123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- #ifndef Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
- #define Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
- // Generate stack tracer for aarch64
- #if defined(__linux__)
- #include <sys/mman.h>
- #include <ucontext.h>
- #include <unistd.h>
- #endif
- #include <atomic>
- #include <cassert>
- #include <cstdint>
- #include <iostream>
- #include <limits>
- #include "y_absl/base/attributes.h"
- #include "y_absl/debugging/internal/address_is_readable.h"
- #include "y_absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems
- #include "y_absl/debugging/stacktrace.h"
- static const size_t kUnknownFrameSize = 0;
- // Stack end to use when we don't know the actual stack end
- // (effectively just the end of address space).
- constexpr uintptr_t kUnknownStackEnd =
- std::numeric_limits<size_t>::max() - sizeof(void *);
- #if defined(__linux__)
- // Returns the address of the VDSO __kernel_rt_sigreturn function, if present.
- static const unsigned char* GetKernelRtSigreturnAddress() {
- constexpr uintptr_t kImpossibleAddress = 1;
- Y_ABSL_CONST_INIT static std::atomic<uintptr_t> memoized{kImpossibleAddress};
- uintptr_t address = memoized.load(std::memory_order_relaxed);
- if (address != kImpossibleAddress) {
- return reinterpret_cast<const unsigned char*>(address);
- }
- address = reinterpret_cast<uintptr_t>(nullptr);
- #ifdef Y_ABSL_HAVE_VDSO_SUPPORT
- y_absl::debugging_internal::VDSOSupport vdso;
- if (vdso.IsPresent()) {
- y_absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info;
- auto lookup = [&](int type) {
- return vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", type,
- &symbol_info);
- };
- if ((!lookup(STT_FUNC) && !lookup(STT_NOTYPE)) ||
- symbol_info.address == nullptr) {
- // Unexpected: VDSO is present, yet the expected symbol is missing
- // or null.
- assert(false && "VDSO is present, but doesn't have expected symbol");
- } else {
- if (reinterpret_cast<uintptr_t>(symbol_info.address) !=
- kImpossibleAddress) {
- address = reinterpret_cast<uintptr_t>(symbol_info.address);
- } else {
- assert(false && "VDSO returned invalid address");
- }
- }
- }
- #endif
- memoized.store(address, std::memory_order_relaxed);
- return reinterpret_cast<const unsigned char*>(address);
- }
- #endif // __linux__
- // Compute the size of a stack frame in [low..high). We assume that
- // low < high. Return size of kUnknownFrameSize.
- template<typename T>
- static inline size_t ComputeStackFrameSize(const T* low,
- const T* high) {
- const char* low_char_ptr = reinterpret_cast<const char *>(low);
- const char* high_char_ptr = reinterpret_cast<const char *>(high);
- return low < high ? static_cast<size_t>(high_char_ptr - low_char_ptr)
- : kUnknownFrameSize;
- }
- // Given a pointer to a stack frame, locate and return the calling
- // stackframe, or return null if no stackframe can be found. Perform sanity
- // checks (the strictness of which is controlled by the boolean parameter
- // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
- template<bool STRICT_UNWINDING, bool WITH_CONTEXT>
- Y_ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
- Y_ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
- static void **NextStackFrame(void **old_frame_pointer, const void *uc,
- size_t stack_low, size_t stack_high) {
- void **new_frame_pointer = reinterpret_cast<void**>(*old_frame_pointer);
- bool check_frame_size = true;
- #if defined(__linux__)
- if (WITH_CONTEXT && uc != nullptr) {
- // Check to see if next frame's return address is __kernel_rt_sigreturn.
- if (old_frame_pointer[1] == GetKernelRtSigreturnAddress()) {
- const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
- // old_frame_pointer[0] is not suitable for unwinding, look at
- // ucontext to discover frame pointer before signal.
- void **const pre_signal_frame_pointer =
- reinterpret_cast<void **>(ucv->uc_mcontext.regs[29]);
- // The most recent signal always needs special handling to find the frame
- // pointer, but a nested signal does not. If pre_signal_frame_pointer is
- // earlier in the stack than the old_frame_pointer, then use it. If it is
- // later, then we have already unwound through it and it needs no special
- // handling.
- if (pre_signal_frame_pointer >= old_frame_pointer) {
- new_frame_pointer = pre_signal_frame_pointer;
- }
- // Check that alleged frame pointer is actually readable. This is to
- // prevent "double fault" in case we hit the first fault due to e.g.
