKind Kind, const DbgVariableIntrinsic *Source,
- Instruction *After);
- static bool mapsAreEqual(const AssignmentMap &A, const AssignmentMap &B) {
- if (A.size() != B.size())
- return false;
- for (const auto &Pair : A) {
- VariableID Var = Pair.first;
- const Assignment &AV = Pair.second;
- auto R = B.find(Var);
- // Check if this entry exists in B, otherwise ret false.
- if (R == B.end())
- return false;
- // Check that the assignment value is the same.
- if (!AV.isSameSourceAssignment(R->second))
- return false;
- }
- return true;
- }
- /// Represents the stack and debug assignments in a block. Used to describe
- /// the live-in and live-out values for blocks, as well as the "current"
- /// value as we process each instruction in a block.
- struct BlockInfo {
- /// Dominating assignment to memory for each variable.
- AssignmentMap StackHomeValue;
- /// Dominating assignemnt to each variable.
- AssignmentMap DebugValue;
- /// Location kind for each variable. LiveLoc indicates whether the
- /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
- /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
- /// preference. This cannot be derived by inspecting DebugValue and
- /// StackHomeValue due to the fact that there's no distinction in
- /// Assignment (the class) between whether an assignment is unknown or a
- /// merge of multiple assignments (both are Status::NoneOrPhi). In other
- /// words, the memory location may well be valid while both DebugValue and
- /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
- LocMap LiveLoc;
- /// Compare every element in each map to determine structural equality
- /// (slow).
- bool operator==(const BlockInfo &Other) const {
- return LiveLoc == Other.LiveLoc &&
- mapsAreEqual(StackHomeValue, Other.StackHomeValue) &&
- mapsAreEqual(DebugValue, Other.DebugValue);
- }
- bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
- bool isValid() {
- return LiveLoc.size() == DebugValue.size() &&
- LiveLoc.size() == StackHomeValue.size();
- }
- };
- Function &Fn;
- const DataLayout &Layout;
- const DenseSet<DebugAggregate> *VarsWithStackSlot;
- FunctionVarLocsBuilder *FnVarLocs;
- DenseMap<const BasicBlock *, BlockInfo> LiveIn;
- DenseMap<const BasicBlock *, BlockInfo> LiveOut;
- /// Helper for process methods to track variables touched each frame.
- DenseSet<VariableID> VarsTouchedThisFrame;
- /// The set of variables that sometimes are not located in their stack home.
- DenseSet<DebugAggregate> NotAlwaysStackHomed;
- VariableID getVariableID(const DebugVariable &Var) {
- return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
- }
- /// Join the LiveOut values of preds that are contained in \p Visited into
- /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
- /// values monotonically increase. See the @link joinMethods join methods
- /// @endlink documentation for more info.
- bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
- ///@name joinMethods
- /// Functions that implement `join` (the least upper bound) for the
- /// join-semilattice types used in the dataflow. There is an explicit bottom
- /// value (⊥) for some types and and explicit top value (⊤) for all types.
- /// By definition:
- ///
- /// Join(A, B) >= A && Join(A, B) >= B
- /// Join(A, ⊥) = A
- /// Join(A, ⊤) = ⊤
- ///
- /// These invariants are important for monotonicity.
- ///
- /// For the map-type functions, all unmapped keys in an empty map are
- /// associated with a bottom value (⊥). This represents their values being
- /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
- /// only present in one) represents either a variable going out of scope or
- /// dropped debug info. It is assumed the key is associated with a top value
- /// (⊤) in this case (unknown location / assignment).
- ///@{
- static LocKind joinKind(LocKind A, LocKind B);
- static LocMap joinLocMap(const LocMap &A, const LocMap &B);
- static Assignment joinAssignment(const Assignment &A, const Assignment &B);
- static AssignmentMap joinAssignmentMap(const AssignmentMap &A,
- const AssignmentMap &B);
- static BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
- ///@}
- /// Process the instructions in \p BB updating \p LiveSet along the way. \p
- /// LiveSet must be initialized with the current live-in locations before
- /// calling this.
- void process(BasicBlock &BB, BlockInfo *LiveSet);
- ///@name processMethods
- /// Methods to process instructions in order to update the LiveSet (current
- /// location information).
- ///@{
- void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
- void processDbgInstruction(Instruction &I, BlockInfo *LiveSet);
- /// Update \p LiveSet after encountering an instruction with a DIAssignID
- /// attachment, \p I.
- void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
- /// Update \p LiveSet after encountering an instruciton without a DIAssignID
- /// attachment, \p I.
- void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
- void processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet);
- void processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet);
- /// Add an assignment to memory for the variable /p Var.
- void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
- /// Add an assignment to the variable /p Var.
- void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
- ///@}
- /// Set the LocKind for \p Var.
- void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
- /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
- /// have been called for \p Var first.
- LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
- /// Return true if \p Var has an assignment in \p M matching \p AV.
- bool hasVarWithAssignment(VariableID Var, const Assignment &AV,
- const AssignmentMap &M);
- /// Emit info for variables that are fully promoted.
- bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
- public:
- AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
- const DenseSet<DebugAggregate> *VarsWithStackSlot)
- : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
- /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
- /// true if any variable locations have been added to FnVarLocs.
- bool run(FunctionVarLocsBuilder *FnVarLocs);
- };
- } // namespace
- void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
- LocKind K) {
- auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
- VarsTouchedThisFrame.insert(Var);
- LiveSet->LiveLoc[Var] = K;
- };
- SetKind(LiveSet, Var, K);
- // Update the LocKind for all fragments contained within Var.
- for (VariableID Frag : VarContains[Var])
- SetKind(LiveSet, Frag, K);
- }
- AssignmentTrackingLowering::LocKind
- AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
- auto Pair = LiveSet->LiveLoc.find(Var);
- assert(Pair != LiveSet->LiveLoc.end());
- return Pair->second;
- }
- void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
- const Assignment &AV) {
- auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) {
- LiveSet->StackHomeValue[Var] = AV;
- // Add default (Var -> ⊤) to DebugValue if Var isn't in DebugValue yet.
- LiveSet->DebugValue.insert({Var, Assignment::makeNoneOrPhi()});
- // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers
- // of addMemDef will call setLocKind to override.
