#include "llvm/CodeGen/AssignmentTrackingAnalysis.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/UniqueVector.h" #include "llvm/Analysis/Interval.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PrintPasses.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "debug-ata" STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal"); STATISTIC(NumDefsRemoved, "Number of dbg locs removed"); STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned"); STATISTIC(NumWedgesChanged, "Number of dbg wedges changed"); static cl::opt MaxNumBlocks("debug-ata-max-blocks", cl::init(10000), cl::desc("Maximum num basic blocks before debug info dropped"), cl::Hidden); /// Option for debugging the pass, determines if the memory location fragment /// filling happens after generating the variable locations. static cl::opt EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true), cl::Hidden); /// Print the results of the analysis. Respects -filter-print-funcs. static cl::opt PrintResults("print-debug-ata", cl::init(false), cl::Hidden); // Implicit conversions are disabled for enum class types, so unfortunately we // need to create a DenseMapInfo wrapper around the specified underlying type. template <> struct llvm::DenseMapInfo { using Wrapped = DenseMapInfo; static inline VariableID getEmptyKey() { return static_cast(Wrapped::getEmptyKey()); } static inline VariableID getTombstoneKey() { return static_cast(Wrapped::getTombstoneKey()); } static unsigned getHashValue(const VariableID &Val) { return Wrapped::getHashValue(static_cast(Val)); } static bool isEqual(const VariableID &LHS, const VariableID &RHS) { return LHS == RHS; } }; /// Helper class to build FunctionVarLocs, since that class isn't easy to /// modify. TODO: There's not a great deal of value in the split, it could be /// worth merging the two classes. class FunctionVarLocsBuilder { friend FunctionVarLocs; UniqueVector Variables; // Use an unordered_map so we don't invalidate iterators after // insert/modifications. std::unordered_map> VarLocsBeforeInst; SmallVector SingleLocVars; public: /// Find or insert \p V and return the ID. VariableID insertVariable(DebugVariable V) { return static_cast(Variables.insert(V)); } /// Get a variable from its \p ID. const DebugVariable &getVariable(VariableID ID) const { return Variables[static_cast(ID)]; } /// Return ptr to wedge of defs or nullptr if no defs come just before /p /// Before. const SmallVectorImpl *getWedge(const Instruction *Before) const { auto R = VarLocsBeforeInst.find(Before); if (R == VarLocsBeforeInst.end()) return nullptr; return &R->second; } /// Replace the defs that come just before /p Before with /p Wedge. void setWedge(const Instruction *Before, SmallVector &&Wedge) { VarLocsBeforeInst[Before] = std::move(Wedge); } /// Add a def for a variable that is valid for its lifetime. void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL, Value *V) { VarLocInfo VarLoc; VarLoc.VariableID = insertVariable(Var); VarLoc.Expr = Expr; VarLoc.DL = DL; VarLoc.V = V; SingleLocVars.emplace_back(VarLoc); } /// Add a def to the wedge of defs just before /p Before. void addVarLoc(Instruction *Before, DebugVariable Var, DIExpression *Expr, DebugLoc DL, Value *V) { VarLocInfo VarLoc; VarLoc.VariableID = insertVariable(Var); VarLoc.Expr = Expr; VarLoc.DL = DL; VarLoc.V = V; VarLocsBeforeInst[Before].emplace_back(VarLoc); } }; void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const { // Print the variable table first. TODO: Sorting by variable could make the // output more stable? unsigned Counter = -1; OS << "=== Variables ===\n"; for (const DebugVariable &V : Variables) { ++Counter; // Skip first entry because it is a dummy entry. if (Counter == 0) { continue; } OS << "[" << Counter << "] " << V.getVariable()->getName(); if (auto F = V.getFragment()) OS << " bits [" << F->OffsetInBits << ", " << F->OffsetInBits + F->SizeInBits << ")"; if (const auto *IA = V.getInlinedAt()) OS << " inlined-at " << *IA; OS << "\n"; } auto PrintLoc = [&OS](const VarLocInfo &Loc) { OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]" << " Expr=" << *Loc.Expr << " V=" << *Loc.V << "\n"; }; // Print the single location variables. OS << "=== Single location vars ===\n"; for (auto It = single_locs_begin(), End = single_locs_end(); It != End; ++It) { PrintLoc(*It); } // Print the non-single-location defs in line with IR. OS << "=== In-line variable defs ==="; for (const BasicBlock &BB : Fn) { OS << "\n" << BB.getName() << ":\n"; for (const Instruction &I : BB) { for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) { PrintLoc(*It); } OS << I << "\n"; } } } void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) { // Add the single-location variables first. for (const auto &VarLoc : Builder.SingleLocVars) VarLocRecords.emplace_back(VarLoc); // Mark the end of the section. SingleVarLocEnd = VarLocRecords.size(); // Insert a contiguous block of VarLocInfos for each instruction, mapping it // to the start and end position in the vector with VarLocsBeforeInst. for (auto &P : Builder.VarLocsBeforeInst) { unsigned BlockStart = VarLocRecords.size(); for (const VarLocInfo &VarLoc : P.second) VarLocRecords.emplace_back(VarLoc); unsigned BlockEnd = VarLocRecords.size(); // Record the start and end indices. if (BlockEnd != BlockStart) VarLocsBeforeInst[P.first] = {BlockStart, BlockEnd}; } // Copy the Variables vector from the builder's UniqueVector. assert(Variables.empty() && "Expect clear before init"); // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values // are one-based) so reserve an extra and insert a dummy. Variables.reserve(Builder.Variables.size() + 1); Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr)); Variables.append(Builder.Variables.begin(), Builder.Variables.end()); } void FunctionVarLocs::clear() { Variables.clear(); VarLocRecords.clear(); VarLocsBeforeInst.clear(); SingleVarLocEnd = 0; } /// Walk backwards along constant GEPs and bitcasts to the base storage from \p /// Start as far as possible. Prepend \Expression with the offset and append it /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to /// value and modified expression. static std::pair walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start, DIExpression *Expression) { APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false); Value *End = Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes); SmallVector Ops; if (OffsetInBytes.getBoolValue()) { Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()}; Expression = DIExpression::prependOpcodes( Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false); } Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref}); return {End, Expression}; } /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression /// doesn't explicitly describe a memory location with DW_OP_deref or if the /// expression is too complex to interpret. static std::optional getDerefOffsetInBytes(const DIExpression *DIExpr) { int64_t Offset = 0; const unsigned NumElements = DIExpr->getNumElements(); const auto Elements = DIExpr->getElements(); unsigned NextElement = 0; // Extract the offset. if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) { Offset = Elements[1]; NextElement = 2; } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) { NextElement = 3; if (Elements[2] == dwarf::DW_OP_plus) Offset = Elements[1]; else if (Elements[2] == dwarf::DW_OP_minus) Offset = -Elements[1]; else return std::nullopt; } // If that's all there is it means there's no deref. if (NextElement >= NumElements) return std::nullopt; // Check the next element is DW_OP_deref - otherwise this is too complex or // isn't a deref expression. if (Elements[NextElement] != dwarf::DW_OP_deref) return std::nullopt; // Check the final operation is either the DW_OP_deref or is a fragment. if (NumElements == NextElement + 1) return Offset; // Ends with deref. else if (NumElements == NextElement + 3 && Elements[NextElement] == dwarf::DW_OP_LLVM_fragment) return Offset; // Ends with deref + fragment. // Don't bother trying to interpret anything more complex. return std::nullopt; } /// A whole (unfragmented) source variable. using DebugAggregate = std::pair; static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) { return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt()); } static DebugAggregate getAggregate(const DebugVariable &Var) { return DebugAggregate(Var.getVariable(), Var.getInlinedAt()); } namespace { /// In dwarf emission, the following sequence /// 1. dbg.value ... Fragment(0, 64) /// 2. dbg.value ... Fragment(0, 32) /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in /// the intersection of the fragments to having "no location"). This makes /// sense for implicit location values because splitting the computed values /// could be troublesome, and is probably quite uncommon. When we convert /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing /// a location (memory) rather than a value means we don't need to worry about /// splitting any values, so we try to recover the rest of the fragment /// location here. /// This class performs a(nother) dataflow analysis over the function, adding /// variable locations so that any bits of a variable with a memory location /// have that location explicitly reinstated at each subsequent variable /// location definition that that doesn't overwrite those bits. i.e. after a /// variable location def, insert new defs for the memory location with /// fragments for the difference of "all bits currently in memory" and "the /// fragment of the second def". class MemLocFragmentFill { Function &Fn; FunctionVarLocsBuilder *FnVarLocs; const DenseSet *VarsWithStackSlot; // 0 = no memory location. using BaseAddress = unsigned; using OffsetInBitsTy = unsigned; using FragTraits = IntervalMapHalfOpenInfo; using FragsInMemMap = IntervalMap< OffsetInBitsTy, BaseAddress, IntervalMapImpl::NodeSizer::LeafSize, FragTraits>; FragsInMemMap::Allocator IntervalMapAlloc; using VarFragMap = DenseMap; /// IDs for memory location