#ifndef Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_ #define Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_ // Generate stack tracer for aarch64 #if defined(__linux__) #include #include #include #endif #include #include #include #include #include #include "y_absl/base/attributes.h" #include "y_absl/debugging/internal/address_is_readable.h" #include "y_absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems #include "y_absl/debugging/stacktrace.h" static const size_t kUnknownFrameSize = 0; // Stack end to use when we don't know the actual stack end // (effectively just the end of address space). constexpr uintptr_t kUnknownStackEnd = std::numeric_limits::max() - sizeof(void *); #if defined(__linux__) // Returns the address of the VDSO __kernel_rt_sigreturn function, if present. static const unsigned char* GetKernelRtSigreturnAddress() { constexpr uintptr_t kImpossibleAddress = 1; Y_ABSL_CONST_INIT static std::atomic memoized{kImpossibleAddress}; uintptr_t address = memoized.load(std::memory_order_relaxed); if (address != kImpossibleAddress) { return reinterpret_cast(address); } address = reinterpret_cast(nullptr); #ifdef Y_ABSL_HAVE_VDSO_SUPPORT y_absl::debugging_internal::VDSOSupport vdso; if (vdso.IsPresent()) { y_absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info; auto lookup = [&](int type) { return vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", type, &symbol_info); }; if ((!lookup(STT_FUNC) && !lookup(STT_NOTYPE)) || symbol_info.address == nullptr) { // Unexpected: VDSO is present, yet the expected symbol is missing // or null. assert(false && "VDSO is present, but doesn't have expected symbol"); } else { if (reinterpret_cast(symbol_info.address) != kImpossibleAddress) { address = reinterpret_cast(symbol_info.address); } else { assert(false && "VDSO returned invalid address"); } } } #endif memoized.store(address, std::memory_order_relaxed); return reinterpret_cast(address); } #endif // __linux__ // Compute the size of a stack frame in [low..high). We assume that // low < high. Return size of kUnknownFrameSize. template static inline size_t ComputeStackFrameSize(const T* low, const T* high) { const char* low_char_ptr = reinterpret_cast(low); const char* high_char_ptr = reinterpret_cast(high); return low < high ? static_cast(high_char_ptr - low_char_ptr) : kUnknownFrameSize; } // Given a pointer to a stack frame, locate and return the calling // stackframe, or return null if no stackframe can be found. Perform sanity // checks (the strictness of which is controlled by the boolean parameter // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. template Y_ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. Y_ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. static void **NextStackFrame(void **old_frame_pointer, const void *uc, size_t stack_low, size_t stack_high) { void **new_frame_pointer = reinterpret_cast(*old_frame_pointer); bool check_frame_size = true; #if defined(__linux__) if (WITH_CONTEXT && uc != nullptr) { // Check to see if next frame's return address is __kernel_rt_sigreturn. if (old_frame_pointer[1] == GetKernelRtSigreturnAddress()) { const ucontext_t *ucv = static_cast(uc); // old_frame_pointer[0] is not suitable for unwinding, look at // ucontext to discover frame pointer before signal. void **const pre_signal_frame_pointer = reinterpret_cast(ucv->uc_mcontext.regs[29]); // The most recent signal always needs special handling to find the frame // pointer, but a nested signal does not. If pre_signal_frame_pointer is // earlier in the stack than the old_frame_pointer, then use it. If it is // later, then we have already unwound through it and it needs no special // handling. if (pre_signal_frame_pointer >= old_frame_pointer) { new_frame_pointer = pre_signal_frame_pointer; } // Check that alleged frame pointer is actually readable. This is to // prevent "double fault" in case we hit the first fault due to e.g. // stack corruption. if (!y_absl::debugging_internal::AddressIsReadable( new_frame_pointer)) return nullptr; // Skip frame size check if we return from a signal. We may be using a // an alternate stack for signals. check_frame_size = false; } } #endif // The frame pointer should be 8-byte aligned. if ((reinterpret_cast(new_frame_pointer) & 7) != 0) return nullptr; // Check frame size. In strict mode, we assume frames to be under // 100,000 bytes. In non-strict mode, we relax the limit to 1MB. if (check_frame_size) { const size_t max_size = STRICT_UNWINDING ? 100000 : 1000000; const size_t frame_size = ComputeStackFrameSize(old_frame_pointer, new_frame_pointer); if (frame_size == kUnknownFrameSize) return nullptr; // A very large frame may mean corrupt memory or an erroneous frame // pointer. But also maybe just a plain-old large frame. Assume that if the // frame is within the known stack, then it is valid. if (frame_size > max_size) { if (stack_high < kUnknownStackEnd && static_cast(getpagesize()) < stack_low) { const uintptr_t new_fp_u = reinterpret_cast(new_frame_pointer); // Stack bounds are known. if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { // new_frame_pointer is not within the known stack. return nullptr; } } else { // Stack bounds are unknown, prefer truncated stack to possible crash. return nullptr; } } } return new_frame_pointer; } template Y_ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. Y_ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count, const void *ucp, int *min_dropped_frames) { #ifdef __GNUC__ void **frame_pointer = reinterpret_cast(__builtin_frame_address(0)); #else # error reading stack point not yet supported on this platform. #endif skip_count++; // Skip the frame for this function. int n = 0; // Assume that the first page is not stack. size_t stack_low = static_cast(getpagesize()); size_t stack_high = kUnknownStackEnd; // The frame pointer points to low address of a frame. The first 64-bit // word of a frame points to the next frame up the call chain, which normally // is just after the high address of the current frame. The second word of // a frame contains return address of to the caller. To find a pc value // associated with the current frame, we need to go down a level in the call // chain. So we remember return the address of the last frame seen. This // does not work for the first stack frame, which belongs to UnwindImp() but // we skip the frame for UnwindImp() anyway. void* prev_return_address = nullptr; // The nth frame size is the difference between the nth frame pointer and the // the frame pointer below it in the call chain. There is no frame below the // leaf frame, but this function is the leaf anyway, and we skip it. void** prev_frame_pointer = nullptr; while (frame_pointer && n < max_depth) { if (skip_count > 0) { skip_count--; } else { result[n] = prev_return_address; if (IS_STACK_FRAMES) { sizes[n] = static_cast( ComputeStackFrameSize(prev_frame_pointer, frame_pointer)); } n++; } prev_return_address = frame_pointer[1]; prev_frame_pointer = frame_pointer; // The y_absl::GetStackFrames routine is called when we are in some // informational context (the failure signal handler for example). // Use the non-strict unwinding rules to produce a stack trace // that is as complete as possible (even if it contains a few bogus // entries in some rare cases). frame_pointer = NextStackFrame( frame_pointer, ucp, stack_low, stack_high); } if (min_dropped_frames != nullptr) { // Implementation detail: we clamp the max of frames we are willing to // count, so as not to spend too much time in the loop below. const int kMaxUnwind = 200; int num_dropped_frames = 0; for (int j = 0; frame_pointer != nullptr && j < kMaxUnwind; j++) { if (skip_count > 0) { skip_count--; } else { num_dropped_frames++; } frame_pointer = NextStackFrame( frame_pointer, ucp, stack_low, stack_high); } *min_dropped_frames = num_dropped_frames; } return n; } namespace y_absl { Y_ABSL_NAMESPACE_BEGIN namespace debugging_internal { bool StackTraceWorksForTest() { return true; } } // namespace debugging_internal Y_ABSL_NAMESPACE_END } // namespace y_absl #endif // Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_