- LiveSet->LiveLoc.insert({Var, LocKind::None});
- };
- AddDef(LiveSet, Var, AV);
- // Use this assigment for all fragments contained within Var, but do not
- // provide a Source because we cannot convert Var's value to a value for the
- // fragment.
- Assignment FragAV = AV;
- FragAV.Source = nullptr;
- for (VariableID Frag : VarContains[Var])
- AddDef(LiveSet, Frag, FragAV);
- }
- void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
- const Assignment &AV) {
- auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) {
- LiveSet->DebugValue[Var] = AV;
- // Add default (Var -> ⊤) to StackHome if Var isn't in StackHome yet.
- LiveSet->StackHomeValue.insert({Var, Assignment::makeNoneOrPhi()});
- // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers
- // of addDbgDef will call setLocKind to override.
- LiveSet->LiveLoc.insert({Var, LocKind::None});
- };
- AddDef(LiveSet, Var, AV);
- // Use this assigment for all fragments contained within Var, but do not
- // provide a Source because we cannot convert Var's value to a value for the
- // fragment.
- Assignment FragAV = AV;
- FragAV.Source = nullptr;
- for (VariableID Frag : VarContains[Var])
- AddDef(LiveSet, Frag, FragAV);
- }
- static DIAssignID *getIDFromInst(const Instruction &I) {
- return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
- }
- static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
- return cast<DIAssignID>(DAI.getAssignID());
- }
- /// Return true if \p Var has an assignment in \p M matching \p AV.
- bool AssignmentTrackingLowering::hasVarWithAssignment(VariableID Var,
- const Assignment &AV,
- const AssignmentMap &M) {
- auto AssignmentIsMapped = [](VariableID Var, const Assignment &AV,
- const AssignmentMap &M) {
- auto R = M.find(Var);
- if (R == M.end())
- return false;
- return AV.isSameSourceAssignment(R->second);
- };
- if (!AssignmentIsMapped(Var, AV, M))
- return false;
- // Check all the frags contained within Var as these will have all been
- // mapped to AV at the last store to Var.
- for (VariableID Frag : VarContains[Var])
- if (!AssignmentIsMapped(Frag, AV, M))
- return false;
- return true;
- }
- #ifndef NDEBUG
- const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
- using LocKind = AssignmentTrackingLowering::LocKind;
- switch (Loc) {
- case LocKind::Val:
- return "Val";
- case LocKind::Mem:
- return "Mem";
- case LocKind::None:
- return "None";
- };
- llvm_unreachable("unknown LocKind");
- }
- #endif
- void AssignmentTrackingLowering::emitDbgValue(
- AssignmentTrackingLowering::LocKind Kind,
- const DbgVariableIntrinsic *Source, Instruction *After) {
- DILocation *DL = Source->getDebugLoc();
- auto Emit = [this, Source, After, DL](Value *Val, DIExpression *Expr) {
- assert(Expr);
- if (!Val)
- Val = PoisonValue::get(Type::getInt1Ty(Source->getContext()));
- // Find a suitable insert point.
- Instruction *InsertBefore = After->getNextNode();
- assert(InsertBefore && "Shouldn't be inserting after a terminator");
- VariableID Var = getVariableID(DebugVariable(Source));
- VarLocInfo VarLoc;
- VarLoc.VariableID = static_cast<VariableID>(Var);
- VarLoc.Expr = Expr;
- VarLoc.V = Val;
- VarLoc.DL = DL;
- // Insert it into the map for later.
- InsertBeforeMap[InsertBefore].push_back(VarLoc);
- };
- // NOTE: This block can mutate Kind.
- if (Kind == LocKind::Mem) {
- const auto *DAI = cast<DbgAssignIntrinsic>(Source);
- // Check the address hasn't been dropped (e.g. the debug uses may not have
- // been replaced before deleting a Value).
- if (DAI->isKillAddress()) {
- // The address isn't valid so treat this as a non-memory def.
- Kind = LocKind::Val;
- } else {
- Value *Val = DAI->getAddress();
- DIExpression *Expr = DAI->getAddressExpression();
- assert(!Expr->getFragmentInfo() &&
- "fragment info should be stored in value-expression only");
- // Copy the fragment info over from the value-expression to the new
- // DIExpression.
- if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
- auto FragInfo = *OptFragInfo;
- Expr = *DIExpression::createFragmentExpression(
- Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
- }
- // The address-expression has an implicit deref, add it now.
- std::tie(Val, Expr) =
- walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
- Emit(Val, Expr);
- return;
- }
- }
- if (Kind == LocKind::Val) {
- /// Get the value component, converting to Undef if it is variadic.
- Value *Val =
- Source->hasArgList() ? nullptr : Source->getVariableLocationOp(0);
- Emit(Val, Source->getExpression());
- return;
- }
- if (Kind == LocKind::None) {
- Emit(nullptr, Source->getExpression());
- return;
- }
- }
- void AssignmentTrackingLowering::processNonDbgInstruction(
- Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
- if (I.hasMetadata(LLVMContext::MD_DIAssignID))
- processTaggedInstruction(I, LiveSet);
- else
- processUntaggedInstruction(I, LiveSet);
- }
- void AssignmentTrackingLowering::processUntaggedInstruction(
- Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
- // Interpret stack stores that are not tagged as an assignment in memory for
- // the variables associated with that address. These stores may not be tagged
- // because a) the store cannot be represented using dbg.assigns (non-const
- // length or offset) or b) the tag was accidentally dropped during
- // optimisations. For these stores we fall back to assuming that the stack
- // home is a valid location for the variables. The benefit is that this
- // prevents us missing an assignment and therefore incorrectly maintaining
- // earlier location definitions, and in many cases it should be a reasonable
- // assumption. However, this will occasionally lead to slight
- // inaccuracies. The value of a hoisted untagged store will be visible
- // "early", for example.
- assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
- auto It = UntaggedStoreVars.find(&I);
- if (It == UntaggedStoreVars.end())
- return; // No variables associated with the store destination.
- LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
- << "\n");
- // Iterate over the variables that this store affects, add a NoneOrPhi dbg
- // and mem def, set lockind to Mem, and emit a location def for each.
- for (auto [Var, Info] : It->second) {
- // This instruction is treated as both a debug and memory assignment,
- // meaning the memory location should be used. We don't have an assignment
- // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
- addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
- addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
- setLocKind(LiveSet, Var, LocKind::Mem);
- LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem)
- << "\n");
- // Build the dbg location def to insert.