base addresses in maps. Use 0 to indicate that /// there's no memory location. UniqueVector Bases; UniqueVector Aggregates; DenseMap LiveIn; DenseMap LiveOut; struct FragMemLoc { unsigned Var; unsigned Base; unsigned OffsetInBits; unsigned SizeInBits; DebugLoc DL; }; using InsertMap = MapVector>; /// BBInsertBeforeMap holds a description for the set of location defs to be /// inserted after the analysis is complete. It is updated during the dataflow /// and the entry for a block is CLEARED each time it is (re-)visited. After /// the dataflow is complete, each block entry will contain the set of defs /// calculated during the final (fixed-point) iteration. DenseMap BBInsertBeforeMap; static bool intervalMapsAreEqual(const FragsInMemMap &A, const FragsInMemMap &B) { auto AIt = A.begin(), AEnd = A.end(); auto BIt = B.begin(), BEnd = B.end(); for (; AIt != AEnd; ++AIt, ++BIt) { if (BIt == BEnd) return false; // B has fewer elements than A. if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop()) return false; // Interval is different. if (*AIt != *BIt) return false; // Value at interval is different. } // AIt == AEnd. Check BIt is also now at end. return BIt == BEnd; } static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) { if (A.size() != B.size()) return false; for (const auto &APair : A) { auto BIt = B.find(APair.first); if (BIt == B.end()) return false; if (!intervalMapsAreEqual(APair.second, BIt->second)) return false; } return true; } /// Return a string for the value that \p BaseID represents. std::string toString(unsigned BaseID) { if (BaseID) return Bases[BaseID]->getName().str(); else return "None"; } /// Format string describing an FragsInMemMap (IntervalMap) interval. std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) { std::string String; std::stringstream S(String); if (It.valid()) { S << "[" << It.start() << ", " << It.stop() << "): " << toString(It.value()); } else { S << "invalid iterator (end)"; } if (Newline) S << "\n"; return S.str(); }; FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) { FragsInMemMap Result(IntervalMapAlloc); for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) { LLVM_DEBUG(dbgs() << "a " << toString(AIt)); // This is basically copied from process() and inverted (process is // performing something like a union whereas this is more of an // intersect). // There's no work to do if interval `a` overlaps no fragments in map `B`. if (!B.overlaps(AIt.start(), AIt.stop())) continue; // Does StartBit intersect an existing fragment? auto FirstOverlap = B.find(AIt.start()); assert(FirstOverlap != B.end()); bool IntersectStart = FirstOverlap.start() < AIt.start(); LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false) << ", IntersectStart: " << IntersectStart << "\n"); // Does EndBit intersect an existing fragment? auto LastOverlap = B.find(AIt.stop()); bool IntersectEnd = LastOverlap != B.end() && LastOverlap.start() < AIt.stop(); LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false) << ", IntersectEnd: " << IntersectEnd << "\n"); // Check if both ends of `a` intersect the same interval `b`. if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { // Insert `a` (`a` is contained in `b`) if the values match. // [ a ] // [ - b - ] // - // [ r ] LLVM_DEBUG(dbgs() << "- a is contained within " << toString(FirstOverlap)); if (*AIt && *AIt == *FirstOverlap) Result.insert(AIt.start(), AIt.stop(), *AIt); } else { // There's an overlap but `a` is not fully contained within // `b`. Shorten any end-point intersections. // [ - a - ] // [ - b - ] // - // [ r ] auto Next = FirstOverlap; if (IntersectStart) { LLVM_DEBUG(dbgs() << "- insert intersection of a and " << toString(FirstOverlap)); if (*AIt && *AIt == *FirstOverlap) Result.insert(AIt.start(), FirstOverlap.stop(), *AIt); ++Next; } // [ - a - ] // [ - b - ] // - // [ r ] if (IntersectEnd) { LLVM_DEBUG(dbgs() << "- insert intersection of a and " << toString(LastOverlap)); if (*AIt && *AIt == *LastOverlap) Result.insert(LastOverlap.start(), AIt.stop(), *AIt); } // Insert all intervals in map `B` that are contained within interval // `a` where the values match. // [ - - a - - ] // [ b1 ] [ b2 ] // - // [ r1 ] [ r2 ] while (Next != B.end() && Next.start() < AIt.stop() && Next.stop() <= AIt.stop()) { LLVM_DEBUG(dbgs() << "- insert intersection of a and " << toString(Next)); if (*AIt && *AIt == *Next) Result.insert(Next.start(), Next.stop(), *Next); ++Next; } } } return Result; } /// Meet \p A and \p B, storing the result in \p A. void meetVars(VarFragMap &A, const VarFragMap &B) { // Meet A and B. // // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b) for (auto It = A.begin(), End = A.end(); It != End; ++It) { unsigned AVar = It->first; FragsInMemMap &AFrags = It->second; auto BIt = B.find(AVar); if (BIt == B.end()) { A.erase(It); continue; // Var has no bits defined in B. } LLVM_DEBUG(dbgs() << "meet fragment maps for " << Aggregates[AVar].first->getName() << "\n"); AFrags = meetFragments(AFrags, BIt->second); } } bool meet(const BasicBlock &BB, const SmallPtrSet &Visited) { LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName() << "\n"); VarFragMap BBLiveIn; bool FirstMeet = true; // LiveIn locs for BB is the meet of the already-processed preds' LiveOut // locs. for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) { // Ignore preds that haven't been processed yet. This is essentially the // same as initialising all variables to implicit top value (⊤) which is // the identity value for the meet operation. const BasicBlock *Pred = *I; if (!Visited.count(Pred)) continue; auto PredLiveOut = LiveOut.find(Pred); assert(PredLiveOut != LiveOut.end()); if (FirstMeet) { LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n"); BBLiveIn = PredLiveOut->second; FirstMeet = false; } else { LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName() << "\n"); meetVars(BBLiveIn, PredLiveOut->second); } // An empty set is ⊥ for the intersect-like meet operation. If we've // already got ⊥ there's no need to run the code - we know the result is // ⊥ since `meet(a, ⊥) = ⊥`. if (BBLiveIn.size() == 0) break; } auto CurrentLiveInEntry = LiveIn.find(&BB); // If there's no LiveIn entry for the block yet, add it. if (CurrentLiveInEntry == LiveIn.end()) { LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName() << "\n"); LiveIn[&BB] = std::move(BBLiveIn); return /*Changed=*/true; } // If the LiveIn set has changed (expensive check) update it and return // true. if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) { LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n"); CurrentLiveInEntry->second = std::move(BBLiveIn); return /*Changed=*/true; } LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n"); return /*Changed=*/false; } void insertMemLoc(BasicBlock &BB, Instruction &Before, unsigned Var, unsigned StartBit, unsigned EndBit, unsigned Base, DebugLoc DL) { assert(StartBit < EndBit && "Cannot create fragment of size <= 0"); if (!Base) return; FragMemLoc Loc; Loc.Var = Var; Loc.OffsetInBits = StartBit; Loc.SizeInBits = EndBit - StartBit; assert(Base && "Expected a non-zero ID for Base address"); Loc.Base = Base; Loc.DL = DL; BBInsertBeforeMap[&BB][&Before].push_back(Loc); LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName() << " bits [" << StartBit << ", " << EndBit << ")\n"); } void addDef(const VarLocInfo &VarLoc, Instruction &Before, BasicBlock &BB, VarFragMap &LiveSet) { DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID); if (skipVariable(DbgVar.getVariable())) return; // Don't bother doing anything for this variables if we know it's fully // promoted. We're only interested in variables that (sometimes) live on // the stack here. if (!VarsWithStackSlot->count(getAggregate(DbgVar))) return; unsigned Var = Aggregates.insert( DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt())); // [StartBit: EndBit) are the bits affected by this def. const DIExpression *DIExpr = VarLoc.Expr; unsigned StartBit; unsigned EndBit; if (auto Frag = DIExpr->getFragmentInfo()) { StartBit = Frag->OffsetInBits; EndBit = StartBit + Frag->SizeInBits; } else { assert(static_cast(DbgVar.getVariable()->getSizeInBits())); StartBit = 0; EndBit = *DbgVar.getVariable()->getSizeInBits(); } // We will only fill fragments for simple memory-describing dbg.value // intrinsics. If the fragment offset is the same as the offset from the // base pointer, do The Thing, otherwise fall back to normal dbg.value // behaviour. AssignmentTrackingLowering has generated DIExpressions // written in terms of the base pointer. // TODO: Remove this condition since the fragment offset doesn't always // equal the offset from base pointer (e.g. for a SROA-split variable). const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr); const unsigned Base = DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit ? Bases.insert(VarLoc.V) : 0; LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " [" << StartBit << ", " << EndBit << "): " << toString(Base) << "\n"); // First of all, any locs that use mem that are disrupted need reinstating. // Unfortunately, IntervalMap doesn't let us insert intervals that overlap // with existing intervals so this code involves a lot of fiddling around // with intervals to do that manually. auto FragIt = LiveSet.find(Var); // Check if the variable does not exist in the map. if (FragIt == LiveSet.end()) { // Add this variable to the BB map. auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc)); assert(P.second && "Var already in map?"); // Add the interval to the fragment map. P.first->second.insert(StartBit, EndBit, Base); return; } // The variable has an entry in the map. FragsInMemMap &FragMap = FragIt->second; // First check the easy case: the new fragment `f` doesn't overlap with any // intervals. if (!FragMap.overlaps(StartBit, EndBit)) { LLVM_DEBUG(dbgs() << "- No overlaps\n"); FragMap.insert(StartBit, EndBit, Base); return; } // There is at least one overlap. // Does StartBit intersect an existing fragment? auto FirstOverlap = FragMap.find(StartBit); assert(FirstOverlap != FragMap.end()); bool IntersectStart = FirstOverlap.start() < StartBit; // Does EndBit intersect an existing fragment? auto LastOverlap = FragMap.find(EndBit); bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit; // Check if both ends of `f` intersect the same interval `i`. if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n"); // Shorten `i` so that there's space to insert `f`. // [ f ] // [ - i - ] // + // [ i ][ f ][ i ] // Save values for use after inserting a new interval. auto EndBitOfOverlap = FirstOverlap.stop(); unsigned OverlapValue = FirstOverlap.value(); // Shorten the overlapping interval. FirstOverlap.setStop(StartBit); insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, OverlapValue, VarLoc.DL); // Insert a new interval to represent the end part. FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue); insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue, VarLoc.DL); // Insert the new (middle) fragment now there is space. FragMap.insert(StartBit, EndBit, Base); } else { // There's an overlap but `f` may not be fully contained within // `i`. Shorten any end-point intersections so that we can then // insert `f`. // [ - f - ] // [ - i - ] // | | // [ i ] // Shorten any end-point intersections. if (IntersectStart) { LLVM_DEBUG(dbgs() << "- Intersect interval at start\n"); // Split off at the intersection. FirstOverlap.setStop(StartBit); insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, *FirstOverlap, VarLoc.DL); } // [ - f - ] // [ - i - ] // | | // [ i ] if (IntersectEnd) { LLVM_DEBUG(dbgs() << "- Intersect interval at end\n"); // Split off at the intersection. LastOverlap.setStart(EndBit); insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap, VarLoc.DL); } LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n"); // FirstOverlap and LastOverlap have been shortened such that they're // no longer overlapping with [StartBit, EndBit). Delete any overlaps // that remain (these will be fully contained within `f`). // [ - f - ] } // [ - i - ] } Intersection shortening that has happened above. // | | } // [ i ] } // ----------------- // [i2 ] } Intervals fully contained within `f` get erased. // ----------------- // [ - f - ][ i ] } Completed insertion. auto It = FirstOverlap; if (IntersectStart) ++It; // IntersectStart: first overlap has been shortened. while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) { LLVM_DEBUG(dbgs() << "- Erase " << toString(It)); It.erase(); // This increments It after removing the interval. } // We've dealt with all the overlaps now! assert(!FragMap.overlaps(StartBit, EndBit)); LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n"); FragMap.insert(StartBit, EndBit, Base); } } bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); } void process(BasicBlock &BB, VarFragMap &LiveSet) { BBInsertBeforeMap[&BB].clear(); for (auto &I : BB) { if (const auto *Locs = FnVarLocs->getWedge(&I)) { for (const VarLocInfo &Loc : *Locs) { addDef(Loc, I, *I.getParent(), LiveSet); } } } } public: MemLocFragmentFill(Function &Fn, const DenseSet *VarsWithStackSlot) : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot) {} /// Add variable locations to \p FnVarLocs so that any bits of a variable /// with a memory location have that location explicitly reinstated at each /// subsequent variable location definition that that doesn't overwrite those /// bits. i.e. after a variable location def, insert new defs for the memory /// location with fragments for the difference of "all bits currently in /// memory" and "the fragment of the second def". e.g. /// /// Before: /// /// var x bits 0 to 63: value in memory /// more instructions /// var x bits 0 to 31: value is %0 /// /// After: /// /// var x bits 0 to 63: value in memory /// more instructions /// var x bits 0 to 31: value is %0 /// var x bits 32 to 61: value in memory ; <-- new loc def /// void run(FunctionVarLocsBuilder *FnVarLocs) { if (!EnableMemLocFragFill) return; this->FnVarLocs = FnVarLocs; // Prepare for traversal. // ReversePostOrderTraversal RPOT(&Fn); std::priority_queue, std::greater> Worklist; std::priority_queue, std::greater> Pending; DenseMap OrderToBB; DenseMap BBToOrder; { // Init OrderToBB and BBToOrder. unsigned int RPONumber = 0; for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { OrderToBB[RPONumber] = *RI; BBToOrder[*RI] = RPONumber; Worklist.push(RPONumber); ++RPONumber; } LiveIn.init(RPONumber); LiveOut.init(RPONumber); } // Perform the traversal. // // This is a standard "intersect of predecessor outs" dataflow problem. To // solve it, we perform meet() and process() using the two worklist method // until the LiveIn data for each block becomes unchanging. // // This dataflow is essentially working on maps of sets and at each meet we // intersect the maps and the mapped sets. So, initialized live-in maps // monotonically decrease in value throughout the dataflow. SmallPtrSet Visited; while (!Worklist.empty() || !Pending.empty()) { // We track what is on the pending worklist to avoid inserting the same // thing twice. We could avoid this with a custom priority queue, but // this is probably not worth it. SmallPtrSet OnPending; LLVM_DEBUG(dbgs() << "Processing Worklist\n"); while (!Worklist.empty()) { BasicBlock *BB = OrderToBB[Worklist.top()]; LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); Worklist.pop(); bool InChanged = meet(*BB, Visited); // Always consider LiveIn changed on the first visit. InChanged |= Visited.insert(BB).second; if (InChanged) { LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n"); // Mutate a copy of LiveIn while processing BB. Once we've processed // the terminator LiveSet is the LiveOut set for BB. // This is an expensive copy! VarFragMap LiveSet = LiveIn[BB]; // Process the instructions in the block. process(*BB, LiveSet); // Relatively expensive check: has anything changed in LiveOut for BB? if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) { LLVM_DEBUG(dbgs() << BB->getName() << " has new OutLocs, add succs to worklist: [ "); LiveOut[BB] = std::move(LiveSet); for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { if (OnPending.insert(*I).second) { LLVM_DEBUG(dbgs() << I->getName() << " "); Pending.push(BBToOrder[*I]); } } LLVM_DEBUG(dbgs() << "]\n"); } } } Worklist.swap(Pending); // At this point, pending must be empty, since it was just the empty // worklist assert(Pending.empty() && "Pending should be empty"); } // Insert new location defs. for (auto Pair : BBInsertBeforeMap) { InsertMap &Map = Pair.second; for (auto Pair : Map) { Instruction *InsertBefore = Pair.first; assert(InsertBefore && "should never be null"); auto FragMemLocs = Pair.second; auto &Ctx = Fn.getContext(); for (auto FragMemLoc : FragMemLocs) { DIExpression *Expr = DIExpression::get(Ctx, std::nullopt); Expr = *DIExpression::createFragmentExpression( Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits); Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter, FragMemLoc.OffsetInBits / 8); DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr, FragMemLoc.DL.getInlinedAt()); FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL, Bases[FragMemLoc.Base]); } } } } }; /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function /// that interprets assignment tracking debug info metadata and stores in IR to /// create a map of variable locations. class AssignmentTrackingLowering { public: /// The kind of location in use for a variable, where Mem is the stack home, /// Val is an SSA value or const, and None means that there is not one single /// kind (either because there are multiple or because there is none; it may /// prove useful to split this into two values in the future). /// /// LocKind is a join-semilattice with the partial order: /// None > Mem, Val /// /// i.e. /// join(Mem, Mem) = Mem /// join(Val, Val) = Val /// join(Mem, Val) = None /// join(None, Mem) = None /// join(None, Val) = None /// join(None, None) = None /// /// Note: the order is not `None > Val > Mem` because we're using DIAssignID /// to name assignments and are not tracking the actual stored values. /// Therefore currently there's no way to ensure that Mem values and Val /// values are the same. This could be a future extension, though it's not /// clear that many additional locations would be recovered that way in /// practice as the likelihood of this sitation arising naturally seems /// incredibly low. enum class LocKind { Mem, Val, None }; /// An abstraction of the assignment of a value to a variable or memory /// location. /// /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or /// can't) know the ID of the last assignment that took place. /// /// The Status of the Assignment (Known or NoneOrPhi) is another /// join-semilattice. The partial order is: /// NoneOrPhi > Known {id_0, id_1, ...id_N} /// /// i.e. for all values x and y where x != y: /// join(x, x) = x /// join(x, y) = NoneOrPhi struct Assignment { enum S { Known, NoneOrPhi } Status; /// ID of the assignment. nullptr if Status is not Known. DIAssignID *ID; /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field. /// May be nullptr. DbgAssignIntrinsic *Source; bool isSameSourceAssignment(const Assignment &Other) const { // Don't include Source in the equality check. Assignments are // defined by their ID, not debug intrinsic(s). return std::tie(Status, ID) == std::tie(Other.Status, Other.ID); } void dump(raw_ostream &OS) { static const char *LUT[] = {"Known", "NoneOrPhi"}; OS << LUT[Status] << "(id="; if (ID) OS << ID; else OS << "null"; OS << ", s="; if (Source) OS << *Source; else OS << "null"; OS << ")"; } static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) { return Assignment(Known, ID, Source); } static Assignment makeFromMemDef(DIAssignID *ID) { return Assignment(Known, ID, nullptr); } static Assignment makeNoneOrPhi() { return Assignment(NoneOrPhi, nullptr, nullptr); } // Again, need a Top value? Assignment() : Status(NoneOrPhi), ID(nullptr), Source(nullptr) { } // Can we delete this? Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source) : Status(Status), ID(ID), Source(Source) { // If the Status is Known then we expect there to be an assignment ID. assert(Status == NoneOrPhi || ID); } }; using AssignmentMap = DenseMap; using LocMap = DenseMap; using OverlapMap = DenseMap>; using UntaggedStoreAssignmentMap = DenseMap>>; private: /// Map a variable to the set of variables that it fully contains. OverlapMap VarContains; /// Map untagged stores to the variable fragments they assign to. Used by /// processUntaggedInstruction. UntaggedStoreAssignmentMap UntaggedStoreVars; // Machinery to defer inserting dbg.values. using InsertMap = MapVector>; InsertMap InsertBeforeMap; /// Clear the location definitions currently cached for insertion after /p /// After. void resetInsertionPoint(Instruction &After); void emitDbgValue(LocKind Kind, const DbgVariableIntrinsic *Source, Instruction *After); static bool mapsAreEqual(const AssignmentMap &A, const AssignmentMap &B) { if (A.size() != B.size()) return false; for (const auto &Pair : A) { VariableID Var = Pair.first; const Assignment &AV = Pair.second; auto R = B.find(Var); // Check if this entry exists in B, otherwise ret false. if (R == B.end()) return false; // Check that the assignment value is the same. if (!AV.isSameSourceAssignment(R->second)) return false; } return true; } /// Represents the stack and debug assignments in a block. Used to describe /// the live-in and live-out values for blocks, as well as the "current" /// value as we process each instruction in a block. struct BlockInfo { /// Dominating assignment to memory for each variable. AssignmentMap StackHomeValue; /// Dominating assignemnt to each variable. AssignmentMap DebugValue; /// Location kind for each variable. LiveLoc indicates whether the /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of /// preference. This cannot be derived by inspecting DebugValue and /// StackHomeValue due to the fact that there's no distinction in /// Assignment (the class) between whether an assignment is unknown or a /// merge of multiple assignments (both are Status::NoneOrPhi). In other /// words, the memory location may well be valid while both DebugValue and /// StackHomeValue contain Assignments that have a Status of NoneOrPhi. LocMap LiveLoc; /// Compare every element in each map to determine structural equality /// (slow). bool operator==(const BlockInfo &Other) const { return LiveLoc == Other.LiveLoc && mapsAreEqual(StackHomeValue, Other.StackHomeValue) && mapsAreEqual(DebugValue, Other.DebugValue); } bool operator!=(const BlockInfo &Other) const { return !(*this == Other); } bool isValid() { return LiveLoc.size() == DebugValue.size() && LiveLoc.size() == StackHomeValue.size(); } }; Function &Fn; const DataLayout &Layout; const DenseSet *VarsWithStackSlot; FunctionVarLocsBuilder *FnVarLocs; DenseMap LiveIn; DenseMap LiveOut; /// Helper for process methods to track variables touched each frame. DenseSet VarsTouchedThisFrame; /// The set of variables that sometimes are not located in their stack home. DenseSet NotAlwaysStackHomed; VariableID getVariableID(const DebugVariable &Var) { return static_cast(FnVarLocs->insertVariable(Var)); } /// Join the LiveOut values of preds that are contained in \p Visited into /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB] /// values monotonically increase. See the @link joinMethods join methods /// @endlink documentation for more info. bool join(const BasicBlock &BB, const SmallPtrSet &Visited); ///@name joinMethods /// Functions that implement `join` (the least upper bound) for the /// join-semilattice types used in the dataflow. There is an explicit bottom /// value (⊥) for some types and and explicit top value (⊤) for all types. /// By definition: /// /// Join(A, B) >= A && Join(A, B) >= B /// Join(A, ⊥) = A /// Join(A, ⊤) = ⊤ /// /// These invariants are important for monotonicity. /// /// For the map-type functions, all unmapped keys in an empty map are /// associated with a bottom value (⊥). This represents their values being /// unknown. Unmapped keys in non-empty maps (joining two maps with a key /// only present in one) represents either a variable going out of scope or /// dropped debug info. It is assumed the key is associated with a top value /// (⊤) in this case (unknown location / assignment). ///@{ static LocKind joinKind(LocKind A, LocKind B); static LocMap joinLocMap(const LocMap &A, const LocMap &B); static Assignment joinAssignment(const Assignment &A, const Assignment &B); static AssignmentMap joinAssignmentMap(const AssignmentMap &A, const AssignmentMap &B); static BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B); ///@} /// Process the instructions in \p BB updating \p LiveSet along the way. \p /// LiveSet must be initialized with the current live-in locations before /// calling this. void process(BasicBlock &BB, BlockInfo *LiveSet); ///@name processMethods /// Methods to process instructions in order to update the LiveSet (current /// location information). ///@{ void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet); void processDbgInstruction(Instruction &I, BlockInfo *LiveSet); /// Update \p LiveSet after encountering an instruction with a DIAssignID /// attachment, \p I. void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet); /// Update \p LiveSet after encountering an instruciton without a DIAssignID /// attachment, \p I. void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet); void processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet); void processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet); /// Add an assignment to memory for the variable /p Var. void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); /// Add an assignment to the variable /p Var. void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); ///@} /// Set the LocKind for \p Var. void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K); /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to /// have been called for \p Var first. LocKind getLocKind(BlockInfo *LiveSet, VariableID Var); /// Return true if \p Var has an assignment in \p M matching \p AV. bool hasVarWithAssignment(VariableID Var, const Assignment &AV, const AssignmentMap &M); /// Emit info for variables that are fully promoted. bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs); public: AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout, const DenseSet *VarsWithStackSlot) : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {} /// Run the analysis, adding variable location info to \p FnVarLocs. Returns /// true if any variable locations have been added to FnVarLocs. bool run(FunctionVarLocsBuilder *FnVarLocs); }; } // namespace void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K) { auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) { VarsTouchedThisFrame.insert(Var); LiveSet->LiveLoc[Var] = K; }; SetKind(LiveSet, Var, K); // Update the LocKind for all fragments contained within Var. for (VariableID Frag : VarContains[Var]) SetKind(LiveSet, Frag, K); } AssignmentTrackingLowering::LocKind AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) { auto Pair = LiveSet->LiveLoc.find(Var); assert(Pair != LiveSet->LiveLoc.end()); return Pair->second; } void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV) { auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) { LiveSet->StackHomeValue[Var] = AV; // Add default (Var -> ⊤) to DebugValue if Var isn't in DebugValue yet. LiveSet->DebugValue.insert({Var, Assignment::makeNoneOrPhi()}); // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers // of addMemDef will call setLocKind to override. LiveSet->LiveLoc.insert({Var, LocKind::None}); }; AddDef(LiveSet, Var, AV); // Use this assigment for all fragments contained within Var, but do not // provide a Source because we cannot convert Var's value to a value for the // fragment. Assignment FragAV = AV; FragAV.Source = nullptr; for (VariableID Frag : VarContains[Var]) AddDef(LiveSet, Frag, FragAV); } void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV) { auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) { LiveSet->DebugValue[Var] = AV; // Add default (Var -> ⊤) to StackHome if Var isn't in StackHome yet. LiveSet->StackHomeValue.insert({Var, Assignment::makeNoneOrPhi()}); // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers // of addDbgDef will call setLocKind to override. LiveSet->LiveLoc.insert({Var, LocKind::None}); }; AddDef(LiveSet, Var, AV); // Use this assigment for all fragments contained within Var, but do not // provide a Source because we cannot convert Var's value to a value for the // fragment. Assignment FragAV = AV; FragAV.Source = nullptr; for (VariableID Frag : VarContains[Var]) AddDef(LiveSet, Frag, FragAV); } static DIAssignID *getIDFromInst(const Instruction &I) { return cast(I.getMetadata(LLVMContext::MD_DIAssignID)); } static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) { return cast(DAI.getAssignID()); } /// Return true if \p Var has an assignment in \p M matching \p AV. bool AssignmentTrackingLowering::hasVarWithAssignment(VariableID Var, const Assignment &AV, const AssignmentMap &M) { auto AssignmentIsMapped = [](VariableID Var, const Assignment &AV, const AssignmentMap &M) { auto R = M.find(Var); if (R == M.end()) return false; return AV.isSameSourceAssignment(R->second); }; if (!AssignmentIsMapped(Var, AV, M)) return false; // Check all the frags contained within Var as these will have all been // mapped to AV at the last store to Var. for (VariableID Frag : VarContains[Var]) if (!AssignmentIsMapped(Frag, AV, M)) return false; return true; } #ifndef NDEBUG const char *locStr(AssignmentTrackingLowering::LocKind Loc) { using LocKind = AssignmentTrackingLowering::LocKind; switch (Loc) { case LocKind::Val: return "Val"; case LocKind::Mem: return "Mem"; case LocKind::None: return "None"; }; llvm_unreachable("unknown LocKind"); } #endif void