- // stack corruption.
- if (!y_absl::debugging_internal::AddressIsReadable(
- new_frame_pointer))
- return nullptr;
- // Skip frame size check if we return from a signal. We may be using a
- // an alternate stack for signals.
- check_frame_size = false;
- }
- }
- #endif
- // The frame pointer should be 8-byte aligned.
- if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 7) != 0)
- return nullptr;
- // Check frame size. In strict mode, we assume frames to be under
- // 100,000 bytes. In non-strict mode, we relax the limit to 1MB.
- if (check_frame_size) {
- const size_t max_size = STRICT_UNWINDING ? 100000 : 1000000;
- const size_t frame_size =
- ComputeStackFrameSize(old_frame_pointer, new_frame_pointer);
- if (frame_size == kUnknownFrameSize)
- return nullptr;
- // A very large frame may mean corrupt memory or an erroneous frame
- // pointer. But also maybe just a plain-old large frame. Assume that if the
- // frame is within the known stack, then it is valid.
- if (frame_size > max_size) {
- if (stack_high < kUnknownStackEnd &&
- static_cast<size_t>(getpagesize()) < stack_low) {
- const uintptr_t new_fp_u =
- reinterpret_cast<uintptr_t>(new_frame_pointer);
- // Stack bounds are known.
- if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
- // new_frame_pointer is not within the known stack.
- return nullptr;
- }
- } else {
- // Stack bounds are unknown, prefer truncated stack to possible crash.
- return nullptr;
- }
- }
- }
- return new_frame_pointer;
- }
- template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
- Y_ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
- Y_ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
- static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
- const void *ucp, int *min_dropped_frames) {
- #ifdef __GNUC__
- void **frame_pointer = reinterpret_cast<void**>(__builtin_frame_address(0));
- #else
- # error reading stack point not yet supported on this platform.
- #endif
- skip_count++; // Skip the frame for this function.
- int n = 0;
- // Assume that the first page is not stack.
- size_t stack_low = static_cast<size_t>(getpagesize());
- size_t stack_high = kUnknownStackEnd;
- // The frame pointer points to low address of a frame. The first 64-bit
- // word of a frame points to the next frame up the call chain, which normally
- // is just after the high address of the current frame. The second word of
- // a frame contains return address of to the caller. To find a pc value
- // associated with the current frame, we need to go down a level in the call
- // chain. So we remember return the address of the last frame seen. This
- // does not work for the first stack frame, which belongs to UnwindImp() but
- // we skip the frame for UnwindImp() anyway.
- void* prev_return_address = nullptr;
- // The nth frame size is the difference between the nth frame pointer and the
- // the frame pointer below it in the call chain. There is no frame below the
- // leaf frame, but this function is the leaf anyway, and we skip it.
- void** prev_frame_pointer = nullptr;
- while (frame_pointer && n < max_depth) {
- if (skip_count > 0) {
- skip_count--;
- } else {
- result[n] = prev_return_address;
- if (IS_STACK_FRAMES) {
- sizes[n] = static_cast<int>(
- ComputeStackFrameSize(prev_frame_pointer, frame_pointer));
- }
- n++;
- }
- prev_return_address = frame_pointer[1];
- prev_frame_pointer = frame_pointer;
- // The y_absl::GetStackFrames routine is called when we are in some
- // informational context (the failure signal handler for example).
- // Use the non-strict unwinding rules to produce a stack trace
- // that is as complete as possible (even if it contains a few bogus
- // entries in some rare cases).
- frame_pointer = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
- frame_pointer, ucp, stack_low, stack_high);
- }
- if (min_dropped_frames != nullptr) {
- // Implementation detail: we clamp the max of frames we are willing to
- // count, so as not to spend too much time in the loop below.
- const int kMaxUnwind = 200;
- int num_dropped_frames = 0;
- for (int j = 0; frame_pointer != nullptr && j < kMaxUnwind; j++) {
- if (skip_count > 0) {
- skip_count--;
- } else {
- num_dropped_frames++;
- }
- frame_pointer = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
- frame_pointer, ucp, stack_low, stack_high);
- }
- *min_dropped_frames = num_dropped_frames;
- }
- return n;
- }
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- namespace debugging_internal {
- bool StackTraceWorksForTest() {
- return true;
- }
- } // namespace debugging_internal
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
- #endif // Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
|