- //
- // DIExpression: Add fragment and offset.
- DebugVariable V = FnVarLocs->getVariable(Var);
- DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
- if (auto Frag = V.getFragment()) {
- auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
- Frag->SizeInBits);
- assert(R && "unexpected createFragmentExpression failure");
- DIE = *R;
- }
- SmallVector<uint64_t, 3> Ops;
- if (Info.OffsetInBits)
- Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
- Ops.push_back(dwarf::DW_OP_deref);
- DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
- /*EntryValue=*/false);
- // Find a suitable insert point.
- Instruction *InsertBefore = I.getNextNode();
- assert(InsertBefore && "Shouldn't be inserting after a terminator");
- // Get DILocation for this unrecorded assignment.
- DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
- const DILocation *DILoc = DILocation::get(
- Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
- VarLocInfo VarLoc;
- VarLoc.VariableID = static_cast<VariableID>(Var);
- VarLoc.Expr = DIE;
- VarLoc.V = const_cast<AllocaInst *>(Info.Base);
- VarLoc.DL = DILoc;
- // 3. Insert it into the map for later.
- InsertBeforeMap[InsertBefore].push_back(VarLoc);
- }
- }
- void AssignmentTrackingLowering::processTaggedInstruction(
- Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
- auto Linked = at::getAssignmentMarkers(&I);
- // No dbg.assign intrinsics linked.
- // FIXME: All vars that have a stack slot this store modifies that don't have
- // a dbg.assign linked to it should probably treat this like an untagged
- // store.
- if (Linked.empty())
- return;
- LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
- for (DbgAssignIntrinsic *DAI : Linked) {
- VariableID Var = getVariableID(DebugVariable(DAI));
- // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
- // that is linked to a store.
- assert(VarsWithStackSlot->count(getAggregate(DAI)) &&
- "expected DAI's variable to have stack slot");
- Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
- addMemDef(LiveSet, Var, AV);
- LLVM_DEBUG(dbgs() << " linked to " << *DAI << "\n");
- LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
- << " -> ");
- // The last assignment to the stack is now AV. Check if the last debug
- // assignment has a matching Assignment.
- if (hasVarWithAssignment(Var, AV, LiveSet->DebugValue)) {
- // The StackHomeValue and DebugValue for this variable match so we can
- // emit a stack home location here.
- LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
- LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
- LLVM_DEBUG(dbgs() << " Debug val: ";
- LiveSet->DebugValue[Var].dump(dbgs()); dbgs() << "\n");
- setLocKind(LiveSet, Var, LocKind::Mem);
- emitDbgValue(LocKind::Mem, DAI, &I);
- continue;
- }
- // The StackHomeValue and DebugValue for this variable do not match. I.e.
- // The value currently stored in the stack is not what we'd expect to
- // see, so we cannot use emit a stack home location here. Now we will
- // look at the live LocKind for the variable and determine an appropriate
- // dbg.value to emit.
- LocKind PrevLoc = getLocKind(LiveSet, Var);
- switch (PrevLoc) {
- case LocKind::Val: {
- // The value in memory in memory has changed but we're not currently
- // using the memory location. Do nothing.
- LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
- setLocKind(LiveSet, Var, LocKind::Val);
- } break;
- case LocKind::Mem: {
- // There's been an assignment to memory that we were using as a
- // location for this variable, and the Assignment doesn't match what
- // we'd expect to see in memory.
- if (LiveSet->DebugValue[Var].Status == Assignment::NoneOrPhi) {
- // We need to terminate any previously open location now.
- LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
- setLocKind(LiveSet, Var, LocKind::None);
- emitDbgValue(LocKind::None, DAI, &I);
- } else {
- // The previous DebugValue Value can be used here.
- LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
- setLocKind(LiveSet, Var, LocKind::Val);
- Assignment PrevAV = LiveSet->DebugValue.lookup(Var);
- if (PrevAV.Source) {
- emitDbgValue(LocKind::Val, PrevAV.Source, &I);
- } else {
- // PrevAV.Source is nullptr so we must emit undef here.
- emitDbgValue(LocKind::None, DAI, &I);
- }
- }
- } break;
- case LocKind::None: {
- // There's been an assignment to memory and we currently are
- // not tracking a location for the variable. Do not emit anything.
- LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
- setLocKind(LiveSet, Var, LocKind::None);
- } break;
- }
- }
- }
- void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic &DAI,
- BlockInfo *LiveSet) {
- // Only bother tracking variables that are at some point stack homed. Other
- // variables can be dealt with trivially later.
- if (!VarsWithStackSlot->count(getAggregate(&DAI)))
- return;
- VariableID Var = getVariableID(DebugVariable(&DAI));
- Assignment AV = Assignment::make(getIDFromMarker(DAI), &DAI);
- addDbgDef(LiveSet, Var, AV);
- LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI << "\n";);
- LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
- << " -> ");
- // Check if the DebugValue and StackHomeValue both hold the same
- // Assignment.
- if (hasVarWithAssignment(Var, AV, LiveSet->StackHomeValue)) {
- // They match. We can use the stack home because the debug intrinsics state
- // that an assignment happened here, and we know that specific assignment
- // was the last one to take place in memory for this variable.
- LocKind Kind;
- if (DAI.isKillAddress()) {
- LLVM_DEBUG(
- dbgs()
- << "Val, Stack matches Debug program but address is killed\n";);
- Kind = LocKind::Val;
- } else {
- LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
- Kind = LocKind::Mem;
- };
- setLocKind(LiveSet, Var, Kind);
- emitDbgValue(Kind, &DAI, &DAI);
- } else {
- // The last assignment to the memory location isn't the one that we want to
- // show to the user so emit a dbg.value(Value). Value may be undef.
- LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
- setLocKind(LiveSet, Var, LocKind::Val);
- emitDbgValue(LocKind::Val, &DAI, &DAI);
- }
- }
- void AssignmentTrackingLowering::processDbgValue(DbgValueInst &DVI,
- BlockInfo *LiveSet) {
- // Only other tracking variables that are at some point stack homed.
- // Other variables can be dealt with trivally later.
- if (!VarsWithStackSlot->count(getAggregate(&DVI)))
- return;
- VariableID Var = getVariableID(DebugVariable(&DVI));
- // We have no ID to create an Assignment with so we mark this assignment as
- // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
- // the assignment responsible for setting this value.