AssignmentTrackingLowering::emitDbgValue( AssignmentTrackingLowering::LocKind Kind, const DbgVariableIntrinsic *Source, Instruction *After) { DILocation *DL = Source->getDebugLoc(); auto Emit = [this, Source, After, DL](Value *Val, DIExpression *Expr) { assert(Expr); if (!Val) Val = PoisonValue::get(Type::getInt1Ty(Source->getContext())); // Find a suitable insert point. Instruction *InsertBefore = After->getNextNode(); assert(InsertBefore && "Shouldn't be inserting after a terminator"); VariableID Var = getVariableID(DebugVariable(Source)); VarLocInfo VarLoc; VarLoc.VariableID = static_cast(Var); VarLoc.Expr = Expr; VarLoc.V = Val; VarLoc.DL = DL; // Insert it into the map for later. InsertBeforeMap[InsertBefore].push_back(VarLoc); }; // NOTE: This block can mutate Kind. if (Kind == LocKind::Mem) { const auto *DAI = cast(Source); // Check the address hasn't been dropped (e.g. the debug uses may not have // been replaced before deleting a Value). if (DAI->isKillAddress()) { // The address isn't valid so treat this as a non-memory def. Kind = LocKind::Val; } else { Value *Val = DAI->getAddress(); DIExpression *Expr = DAI->getAddressExpression(); assert(!Expr->getFragmentInfo() && "fragment info should be stored in value-expression only"); // Copy the fragment info over from the value-expression to the new // DIExpression. if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) { auto FragInfo = *OptFragInfo; Expr = *DIExpression::createFragmentExpression( Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits); } // The address-expression has an implicit deref, add it now. std::tie(Val, Expr) = walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr); Emit(Val, Expr); return; } } if (Kind == LocKind::Val) { /// Get the value component, converting to Undef if it is variadic. Value *Val = Source->hasArgList() ? nullptr : Source->getVariableLocationOp(0); Emit(Val, Source->getExpression()); return; } if (Kind == LocKind::None) { Emit(nullptr, Source->getExpression()); return; } } void AssignmentTrackingLowering::processNonDbgInstruction( Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { if (I.hasMetadata(LLVMContext::MD_DIAssignID)) processTaggedInstruction(I, LiveSet); else processUntaggedInstruction(I, LiveSet); } void AssignmentTrackingLowering::processUntaggedInstruction( Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { // Interpret stack stores that are not tagged as an assignment in memory for // the variables associated with that address. These stores may not be tagged // because a) the store cannot be represented using dbg.assigns (non-const // length or offset) or b) the tag was accidentally dropped during // optimisations. For these stores we fall back to assuming that the stack // home is a valid location for the variables. The benefit is that this // prevents us missing an assignment and therefore incorrectly maintaining // earlier location definitions, and in many cases it should be a reasonable // assumption. However, this will occasionally lead to slight // inaccuracies. The value of a hoisted untagged store will be visible // "early", for example. assert(!I.hasMetadata(LLVMContext::MD_DIAssignID)); auto It = UntaggedStoreVars.find(&I); if (It == UntaggedStoreVars.end()) return; // No variables associated with the store destination. LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I << "\n"); // Iterate over the variables that this store affects, add a NoneOrPhi dbg // and mem def, set lockind to Mem, and emit a location def for each. for (auto [Var, Info] : It->second) { // This instruction is treated as both a debug and memory assignment, // meaning the memory location should be used. We don't have an assignment // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one. addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi()); addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi()); setLocKind(LiveSet, Var, LocKind::Mem); LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem) << "\n"); // Build the dbg location def to insert. // // DIExpression: Add fragment and offset. DebugVariable V = FnVarLocs->getVariable(Var); DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt); if (auto Frag = V.getFragment()) { auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits, Frag->SizeInBits); assert(R && "unexpected createFragmentExpression failure"); DIE = *R; } SmallVector Ops; if (Info.OffsetInBits) Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8}; Ops.push_back(dwarf::DW_OP_deref); DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false, /*EntryValue=*/false); // Find a suitable insert point. Instruction *InsertBefore = I.getNextNode(); assert(InsertBefore && "Shouldn't be inserting after a terminator"); // Get DILocation for this unrecorded assignment. DILocation *InlinedAt = const_cast(V.getInlinedAt()); const DILocation *DILoc = DILocation::get( Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt); VarLocInfo VarLoc; VarLoc.VariableID = static_cast(Var); VarLoc.Expr = DIE; VarLoc.V = const_cast(Info.Base); VarLoc.DL = DILoc; // 3. Insert it into the map for later. InsertBeforeMap[InsertBefore].push_back(VarLoc); } } void AssignmentTrackingLowering::processTaggedInstruction( Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { auto Linked = at::getAssignmentMarkers(&I); // No dbg.assign intrinsics linked. // FIXME: All vars that have a stack slot this store modifies that don't have // a dbg.assign linked to it should probably treat this like an untagged // store. if (Linked.empty()) return; LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n"); for (DbgAssignIntrinsic *DAI : Linked) { VariableID Var = getVariableID(DebugVariable(DAI)); // Something has gone wrong if VarsWithStackSlot doesn't contain a variable // that is linked to a store. assert(VarsWithStackSlot->count(getAggregate(DAI)) && "expected DAI's variable to have stack slot"); Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I)); addMemDef(LiveSet, Var, AV); LLVM_DEBUG(dbgs() << " linked to " << *DAI << "\n"); LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) << " -> "); // The last assignment to the stack is now AV. Check if the last debug // assignment has a matching Assignment. if (hasVarWithAssignment(Var, AV, LiveSet->DebugValue)) { // The StackHomeValue and DebugValue for this variable match so we can // emit a stack home location here. LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n"); LLVM_DEBUG(dbgs() << " Debug val: "; LiveSet->DebugValue[Var].dump(dbgs()); dbgs() << "\n"); setLocKind(LiveSet, Var, LocKind::Mem); emitDbgValue(LocKind::Mem, DAI, &I); continue; } // The StackHomeValue and DebugValue for this variable do not match. I.e. // The value currently stored in the stack is not what we'd expect to // see, so we cannot use emit a stack home location here. Now we will // look at the live LocKind for the variable and determine an appropriate // dbg.value to emit. LocKind PrevLoc = getLocKind(LiveSet, Var); switch (PrevLoc) { case LocKind::Val: { // The value in memory in memory has changed but we're not currently // using the memory location. Do nothing. LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";); setLocKind(LiveSet, Var, LocKind::Val); } break; case LocKind::Mem: { // There's been an assignment to memory that we were using as a // location for this variable, and the Assignment doesn't match what // we'd expect to see in memory. if (LiveSet->DebugValue[Var].Status == Assignment::NoneOrPhi) { // We need to terminate any previously open location now. LLVM_DEBUG(dbgs() << "None, No Debug value available\n";); setLocKind(LiveSet, Var, LocKind::None); emitDbgValue(LocKind::None, DAI, &I); } else { // The previous DebugValue Value can be used here. LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";); setLocKind(LiveSet, Var, LocKind::Val); Assignment PrevAV = LiveSet->DebugValue.lookup(Var); if (PrevAV.Source) { emitDbgValue(LocKind::Val, PrevAV.Source, &I); } else { // PrevAV.Source is nullptr so we must emit undef here. emitDbgValue(LocKind::None, DAI, &I); } } } break; case LocKind::None: { // There's been an assignment to memory and we currently are // not tracking a location for the variable. Do not emit anything. LLVM_DEBUG(dbgs() << "None, (unchanged)\n";); setLocKind(LiveSet, Var, LocKind::None); } break; } } } void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet) { // Only bother tracking variables that are at some point stack homed. Other // variables can be dealt with trivially later. if (!VarsWithStackSlot->count(getAggregate(&DAI))) return; VariableID Var = getVariableID(DebugVariable(&DAI)); Assignment AV = Assignment::make(getIDFromMarker(DAI), &DAI); addDbgDef(LiveSet, Var, AV); LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI << "\n";); LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) << " -> "); // Check if the DebugValue and StackHomeValue both hold the same // Assignment. if (hasVarWithAssignment(Var, AV, LiveSet->StackHomeValue)) { // They match. We can use the stack home because the debug intrinsics state // that an assignment happened here, and we know that specific assignment // was the last one to take place in memory for this variable. LocKind Kind; if (DAI.isKillAddress()) { LLVM_DEBUG( dbgs() << "Val, Stack matches Debug program but address is killed\n";); Kind = LocKind::Val; } else { LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); Kind = LocKind::Mem; }; setLocKind(LiveSet, Var, Kind); emitDbgValue(Kind, &DAI, &DAI); } else { // The last assignment to the memory location isn't the one that we want to // show to the user so emit a dbg.value(Value). Value may be undef. LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";); setLocKind(LiveSet, Var, LocKind::Val); emitDbgValue(LocKind::Val, &DAI, &DAI); } } void AssignmentTrackingLowering::processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet) { // Only other tracking variables that are at some point stack homed. // Other variables can be dealt with trivally later. if (!VarsWithStackSlot->count(getAggregate(&DVI))) return; VariableID Var = getVariableID(DebugVariable(&DVI)); // We have no ID to create an Assignment with so we mark this assignment as // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine // the assignment responsible for setting this value. // This is fine; dbg.values are essentially interchangable with unlinked // dbg.assigns, and some passes such as mem2reg and instcombine add them to // PHIs for promoted variables. Assignment AV = Assignment::makeNoneOrPhi(); addDbgDef(LiveSet, Var, AV); LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI << "\n";); LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) << " -> Val, dbg.value override"); setLocKind(LiveSet, Var, LocKind::Val); emitDbgValue(LocKind::Val, &DVI, &DVI); } void AssignmentTrackingLowering::processDbgInstruction( Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { assert(!isa(&I) && "unexpected dbg.addr"); if (auto *DAI = dyn_cast(&I)) processDbgAssign(*DAI, LiveSet); else if (auto *DVI = dyn_cast(&I)) processDbgValue(*DVI, LiveSet); } void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) { assert(!After.isTerminator() && "Can't insert after a terminator"); auto R = InsertBeforeMap.find(After.getNextNode()); if (R == InsertBeforeMap.end()) return; R->second.clear(); } void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) { for (auto II = BB.begin(), EI = BB.end(); II != EI;) { assert(VarsTouchedThisFrame.empty()); // Process the instructions in "frames". A "frame" includes a single // non-debug instruction followed any debug instructions before the // next non-debug instruction. if (!isa(&*II)) { if (II->isTerminator()) break; resetInsertionPoint(*II); processNonDbgInstruction(*II, LiveSet); assert(LiveSet->isValid()); ++II; } while (II != EI) { if (!isa(&*II)) break; resetInsertionPoint(*II); processDbgInstruction(*II, LiveSet); assert(LiveSet->isValid()); ++II; } // We've processed everything in the "frame". Now determine which variables // cannot be represented by a dbg.declare. for (auto Var : VarsTouchedThisFrame) { LocKind Loc = getLocKind(LiveSet, Var); // If a variable's LocKind is anything other than LocKind::Mem then we // must note that it cannot be represented with a dbg.declare. // Note that this check is enough without having to check the result of // joins() because for join to produce anything other than Mem after // we've already seen a Mem we'd be joining None or Val with Mem. In that // case, we've already hit this codepath when we set the LocKind to Val // or None in that block. if (Loc != LocKind::Mem) { DebugVariable DbgVar = FnVarLocs->getVariable(Var); DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()}; NotAlwaysStackHomed.insert(Aggr); } } VarsTouchedThisFrame.clear(); } } AssignmentTrackingLowering::LocKind AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) { // Partial order: // None > Mem, Val return A == B ? A : LocKind::None; } AssignmentTrackingLowering::LocMap AssignmentTrackingLowering::joinLocMap(const LocMap &A, const LocMap &B) { // Join A and B. // // U = join(a, b) for a in A, b in B where Var(a) == Var(b) // D = join(x, ⊤) for x where Var(x) is in A xor B // Join = U ∪ D // // This is achieved by performing a join on elements from A and B with // variables common to both A and B (join elements indexed by var intersect), // then adding LocKind::None elements for vars in A xor B. The latter part is // equivalent to performing join on elements with variables in A xor B with // LocKind::None (⊤) since join(x, ⊤) = ⊤. LocMap Join; SmallVector SymmetricDifference; // Insert the join of the elements with common vars into Join. Add the // remaining elements to into SymmetricDifference. for (const auto &[Var, Loc] : A) { // If this Var doesn't exist in B then add it to the symmetric difference // set. auto R = B.find(Var); if (R == B.end()) { SymmetricDifference.push_back(Var); continue; } // There is an entry for Var in both, join it. Join[Var] = joinKind(Loc, R->second); } unsigned IntersectSize = Join.size(); (void)IntersectSize; // Add the elements in B with variables that are not in A into // SymmetricDifference. for (const auto &Pair : B) { VariableID Var = Pair.first; if (A.count(Var) == 0) SymmetricDifference.push_back(Var); } // Add SymmetricDifference elements to Join and return the result. for (const auto &Var : SymmetricDifference) Join.insert({Var, LocKind::None}); assert(Join.size() == (IntersectSize + SymmetricDifference.size())); assert(Join.size() >= A.size() && Join.size() >= B.size()); return Join; } AssignmentTrackingLowering::Assignment AssignmentTrackingLowering::joinAssignment(const Assignment &A, const Assignment &B) { // Partial order: // NoneOrPhi(null, null) > Known(v, ?s) // If either are NoneOrPhi the join is NoneOrPhi. // If either value is different then the result is // NoneOrPhi (joining two values is a Phi). if (!A.isSameSourceAssignment(B)) return Assignment::makeNoneOrPhi(); if (A.Status == Assignment::NoneOrPhi) return Assignment::makeNoneOrPhi(); // Source is used to lookup the value + expression in the debug program if // the stack slot gets assigned a value earlier than expected. Because // we're only tracking the one dbg.assign, we can't capture debug PHIs. // It's unlikely that we're losing out on much coverage by avoiding that // extra work. // The Source may differ in this situation: // Pred.1: // dbg.assign i32 0, ..., !1, ... // Pred.2: // dbg.assign i32 1, ..., !1, ... // Here the same assignment (!1) was performed in both preds in the source, // but we can't use either one unless they are identical (e.g. .we don't // want to arbitrarily pick between constant values). auto JoinSource = [&]() -> DbgAssignIntrinsic * { if (A.Source == B.Source) return A.Source; if (A.Source == nullptr || B.Source == nullptr) return nullptr; if (A.Source->isIdenticalTo(B.Source)) return A.Source; return nullptr; }; DbgAssignIntrinsic *Source = JoinSource(); assert(A.Status == B.Status && A.Status == Assignment::Known); assert(A.ID == B.ID); return Assignment::make(A.ID, Source); } AssignmentTrackingLowering::AssignmentMap AssignmentTrackingLowering::joinAssignmentMap(const AssignmentMap &A, const AssignmentMap &B) { // Join A and B. // // U = join(a, b) for a in A, b in B where Var(a) == Var(b) // D = join(x, ⊤) for x where Var(x) is in A xor B // Join = U ∪ D // // This is achieved by performing a join on elements from A and B with // variables common to both A and B (join elements indexed by var intersect), // then adding LocKind::None elements for vars in A xor B. The latter part is // equivalent to performing join on elements with variables in A xor B with // Status::NoneOrPhi (⊤) since join(x, ⊤) = ⊤. AssignmentMap Join; SmallVector SymmetricDifference; // Insert the join of the elements with common vars into Join. Add the // remaining elements to into SymmetricDifference. for (const auto &[Var, AV] : A) { // If this Var doesn't exist in B then add it to the symmetric difference // set. auto R = B.find(Var); if (R == B.end()) { SymmetricDifference.push_back(Var); continue; } // There is an entry for Var in both, join it. Join[Var] = joinAssignment(AV, R->second); } unsigned IntersectSize = Join.size(); (void)IntersectSize; // Add the elements in B with variables that are not in A into // SymmetricDifference. for (const auto &Pair : B) { VariableID Var = Pair.first; if (A.count(Var) == 0) SymmetricDifference.push_back(Var); } // Add SymmetricDifference elements to Join and return the result. for (auto Var : SymmetricDifference) Join.insert({Var, Assignment::makeNoneOrPhi()}); assert(Join.size() == (IntersectSize + SymmetricDifference.size())); assert(Join.size() >= A.size() && Join.size() >= B.size()); return Join; } AssignmentTrackingLowering::BlockInfo AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A, const BlockInfo &B) { BlockInfo Join; Join.LiveLoc = joinLocMap(A.LiveLoc, B.LiveLoc); Join.StackHomeValue = joinAssignmentMap(A.StackHomeValue, B.StackHomeValue); Join.DebugValue = joinAssignmentMap(A.DebugValue, B.DebugValue); assert(Join.isValid()); return Join; } bool AssignmentTrackingLowering::join( const BasicBlock &BB, const SmallPtrSet &Visited) { BlockInfo BBLiveIn; bool FirstJoin = true; // LiveIn locs for BB is the join of the already-processed preds' LiveOut // locs. for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) { // Ignore backedges if we have not visited the predecessor yet. As the // predecessor hasn't yet had locations propagated into it, most locations // will not yet be valid, so treat them as all being uninitialized and // potentially valid. If a location guessed to be correct here is // invalidated later, we will remove it when we revisit this block. This // is essentially the same as initialising all LocKinds and Assignments to // an implicit ⊥ value which is the identity value for the join operation. const BasicBlock *Pred = *I; if (!Visited.count(Pred)) continue; auto PredLiveOut = LiveOut.find(Pred); // Pred must have been processed already. See comment at start of this loop. assert(PredLiveOut != LiveOut.end()); // Perform the join of BBLiveIn (current live-in info) and PrevLiveOut. if (FirstJoin) BBLiveIn = PredLiveOut->second; else BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second); FirstJoin = false; } auto CurrentLiveInEntry = LiveIn.find(&BB); // Check if there isn't an entry, or there is but the LiveIn set has changed // (expensive check). if (CurrentLiveInEntry == LiveIn.end() || BBLiveIn != CurrentLiveInEntry->second) { LiveIn[&BB] = std::move(BBLiveIn); // A change has occured. return true; } // No change. return false; } /// Return true if A fully contains B. static bool fullyContains(DIExpression::FragmentInfo A, DIExpression::FragmentInfo B) { auto ALeft = A.OffsetInBits; auto BLeft = B.OffsetInBits; if (BLeft < ALeft) return false; auto ARight = ALeft + A.SizeInBits; auto BRight = BLeft + B.SizeInBits; if (BRight > ARight) return false; return true; } static std::optional getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) { // Don't bother checking if this is an AllocaInst. We know this // instruction has no tag which means there are no variables associated // with it. if (const auto *SI = dyn_cast(&I)) return at::getAssignmentInfo(Layout, SI); if (const auto *MI = dyn_cast(&I)) return at::getAssignmentInfo(Layout, MI); // Alloca or non-store-like inst. return std::nullopt; } /// Build a map of {Variable x: Variables y} where all variable fragments /// contained within the variable fragment x are in set y. This means that /// y does not contain all overlaps because partial overlaps are excluded. /// /// While we're iterating over the function, add single location defs for /// dbg.declares to \p FnVarLocs /// /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to /// the stored-to variable fragments. /// /// These tasks are bundled together to reduce the number of times we need /// to iterate over the function as they can be achieved together in one pass. static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares( Function &Fn, FunctionVarLocsBuilder *FnVarLocs, AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars) { DenseSet Seen; // Map of Variable: [Fragments]. DenseMap> FragmentMap; // Iterate over all instructions: // - dbg.declare -> add single location variable record // - dbg.