- // This is fine; dbg.values are essentially interchangable with unlinked
- // dbg.assigns, and some passes such as mem2reg and instcombine add them to
- // PHIs for promoted variables.
- Assignment AV = Assignment::makeNoneOrPhi();
- addDbgDef(LiveSet, Var, AV);
- LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI << "\n";);
- LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
- << " -> Val, dbg.value override");
- setLocKind(LiveSet, Var, LocKind::Val);
- emitDbgValue(LocKind::Val, &DVI, &DVI);
- }
- void AssignmentTrackingLowering::processDbgInstruction(
- Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
- assert(!isa<DbgAddrIntrinsic>(&I) && "unexpected dbg.addr");
- if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
- processDbgAssign(*DAI, LiveSet);
- else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
- processDbgValue(*DVI, LiveSet);
- }
- void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
- assert(!After.isTerminator() && "Can't insert after a terminator");
- auto R = InsertBeforeMap.find(After.getNextNode());
- if (R == InsertBeforeMap.end())
- return;
- R->second.clear();
- }
- void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
- for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
- assert(VarsTouchedThisFrame.empty());
- // Process the instructions in "frames". A "frame" includes a single
- // non-debug instruction followed any debug instructions before the
- // next non-debug instruction.
- if (!isa<DbgInfoIntrinsic>(&*II)) {
- if (II->isTerminator())
- break;
- resetInsertionPoint(*II);
- processNonDbgInstruction(*II, LiveSet);
- assert(LiveSet->isValid());
- ++II;
- }
- while (II != EI) {
- if (!isa<DbgInfoIntrinsic>(&*II))
- break;
- resetInsertionPoint(*II);
- processDbgInstruction(*II, LiveSet);
- assert(LiveSet->isValid());
- ++II;
- }
- // We've processed everything in the "frame". Now determine which variables
- // cannot be represented by a dbg.declare.
- for (auto Var : VarsTouchedThisFrame) {
- LocKind Loc = getLocKind(LiveSet, Var);
- // If a variable's LocKind is anything other than LocKind::Mem then we
- // must note that it cannot be represented with a dbg.declare.
- // Note that this check is enough without having to check the result of
- // joins() because for join to produce anything other than Mem after
- // we've already seen a Mem we'd be joining None or Val with Mem. In that
- // case, we've already hit this codepath when we set the LocKind to Val
- // or None in that block.
- if (Loc != LocKind::Mem) {
- DebugVariable DbgVar = FnVarLocs->getVariable(Var);
- DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
- NotAlwaysStackHomed.insert(Aggr);
- }
- }
- VarsTouchedThisFrame.clear();
- }
- }
- AssignmentTrackingLowering::LocKind
- AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
- // Partial order:
- // None > Mem, Val
- return A == B ? A : LocKind::None;
- }
- AssignmentTrackingLowering::LocMap
- AssignmentTrackingLowering::joinLocMap(const LocMap &A, const LocMap &B) {
- // Join A and B.
- //
- // U = join(a, b) for a in A, b in B where Var(a) == Var(b)
- // D = join(x, ⊤) for x where Var(x) is in A xor B
- // Join = U ∪ D
- //
- // This is achieved by performing a join on elements from A and B with
- // variables common to both A and B (join elements indexed by var intersect),
- // then adding LocKind::None elements for vars in A xor B. The latter part is
- // equivalent to performing join on elements with variables in A xor B with
- // LocKind::None (⊤) since join(x, ⊤) = ⊤.
- LocMap Join;
- SmallVector<VariableID, 16> SymmetricDifference;
- // Insert the join of the elements with common vars into Join. Add the
- // remaining elements to into SymmetricDifference.
- for (const auto &[Var, Loc] : A) {
- // If this Var doesn't exist in B then add it to the symmetric difference
- // set.
- auto R = B.find(Var);
- if (R == B.end()) {
- SymmetricDifference.push_back(Var);
- continue;
- }
- // There is an entry for Var in both, join it.
- Join[Var] = joinKind(Loc, R->second);
- }
- unsigned IntersectSize = Join.size();
- (void)IntersectSize;
- // Add the elements in B with variables that are not in A into
- // SymmetricDifference.
- for (const auto &Pair : B) {
- VariableID Var = Pair.first;
- if (A.count(Var) == 0)
- SymmetricDifference.push_back(Var);
- }
- // Add SymmetricDifference elements to Join and return the result.
- for (const auto &Var : SymmetricDifference)
- Join.insert({Var, LocKind::None});
- assert(Join.size() == (IntersectSize + SymmetricDifference.size()));
- assert(Join.size() >= A.size() && Join.size() >= B.size());
- return Join;
- }
- AssignmentTrackingLowering::Assignment
- AssignmentTrackingLowering::joinAssignment(const Assignment &A,
- const Assignment &B) {
- // Partial order:
- // NoneOrPhi(null, null) > Known(v, ?s)
- // If either are NoneOrPhi the join is NoneOrPhi.
- // If either value is different then the result is
- // NoneOrPhi (joining two values is a Phi).
- if (!A.isSameSourceAssignment(B))
- return Assignment::makeNoneOrPhi();
- if (A.Status == Assignment::NoneOrPhi)
- return Assignment::makeNoneOrPhi();
- // Source is used to lookup the value + expression in the debug program if
- // the stack slot gets assigned a value earlier than expected. Because
- // we're only tracking the one dbg.assign, we can't capture debug PHIs.
- // It's unlikely that we're losing out on much coverage by avoiding that
- // extra work.
- // The Source may differ in this situation:
- // Pred.1:
- // dbg.assign i32 0, ..., !1, ...
- // Pred.2:
- // dbg.assign i32 1, ..., !1, ...
- // Here the same assignment (!1) was performed in both preds in the source,
- // but we can't use either one unless they are identical (e.g. .we don't
- // want to arbitrarily pick between constant values).