* -> Add fragments to FragmentMap // - untagged store -> Add fragments to FragmentMap and update // UntaggedStoreVars. // We need to add fragments for untagged stores too so that we can correctly // clobber overlapped fragment locations later. for (auto &BB : Fn) { for (auto &I : BB) { if (auto *DDI = dyn_cast(&I)) { FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(), DDI->getDebugLoc(), DDI->getAddress()); } else if (auto *DII = dyn_cast(&I)) { DebugVariable DV = DebugVariable(DII); DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; if (Seen.insert(DV).second) FragmentMap[DA].push_back(DV); } else if (auto Info = getUntaggedStoreAssignmentInfo( I, Fn.getParent()->getDataLayout())) { // Find markers linked to this alloca. for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) { // Discard the fragment if it covers the entire variable. std::optional FragInfo = [&Info, DAI]() -> std::optional { DIExpression::FragmentInfo F; F.OffsetInBits = Info->OffsetInBits; F.SizeInBits = Info->SizeInBits; if (auto ExistingFrag = DAI->getExpression()->getFragmentInfo()) F.OffsetInBits += ExistingFrag->OffsetInBits; if (auto Sz = DAI->getVariable()->getSizeInBits()) { if (F.OffsetInBits == 0 && F.SizeInBits == *Sz) return std::nullopt; } return F; }(); DebugVariable DV = DebugVariable(DAI->getVariable(), FragInfo, DAI->getDebugLoc().getInlinedAt()); DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; // Cache this info for later. UntaggedStoreVars[&I].push_back( {FnVarLocs->insertVariable(DV), *Info}); if (Seen.insert(DV).second) FragmentMap[DA].push_back(DV); } } } } // Sort the fragment map for each DebugAggregate in non-descending // order of fragment size. Assert no entries are duplicates. for (auto &Pair : FragmentMap) { SmallVector &Frags = Pair.second; std::sort( Frags.begin(), Frags.end(), [](DebugVariable Next, DebugVariable Elmt) { assert(!(Elmt.getFragmentOrDefault() == Next.getFragmentOrDefault())); return Elmt.getFragmentOrDefault().SizeInBits > Next.getFragmentOrDefault().SizeInBits; }); } // Build the map. AssignmentTrackingLowering::OverlapMap Map; for (auto Pair : FragmentMap) { auto &Frags = Pair.second; for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) { DIExpression::FragmentInfo Frag = It->getFragmentOrDefault(); // Find the frags that this is contained within. // // Because Frags is sorted by size and none have the same offset and // size, we know that this frag can only be contained by subsequent // elements. SmallVector::iterator OtherIt = It; ++OtherIt; VariableID ThisVar = FnVarLocs->insertVariable(*It); for (; OtherIt != IEnd; ++OtherIt) { DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault(); VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt); if (fullyContains(OtherFrag, Frag)) Map[OtherVar].push_back(ThisVar); } } } return Map; } bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) { if (Fn.size() > MaxNumBlocks) { LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName() << ": too many blocks (" << Fn.size() << ")\n"); at::deleteAll(&Fn); return false; } FnVarLocs = FnVarLocsBuilder; // The general structure here is inspired by VarLocBasedImpl.cpp // (LiveDebugValues). // Build the variable fragment overlap map. // Note that this pass doesn't handle partial overlaps correctly (FWIW // neither does LiveDebugVariables) because that is difficult to do and // appears to be rare occurance. VarContains = buildOverlapMapAndRecordDeclares(Fn, FnVarLocs, UntaggedStoreVars); // Prepare for traversal. ReversePostOrderTraversal RPOT(&Fn); std::priority_queue, std::greater> Worklist; std::priority_queue, std::greater> Pending; DenseMap OrderToBB; DenseMap BBToOrder; { // Init OrderToBB and BBToOrder. unsigned int RPONumber = 0; for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { OrderToBB[RPONumber] = *RI; BBToOrder[*RI] = RPONumber; Worklist.push(RPONumber); ++RPONumber; } LiveIn.init(RPONumber); LiveOut.init(RPONumber); } // Perform the traversal. // // This is a standard "union of predecessor outs" dataflow problem. To solve // it, we perform join() and process() using the two worklist method until // the LiveIn data for each block becomes unchanging. The "proof" that this // terminates can be put together by looking at the comments around LocKind, // Assignment, and the various join methods, which show that all the elements // involved are made up of join-semilattices; LiveIn(n) can only // monotonically increase in value throughout the dataflow. // SmallPtrSet Visited; while (!Worklist.empty()) { // We track what is on the pending worklist to avoid inserting the same // thing twice. SmallPtrSet OnPending; LLVM_DEBUG(dbgs() << "Processing Worklist\n"); while (!Worklist.empty()) { BasicBlock *BB = OrderToBB[Worklist.top()]; LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); Worklist.pop(); bool InChanged = join(*BB, Visited); // Always consider LiveIn changed on the first visit. InChanged |= Visited.insert(BB).second; if (InChanged) { LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n"); // Mutate a copy of LiveIn while processing BB. After calling process // LiveSet is the LiveOut set for BB. BlockInfo LiveSet = LiveIn[BB]; // Process the instructions in the block. process(*BB, &LiveSet); // Relatively expensive check: has anything changed in LiveOut for BB? if (LiveOut[BB] != LiveSet) { LLVM_DEBUG(dbgs() << BB->getName() << " has new OutLocs, add succs to worklist: [ "); LiveOut[BB] = std::move(LiveSet); for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { if (OnPending.insert(*I).second) { LLVM_DEBUG(dbgs() << I->getName() << " "); Pending.push(BBToOrder[*I]); } } LLVM_DEBUG(dbgs() << "]\n"); } } } Worklist.swap(Pending); // At this point, pending must be empty, since it was just the empty // worklist assert(Pending.empty() && "Pending should be empty"); } // That's the hard part over. Now we just have some admin to do. // Record whether we inserted any intrinsics. bool InsertedAnyIntrinsics = false; // Identify and add defs for single location variables. // // Go through all of the defs that we plan to add. If the aggregate variable // it's a part of is not in the NotAlwaysStackHomed set we can emit a single // location def and omit the rest. Add an entry to AlwaysStackHomed so that // we can identify those uneeded defs later. DenseSet AlwaysStackHomed; for (const auto &Pair : InsertBeforeMap) { const auto &Vec = Pair.second; for (VarLocInfo VarLoc : Vec) { DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; // Skip this Var if it's not always stack homed. if (NotAlwaysStackHomed.contains(Aggr)) continue; // Skip complex cases such as when different fragments of a variable have // been split into different allocas. Skipping in this case means falling // back to using a list of defs (which could reduce coverage, but is no // less correct). bool Simple = VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref(); if (!Simple) { NotAlwaysStackHomed.insert(Aggr); continue; } // All source assignments to this variable remain and all stores to any // part of the variable store to the same address (with varying // offsets). We can just emit a single location for the whole variable. // // Unless we've already done so, create the single location def now. if (AlwaysStackHomed.insert(Aggr).second) { assert(isa(VarLoc.V)); // TODO: When more complex cases are handled VarLoc.Expr should be // built appropriately rather than always using an empty DIExpression. // The assert below is a reminder. assert(Simple); VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt); DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.V); InsertedAnyIntrinsics = true; } } } // Insert the other DEFs. for (const auto &[InsertBefore, Vec] : InsertBeforeMap) { SmallVector NewDefs; for (const VarLocInfo &VarLoc : Vec) { DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; // If this variable is always stack homed then we have already inserted a // dbg.declare and deleted this dbg.value. if (AlwaysStackHomed.contains(Aggr)) continue; NewDefs.push_back(VarLoc); InsertedAnyIntrinsics = true; } FnVarLocs->setWedge(InsertBefore, std::move(NewDefs)); } InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs); return InsertedAnyIntrinsics; } bool AssignmentTrackingLowering::emitPromotedVarLocs( FunctionVarLocsBuilder *FnVarLocs) { bool InsertedAnyIntrinsics = false; // Go through every block, translating debug intrinsics for fully promoted // variables into FnVarLocs location defs. No analysis required for these. for (auto &BB : Fn) { for (auto &I : BB) { // Skip instructions other than dbg.values and dbg.assigns. auto *DVI = dyn_cast(&I); if (!DVI) continue; // Skip variables