- auto JoinSource = [&]() -> DbgAssignIntrinsic * {
- if (A.Source == B.Source)
- return A.Source;
- if (A.Source == nullptr || B.Source == nullptr)
- return nullptr;
- if (A.Source->isIdenticalTo(B.Source))
- return A.Source;
- return nullptr;
- };
- DbgAssignIntrinsic *Source = JoinSource();
- assert(A.Status == B.Status && A.Status == Assignment::Known);
- assert(A.ID == B.ID);
- return Assignment::make(A.ID, Source);
- }
- AssignmentTrackingLowering::AssignmentMap
- AssignmentTrackingLowering::joinAssignmentMap(const AssignmentMap &A,
- const AssignmentMap &B) {
- // Join A and B.
- //
- // U = join(a, b) for a in A, b in B where Var(a) == Var(b)
- // D = join(x, ⊤) for x where Var(x) is in A xor B
- // Join = U ∪ D
- //
- // This is achieved by performing a join on elements from A and B with
- // variables common to both A and B (join elements indexed by var intersect),
- // then adding LocKind::None elements for vars in A xor B. The latter part is
- // equivalent to performing join on elements with variables in A xor B with
- // Status::NoneOrPhi (⊤) since join(x, ⊤) = ⊤.
- AssignmentMap Join;
- SmallVector<VariableID, 16> SymmetricDifference;
- // Insert the join of the elements with common vars into Join. Add the
- // remaining elements to into SymmetricDifference.
- for (const auto &[Var, AV] : A) {
- // If this Var doesn't exist in B then add it to the symmetric difference
- // set.
- auto R = B.find(Var);
- if (R == B.end()) {
- SymmetricDifference.push_back(Var);
- continue;
- }
- // There is an entry for Var in both, join it.
- Join[Var] = joinAssignment(AV, R->second);
- }
- unsigned IntersectSize = Join.size();
- (void)IntersectSize;
- // Add the elements in B with variables that are not in A into
- // SymmetricDifference.
- for (const auto &Pair : B) {
- VariableID Var = Pair.first;
- if (A.count(Var) == 0)
- SymmetricDifference.push_back(Var);
- }
- // Add SymmetricDifference elements to Join and return the result.
- for (auto Var : SymmetricDifference)
- Join.insert({Var, Assignment::makeNoneOrPhi()});
- assert(Join.size() == (IntersectSize + SymmetricDifference.size()));
- assert(Join.size() >= A.size() && Join.size() >= B.size());
- return Join;
- }
- AssignmentTrackingLowering::BlockInfo
- AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
- const BlockInfo &B) {
- BlockInfo Join;
- Join.LiveLoc = joinLocMap(A.LiveLoc, B.LiveLoc);
- Join.StackHomeValue = joinAssignmentMap(A.StackHomeValue, B.StackHomeValue);
- Join.DebugValue = joinAssignmentMap(A.DebugValue, B.DebugValue);
- assert(Join.isValid());
- return Join;
- }
- bool AssignmentTrackingLowering::join(
- const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
- BlockInfo BBLiveIn;
- bool FirstJoin = true;
- // LiveIn locs for BB is the join of the already-processed preds' LiveOut
- // locs.
- for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
- // Ignore backedges if we have not visited the predecessor yet. As the
- // predecessor hasn't yet had locations propagated into it, most locations
- // will not yet be valid, so treat them as all being uninitialized and
- // potentially valid. If a location guessed to be correct here is
- // invalidated later, we will remove it when we revisit this block. This
- // is essentially the same as initialising all LocKinds and Assignments to
- // an implicit ⊥ value which is the identity value for the join operation.
- const BasicBlock *Pred = *I;
- if (!Visited.count(Pred))
- continue;
- auto PredLiveOut = LiveOut.find(Pred);
- // Pred must have been processed already. See comment at start of this loop.
- assert(PredLiveOut != LiveOut.end());
- // Perform the join of BBLiveIn (current live-in info) and PrevLiveOut.
- if (FirstJoin)
- BBLiveIn = PredLiveOut->second;
- else
- BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
- FirstJoin = false;
- }
- auto CurrentLiveInEntry = LiveIn.find(&BB);
- // Check if there isn't an entry, or there is but the LiveIn set has changed
- // (expensive check).
- if (CurrentLiveInEntry == LiveIn.end() ||
- BBLiveIn != CurrentLiveInEntry->second) {
- LiveIn[&BB] = std::move(BBLiveIn);
- // A change has occured.
- return true;
- }
- // No change.
- return false;
- }
- /// Return true if A fully contains B.
- static bool fullyContains(DIExpression::FragmentInfo A,
- DIExpression::FragmentInfo B) {
- auto ALeft = A.OffsetInBits;
- auto BLeft = B.OffsetInBits;
- if (BLeft < ALeft)
- return false;
- auto ARight = ALeft + A.SizeInBits;
- auto BRight = BLeft + B.SizeInBits;
- if (BRight > ARight)
- return false;
- return true;
- }
- static std::optional<at::AssignmentInfo>
- getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
- // Don't bother checking if this is an AllocaInst. We know this
- // instruction has no tag which means there are no variables associated
- // with it.
- if (const auto *SI = dyn_cast<StoreInst>(&I))
- return at::getAssignmentInfo(Layout, SI);
- if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
- return at::getAssignmentInfo(Layout, MI);
- // Alloca or non-store-like inst.
- return std::nullopt;
- }
- /// Build a map of {Variable x: Variables y} where all variable fragments
- /// contained within the variable fragment x are in set y. This means that
- /// y does not contain all overlaps because partial overlaps are excluded.
- ///
- /// While we're iterating over the function, add single location defs for
- /// dbg.declares to \p FnVarLocs
- ///
- /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
- /// the stored-to variable fragments.
- ///
- /// These tasks are bundled together to reduce the number of times we need
- /// to iterate over the function as they can be achieved together in one pass.
- static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
- Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
- AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars) {
- DenseSet<DebugVariable> Seen;
- // Map of Variable: [Fragments].
- DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
- // Iterate over all instructions:
- // - dbg.declare -> add single location variable record
- // - dbg.* -> Add fragments to FragmentMap
- // - untagged store -> Add fragments to FragmentMap and update
- // UntaggedStoreVars.
- // We need to add fragments for untagged stores too so that we can correctly
- // clobber overlapped fragment locations later.
- for (auto &BB : Fn) {
- for (auto &I : BB) {
- if (auto *DDI = dyn_cast<DbgDeclareInst>(&I)) {
- FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
- DDI->getDebugLoc(), DDI->getAddress());
- } else if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
- DebugVariable DV = DebugVariable(DII);
- DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
- if (Seen.insert(DV).second)
- FragmentMap[DA].push_back(DV);
- } else if (auto Info = getUntaggedStoreAssignmentInfo(
- I, Fn.getParent()->getDataLayout())) {
- // Find markers linked to this alloca.
- for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) {
- // Discard the fragment if it covers the entire variable.
- std::optional<DIExpression::FragmentInfo> FragInfo =
- [&Info, DAI]() -> std::optional<DIExpression::FragmentInfo> {
- DIExpression::FragmentInfo F;
- F.OffsetInBits = Info->OffsetInBits;
- F.SizeInBits = Info->SizeInBits;
- if (auto ExistingFrag = DAI->getExpression()->getFragmentInfo())
- F.OffsetInBits += ExistingFrag->OffsetInBits;
- if (auto Sz = DAI->getVariable()->getSizeInBits()) {
- if (F.OffsetInBits == 0 && F.SizeInBits == *Sz)
- return std::nullopt;
- }
- return F;
- }();
- DebugVariable DV = DebugVariable(DAI->getVariable(), FragInfo,
- DAI->getDebugLoc().getInlinedAt());
- DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
- // Cache this info for later.
- UntaggedStoreVars[&I].push_back(
- {FnVarLocs->insertVariable(DV), *Info});
- if (Seen.insert(DV).second)
- FragmentMap[DA].push_back(DV);
- }
- }
- }
- }
- // Sort the fragment map for each DebugAggregate in non-descending
- // order of fragment size. Assert no entries are duplicates.
- for (auto &Pair : FragmentMap) {
- SmallVector<DebugVariable, 8> &Frags = Pair.second;
- std::sort(
- Frags.begin(), Frags.end(), [](DebugVariable Next, DebugVariable Elmt) {
- assert(!(Elmt.getFragmentOrDefault() == Next.getFragmentOrDefault()));
- return Elmt.getFragmentOrDefault().SizeInBits >
- Next.getFragmentOrDefault().SizeInBits;
- });
- }
- // Build the map.
- AssignmentTrackingLowering::OverlapMap Map;
- for (auto Pair : FragmentMap) {
- auto &Frags = Pair.second;
- for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
- DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
- // Find the frags that this is contained within.
- //
- // Because Frags is sorted by size and none have the same offset and
- // size, we know that this frag can only be contained by subsequent
- // elements.
- SmallVector<DebugVariable, 8>::iterator OtherIt = It;
- ++OtherIt;
- VariableID ThisVar = FnVarLocs->insertVariable(*It);
- for (; OtherIt != IEnd; ++OtherIt) {
- DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
- VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
- if (fullyContains(OtherFrag, Frag))
- Map[OtherVar].push_back(ThisVar);
- }
- }
- }
- return Map;
- }
- bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
- if (Fn.size() > MaxNumBlocks) {
- LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
- << ": too many blocks (" << Fn.size() << ")\n");
- at::deleteAll(&Fn);
- return false;
- }
- FnVarLocs = FnVarLocsBuilder;
- // The general structure here is inspired by VarLocBasedImpl.cpp
- // (LiveDebugValues).
- // Build the variable fragment overlap map.
- // Note that this pass doesn't handle partial overlaps correctly (FWIW
- // neither does LiveDebugVariables) because that is difficult to do and
- // appears to be rare occurance.
- VarContains =
- buildOverlapMapAndRecordDeclares(Fn, FnVarLocs, UntaggedStoreVars);
- // Prepare for traversal.
- ReversePostOrderTraversal<Function *> RPOT(&Fn);
- std::priority_queue<unsigned int, std::vector<unsigned int>,
- std::greater<unsigned int>>
- Worklist;
- std::priority_queue<unsigned int, std::vector<unsigned int>,
- std::greater<unsigned int>>
- Pending;
- DenseMap<unsigned int, BasicBlock *> OrderToBB;
- DenseMap<BasicBlock *, unsigned int> BBToOrder;
- { // Init OrderToBB and BBToOrder.
- unsigned int RPONumber = 0;
- for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
- OrderToBB[RPONumber] = *RI;
- BBToOrder[*RI] = RPONumber;
- Worklist.push(RPONumber);
- ++RPONumber;
- }
- LiveIn.init(RPONumber);
- LiveOut.init(RPONumber);
- }
- // Perform the traversal.
- //
- // This is a standard "union of predecessor outs" dataflow problem. To solve
- // it, we perform join() and process() using the two worklist method until
- // the LiveIn data for each block becomes unchanging. The "proof" that this
- // terminates can be put together by looking at the comments around LocKind,
- // Assignment, and the various join methods, which show that all the elements
- // involved are made up of join-semilattices; LiveIn(n) can only
- // monotonically increase in value throughout the dataflow.
- //
- SmallPtrSet<BasicBlock *, 16> Visited;
- while (!Worklist.empty()) {
- // We track what is on the pending worklist to avoid inserting the same
- // thing twice.
- SmallPtrSet<BasicBlock *, 16> OnPending;
- LLVM_DEBUG(dbgs() << "Processing Worklist\n");
- while (!Worklist.empty()) {
- BasicBlock *BB = OrderToBB[Worklist.top()];
- LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
- Worklist.pop();
- bool InChanged = join(*BB, Visited);
- // Always consider LiveIn changed on the first visit.
- InChanged |= Visited.insert(BB).second;
- if (InChanged) {
- LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
- // Mutate a copy of LiveIn while processing BB. After calling process
- // LiveSet is the LiveOut set for BB.
- BlockInfo LiveSet = LiveIn[BB];
- // Process the instructions in the block.
- process(*BB, &LiveSet);
- // Relatively expensive check: has anything changed in LiveOut for BB?
- if (LiveOut[BB] != LiveSet) {
- LLVM_DEBUG(dbgs() << BB->getName()
- << " has new OutLocs, add succs to worklist: [ ");
- LiveOut[BB] = std::move(LiveSet);
- for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
- if (OnPending.insert(*I).second) {
- LLVM_DEBUG(dbgs() << I->getName() << " ");
- Pending.push(BBToOrder[*I]);
- }
- }
- LLVM_DEBUG(dbgs() << "]\n");
- }
- }
- }
- Worklist.swap(Pending);
- // At this point, pending must be empty, since it was just the empty
- // worklist
- assert(Pending.empty() && "Pending should be empty");
- }
- // That's the hard part over. Now we just have some admin to do.