that haven't been promoted - we've dealt with those // already. if (VarsWithStackSlot->contains(getAggregate(DVI))) continue; // Wrapper to get a single value (or undef) from DVI. auto GetValue = [DVI]() -> Value * { // We can't handle variadic DIExpressions yet so treat those as // kill locations. if (DVI->isKillLocation() || DVI->getValue() == nullptr || DVI->hasArgList()) return PoisonValue::get(Type::getInt32Ty(DVI->getContext())); return DVI->getValue(); }; Instruction *InsertBefore = I.getNextNode(); assert(InsertBefore && "Unexpected: debug intrinsics after a terminator"); FnVarLocs->addVarLoc(InsertBefore, DebugVariable(DVI), DVI->getExpression(), DVI->getDebugLoc(), GetValue()); InsertedAnyIntrinsics = true; } } return InsertedAnyIntrinsics; } /// Remove redundant definitions within sequences of consecutive location defs. /// This is done using a backward scan to keep the last def describing a /// specific variable/fragment. /// /// This implements removeRedundantDbgInstrsUsingBackwardScan from /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with /// FunctionVarLocsBuilder instead of with intrinsics. static bool removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB, FunctionVarLocsBuilder &FnVarLocs) { bool Changed = false; SmallDenseSet VariableSet; // Scan over the entire block, not just over the instructions mapped by // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug // instructions. for (const Instruction &I : reverse(*BB)) { if (!isa(I)) { // Sequence of consecutive defs ended. Clear map for the next one. VariableSet.clear(); } // Get the location defs that start just before this instruction. const auto *Locs = FnVarLocs.getWedge(&I); if (!Locs) continue; NumWedgesScanned++; bool ChangedThisWedge = false; // The new pruned set of defs, reversed because we're scanning backwards. SmallVector NewDefsReversed; // Iterate over the existing defs in reverse. for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) { NumDefsScanned++; const DebugVariable &Key = FnVarLocs.getVariable(RIt->VariableID); bool FirstDefOfFragment = VariableSet.insert(Key).second; // If the same variable fragment is described more than once it is enough // to keep the last one (i.e. the first found in this reverse iteration). if (FirstDefOfFragment) { // New def found: keep it. NewDefsReversed.push_back(*RIt); } else { // Redundant def found: throw it away. Since the wedge of defs is being // rebuilt, doing nothing is the same as deleting an entry. ChangedThisWedge = true; NumDefsRemoved++; } continue; } // Un-reverse the defs and replace the wedge with the pruned version. if (ChangedThisWedge) { std::reverse(NewDefsReversed.begin(), NewDefsReversed.end()); FnVarLocs.setWedge(&I, std::move(NewDefsReversed)); NumWedgesChanged++; Changed = true; } } return Changed; } /// Remove redundant location defs using a forward scan. This can remove a /// location definition that is redundant due to indicating that a variable has /// the same value as is already being indicated by an earlier def. /// /// This implements removeRedundantDbgInstrsUsingForwardScan from /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with /// FunctionVarLocsBuilder instead of with intrinsics static bool removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB, FunctionVarLocsBuilder &FnVarLocs) { bool Changed = false; DenseMap> VariableMap; // Scan over the entire block, not just over the instructions mapped by // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug // instructions. for (const Instruction &I : *BB) { // Get the defs that come just before this instruction. const auto *Locs = FnVarLocs.getWedge(&I); if (!Locs) continue; NumWedgesScanned++; bool ChangedThisWedge = false; // The new pruned set of defs. SmallVector NewDefs; // Iterate over the existing defs. for (const VarLocInfo &Loc : *Locs) { NumDefsScanned++; DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(), std::nullopt, Loc.DL.getInlinedAt()); auto VMI = VariableMap.find(Key); // Update the map if we found a new value/expression describing the // variable, or if the variable wasn't mapped already. if (VMI == VariableMap.end() || VMI->second.first != Loc.V || VMI->second.second != Loc.Expr) { VariableMap[Key] = {Loc.V, Loc.Expr}; NewDefs.push_back(Loc); continue; } // Did not insert this Loc, which is the same as removing it. ChangedThisWedge = true; NumDefsRemoved++; } // Replace the existing wedge with the pruned version. if (ChangedThisWedge) { FnVarLocs.setWedge(&I, std::move(NewDefs)); NumWedgesChanged++; Changed = true; } } return Changed; } static bool removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB, FunctionVarLocsBuilder &FnVarLocs) { assert(BB->isEntryBlock()); // Do extra work to ensure that we remove semantically unimportant undefs. // // This is to work around the fact that SelectionDAG will hoist dbg.values // using argument values to the top of the entry block. That can move arg // dbg.values before undef and constant dbg.values which they previously // followed. The easiest thing to do is to just try to feed SelectionDAG // input it's happy with. // // Map of {Variable x: Fragments y} where the fragments y of variable x have // have at least one non-undef location defined already. Don't use directly, // instead call DefineBits and HasDefinedBits. SmallDenseMap> VarsWithDef; // Specify that V (a fragment of A) has a non-undef location. auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { VarsWithDef[A].insert(V.getFragmentOrDefault()); }; // Return true if a non-undef location has been defined for V (a fragment of // A). Doesn't imply that the location is currently non-undef, just that a // non-undef location has been seen previously. auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { auto FragsIt = VarsWithDef.find(A); if (FragsIt == VarsWithDef.end()) return false; return llvm::any_of(FragsIt->second, [V](auto Frag) { return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault()); }); }; bool Changed = false; DenseMap> VariableMap; // Scan over the entire block, not just over the instructions mapped by // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug // instructions. for (const Instruction &I : *BB) { // Get the defs that come just before this instruction. const auto *Locs = FnVarLocs.getWedge(&I); if (!Locs) continue; NumWedgesScanned++; bool ChangedThisWedge = false; // The new pruned set of defs. SmallVector NewDefs; // Iterate over the existing defs. for (const VarLocInfo &Loc : *Locs) { NumDefsScanned++; DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(), Loc.DL.getInlinedAt()}; DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID); // Remove undef entries that are encountered before any non-undef // intrinsics from the entry block. if (isa(Loc.V) && !HasDefinedBits(Aggr, Var)) { // Did not insert this Loc, which is the same as removing it. NumDefsRemoved++; ChangedThisWedge = true; continue; } DefineBits(Aggr, Var); NewDefs.push_back(Loc); } // Replace the existing wedge with the pruned version. if (ChangedThisWedge) { FnVarLocs.setWedge(&I, std::move(NewDefs)); NumWedgesChanged++; Changed = true; } } return Changed; } static bool removeRedundantDbgLocs(const BasicBlock *BB, FunctionVarLocsBuilder &FnVarLocs) { bool MadeChanges = false; MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs); if (BB->isEntryBlock()) MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs); MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs); if (MadeChanges) LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName() << "\n"); return MadeChanges; } static DenseSet findVarsWithStackSlot(Function &Fn) { DenseSet Result; for (auto &BB : Fn) { for (auto &I : BB) { // Any variable linked to an instruction is considered // interesting. Ideally we only need to check Allocas, however, a // DIAssignID might get dropped from an alloca but not stores. In that // case, we need to consider the variable interesting for NFC behaviour // with this change. TODO: Consider only looking at allocas. for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) { Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()}); } } } return Result; } static void analyzeFunction(Function &Fn, const DataLayout &Layout, FunctionVarLocsBuilder *FnVarLocs) { // The analysis will generate location definitions for all variables, but we // only need to perform a dataflow on the set of variables which have a stack // slot. Find those now. DenseSet VarsWithStackSlot = findVarsWithStackSlot(Fn); bool Changed = false; // Use a scope block to clean up AssignmentTrackingLowering before running // MemLocFragmentFill to reduce peak memory consumption. { AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot); Changed = Pass.run(FnVarLocs); } if (Changed) { MemLocFragmentFill Pass(Fn, &VarsWithStackSlot); Pass.run(FnVarLocs); // Remove redundant entries. As well as reducing memory consumption and // avoiding waiting cycles later by burning some now, this has another // important job. That is to work around some SelectionDAG quirks. See // removeRedundantDbgLocsUsingForwardScan comments for more info on that. for (auto &BB : Fn) removeRedundantDbgLocs(&BB, *FnVarLocs); } } bool AssignmentTrackingAnalysis::runOnFunction(Function &F) { if (!isAssignmentTrackingEnabled(*F.getParent())) return false; LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName() << "\n"); auto DL = std::make_unique(F.getParent()); // Clear previous results. Results->clear(); FunctionVarLocsBuilder Builder; analyzeFunction(F, *DL.get(), &Builder); // Save these results. Results->init(Builder); if (PrintResults && isFunctionInPrintList(F.getName())) Results->print(errs(), F); // Return false because this pass does not modify the function. return false; } AssignmentTrackingAnalysis::AssignmentTrackingAnalysis() : FunctionPass(ID), Results(std::make_unique()) {} char AssignmentTrackingAnalysis::ID = 0; INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE, "Assignment Tracking Analysis", false, true)