- // Record whether we inserted any intrinsics.
- bool InsertedAnyIntrinsics = false;
- // Identify and add defs for single location variables.
- //
- // Go through all of the defs that we plan to add. If the aggregate variable
- // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
- // location def and omit the rest. Add an entry to AlwaysStackHomed so that
- // we can identify those uneeded defs later.
- DenseSet<DebugAggregate> AlwaysStackHomed;
- for (const auto &Pair : InsertBeforeMap) {
- const auto &Vec = Pair.second;
- for (VarLocInfo VarLoc : Vec) {
- DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
- DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
- // Skip this Var if it's not always stack homed.
- if (NotAlwaysStackHomed.contains(Aggr))
- continue;
- // Skip complex cases such as when different fragments of a variable have
- // been split into different allocas. Skipping in this case means falling
- // back to using a list of defs (which could reduce coverage, but is no
- // less correct).
- bool Simple =
- VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
- if (!Simple) {
- NotAlwaysStackHomed.insert(Aggr);
- continue;
- }
- // All source assignments to this variable remain and all stores to any
- // part of the variable store to the same address (with varying
- // offsets). We can just emit a single location for the whole variable.
- //
- // Unless we've already done so, create the single location def now.
- if (AlwaysStackHomed.insert(Aggr).second) {
- assert(isa<AllocaInst>(VarLoc.V));
- // TODO: When more complex cases are handled VarLoc.Expr should be
- // built appropriately rather than always using an empty DIExpression.
- // The assert below is a reminder.
- assert(Simple);
- VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
- DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
- FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.V);
- InsertedAnyIntrinsics = true;
- }
- }
- }
- // Insert the other DEFs.
- for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
- SmallVector<VarLocInfo> NewDefs;
- for (const VarLocInfo &VarLoc : Vec) {
- DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
- DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
- // If this variable is always stack homed then we have already inserted a
- // dbg.declare and deleted this dbg.value.
- if (AlwaysStackHomed.contains(Aggr))
- continue;
- NewDefs.push_back(VarLoc);
- InsertedAnyIntrinsics = true;
- }
- FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
- }
- InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
- return InsertedAnyIntrinsics;
- }
- bool AssignmentTrackingLowering::emitPromotedVarLocs(
- FunctionVarLocsBuilder *FnVarLocs) {
- bool InsertedAnyIntrinsics = false;
- // Go through every block, translating debug intrinsics for fully promoted
- // variables into FnVarLocs location defs. No analysis required for these.
- for (auto &BB : Fn) {
- for (auto &I : BB) {
- // Skip instructions other than dbg.values and dbg.assigns.
- auto *DVI = dyn_cast<DbgValueInst>(&I);
- if (!DVI)
- continue;
- // Skip variables that haven't been promoted - we've dealt with those
- // already.
- if (VarsWithStackSlot->contains(getAggregate(DVI)))
- continue;
- // Wrapper to get a single value (or undef) from DVI.
- auto GetValue = [DVI]() -> Value * {
- // We can't handle variadic DIExpressions yet so treat those as
- // kill locations.
- if (DVI->isKillLocation() || DVI->getValue() == nullptr ||
- DVI->hasArgList())
- return PoisonValue::get(Type::getInt32Ty(DVI->getContext()));
- return DVI->getValue();
- };
- Instruction *InsertBefore = I.getNextNode();
- assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
- FnVarLocs->addVarLoc(InsertBefore, DebugVariable(DVI),
- DVI->getExpression(), DVI->getDebugLoc(),
- GetValue());
- InsertedAnyIntrinsics = true;
- }
- }
- return InsertedAnyIntrinsics;
- }
- /// Remove redundant definitions within sequences of consecutive location defs.
- /// This is done using a backward scan to keep the last def describing a
- /// specific variable/fragment.
- ///
- /// This implements removeRedundantDbgInstrsUsingBackwardScan from
- /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
- /// FunctionVarLocsBuilder instead of with intrinsics.
- static bool
- removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
- FunctionVarLocsBuilder &FnVarLocs) {
- bool Changed = false;
- SmallDenseSet<DebugVariable> VariableSet;
- // Scan over the entire block, not just over the instructions mapped by
- // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
- // instructions.
- for (const Instruction &I : reverse(*BB)) {
- if (!isa<DbgVariableIntrinsic>(I)) {
- // Sequence of consecutive defs ended. Clear map for the next one.
- VariableSet.clear();
- }
- // Get the location defs that start just before this instruction.
- const auto *Locs = FnVarLocs.getWedge(&I);
- if (!Locs)
- continue;
- NumWedgesScanned++;
- bool ChangedThisWedge = false;
- // The new pruned set of defs, reversed because we're scanning backwards.
- SmallVector<VarLocInfo> NewDefsReversed;
- // Iterate over the existing defs in reverse.
- for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
- NumDefsScanned++;
- const DebugVariable &Key = FnVarLocs.getVariable(RIt->VariableID);
- bool FirstDefOfFragment = VariableSet.insert(Key).second;
- // If the same variable fragment is described more than once it is enough
- // to keep the last one (i.e. the first found in this reverse iteration).
- if (FirstDefOfFragment) {
- // New def found: keep it.
- NewDefsReversed.push_back(*RIt);
- } else {
- // Redundant def found: throw it away. Since the wedge of defs is being
- // rebuilt, doing nothing is the same as deleting an entry.
- ChangedThisWedge = true;
- NumDefsRemoved++;
- }
- continue;
- }
- // Un-reverse the defs and replace the wedge with the pruned version.
- if (ChangedThisWedge) {
- std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
- FnVarLocs.setWedge(&I, std::move(NewDefsReversed));
- NumWedgesChanged++;
- Changed = true;
- }
- }
- return Changed;
- }
- /// Remove redundant location defs using a forward scan. This can remove a
- /// location definition that is redundant due to indicating that a variable has
- /// the same value as is already being indicated by an earlier def.
- ///
- /// This implements removeRedundantDbgInstrsUsingForwardScan from
- /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
- /// FunctionVarLocsBuilder instead of with intrinsics
- static bool
- removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
- FunctionVarLocsBuilder &FnVarLocs) {
- bool Changed = false;
- DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
- // Scan over the entire block, not just over the instructions mapped by
- // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
- // instructions.
- for (const Instruction &I : *BB) {
- // Get the defs that come just before this instruction.
- const auto *Locs = FnVarLocs.getWedge(&I);
- if (!Locs)
- continue;
- NumWedgesScanned++;
- bool ChangedThisWedge = false;
- // The new pruned set of defs.
- SmallVector<VarLocInfo> NewDefs;
- // Iterate over the existing defs.
- for (const VarLocInfo &Loc : *Locs) {
- NumDefsScanned++;
- DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
- std::nullopt, Loc.DL.getInlinedAt());
- auto VMI = VariableMap.find(Key);
- // Update the map if we found a new value/expression describing the
- // variable, or if the variable wasn't mapped already.
- if (VMI == VariableMap.end() || VMI->second.first != Loc.V ||
- VMI->second.second != Loc.Expr) {
- VariableMap[Key] = {Loc.V, Loc.Expr};
- NewDefs.push_back(Loc);
- continue;
- }
- // Did not insert this Loc, which is the same as removing it.
- ChangedThisWedge = true;
- NumDefsRemoved++;
- }
- // Replace the existing wedge with the pruned version.
- if (ChangedThisWedge) {
- FnVarLocs.setWedge(&I, std::move(NewDefs));
- NumWedgesChanged++;
- Changed = true;
- }
- }
- return Changed;
- }
- static bool
- removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
- FunctionVarLocsBuilder &FnVarLocs) {
- assert(BB->isEntryBlock());
- // Do extra work to ensure that we remove semantically unimportant undefs.
- //
- // This is to work around the fact that SelectionDAG will hoist dbg.values
- // using argument values to the top of the entry block. That can move arg
- // dbg.values before undef and constant dbg.values which they previously
- // followed. The easiest thing to do is to just try to feed SelectionDAG
- // input it's happy with.
- //
- // Map of {Variable x: Fragments y} where the fragments y of variable x have
- // have at least one non-undef location defined already. Don't use directly,
- // instead call DefineBits and HasDefinedBits.
- SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
- VarsWithDef;
- // Specify that V (a fragment of A) has a non-undef location.
- auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
- VarsWithDef[A].insert(V.getFragmentOrDefault());
- };
- // Return true if a non-undef location has been defined for V (a fragment of
- // A). Doesn't imply that the location is currently non-undef, just that a
- // non-undef location has been seen previously.
- auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
- auto FragsIt = VarsWithDef.find(A);
- if (FragsIt == VarsWithDef.end())
- return false;
- return llvm::any_of(FragsIt->second, [V](auto Frag) {
- return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
- });
- };
- bool Changed = false;
- DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
- // Scan over the entire block, not just over the instructions mapped by
- // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
- // instructions.
- for (const Instruction &I : *BB) {
- // Get the defs that come just before this instruction.
- const auto *Locs = FnVarLocs.getWedge(&I);
- if (!Locs)
- continue;
- NumWedgesScanned++;
- bool ChangedThisWedge = false;
- // The new pruned set of defs.
- SmallVector<VarLocInfo> NewDefs;
- // Iterate over the existing defs.
- for (const VarLocInfo &Loc : *Locs) {
- NumDefsScanned++;
- DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
- Loc.DL.getInlinedAt()};
- DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
- // Remove undef entries that are encountered before any non-undef
- // intrinsics from the entry block.
- if (isa<UndefValue>(Loc.V) && !HasDefinedBits(Aggr, Var)) {
- // Did not insert this Loc, which is the same as removing it.
- NumDefsRemoved++;
- ChangedThisWedge = true;
- continue;
- }
- DefineBits(Aggr, Var);
- NewDefs.push_back(Loc);
- }
- // Replace the existing wedge with the pruned version.
- if (ChangedThisWedge) {
- FnVarLocs.setWedge(&I, std::move(NewDefs));
- NumWedgesChanged++;
- Changed = true;
- }
- }
- return Changed;
- }
- static bool removeRedundantDbgLocs(const BasicBlock *BB,
- FunctionVarLocsBuilder &FnVarLocs) {
- bool MadeChanges = false;
- MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
- if (BB->isEntryBlock())
- MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
- MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
- if (MadeChanges)
- LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
- << "\n");
- return MadeChanges;
- }
- static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
- DenseSet<DebugAggregate> Result;
- for (auto &BB : Fn) {
- for (auto &I : BB) {
- // Any variable linked to an instruction is considered
- // interesting. Ideally we only need to check Allocas, however, a
- // DIAssignID might get dropped from an alloca but not stores. In that
- // case, we need to consider the variable interesting for NFC behaviour
- // with this change. TODO: Consider only looking at allocas.
- for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
- Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
- }
- }
- }
- return Result;
- }
- static void analyzeFunction(Function &Fn, const DataLayout &Layout,
- FunctionVarLocsBuilder *FnVarLocs) {
- // The analysis will generate location definitions for all variables, but we
- // only need to perform a dataflow on the set of variables which have a stack
- // slot. Find those now.
- DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
- bool Changed = false;
- // Use a scope block to clean up AssignmentTrackingLowering before running
- // MemLocFragmentFill to reduce peak memory consumption.
- {
- AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
- Changed = Pass.run(FnVarLocs);
- }
- if (Changed) {
- MemLocFragmentFill Pass(Fn, &VarsWithStackSlot);
- Pass.run(FnVarLocs);
- // Remove redundant entries. As well as reducing memory consumption and
- // avoiding waiting cycles later by burning some now, this has another
- // important job. That is to work around some SelectionDAG quirks. See
- // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
- for (auto &BB : Fn)
- removeRedundantDbgLocs(&BB, *FnVarLocs);
- }
- }
- bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
- if (!isAssignmentTrackingEnabled(*F.getParent()))
- return false;
- LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
- << "\n");
- auto DL = std::make_unique<DataLayout>(F.getParent());
- // Clear previous results.
- Results->clear();
- FunctionVarLocsBuilder Builder;
- analyzeFunction(F, *DL.get(), &Builder);
- // Save these results.
- Results->init(Builder);
- if (PrintResults && isFunctionInPrintList(F.getName()))
- Results->print(errs(), F);
- // Return false because this pass does not modify the function.
- return false;
- }
- AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
- : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
- char AssignmentTrackingAnalysis::ID = 0;
- INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
- "Assignment Tracking Analysis", false, true)
|