123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996 |
- import math
- import pprint
- from collections.abc import Collection
- from collections.abc import Sized
- from decimal import Decimal
- from numbers import Complex
- from types import TracebackType
- from typing import Any
- from typing import Callable
- from typing import cast
- from typing import ContextManager
- from typing import List
- from typing import Mapping
- from typing import Optional
- from typing import Pattern
- from typing import Sequence
- from typing import Tuple
- from typing import Type
- from typing import TYPE_CHECKING
- from typing import TypeVar
- from typing import Union
- if TYPE_CHECKING:
- from numpy import ndarray
- import _pytest._code
- from _pytest.compat import final
- from _pytest.compat import STRING_TYPES
- from _pytest.compat import overload
- from _pytest.outcomes import fail
- def _non_numeric_type_error(value, at: Optional[str]) -> TypeError:
- at_str = f" at {at}" if at else ""
- return TypeError(
- "cannot make approximate comparisons to non-numeric values: {!r} {}".format(
- value, at_str
- )
- )
- def _compare_approx(
- full_object: object,
- message_data: Sequence[Tuple[str, str, str]],
- number_of_elements: int,
- different_ids: Sequence[object],
- max_abs_diff: float,
- max_rel_diff: float,
- ) -> List[str]:
- message_list = list(message_data)
- message_list.insert(0, ("Index", "Obtained", "Expected"))
- max_sizes = [0, 0, 0]
- for index, obtained, expected in message_list:
- max_sizes[0] = max(max_sizes[0], len(index))
- max_sizes[1] = max(max_sizes[1], len(obtained))
- max_sizes[2] = max(max_sizes[2], len(expected))
- explanation = [
- f"comparison failed. Mismatched elements: {len(different_ids)} / {number_of_elements}:",
- f"Max absolute difference: {max_abs_diff}",
- f"Max relative difference: {max_rel_diff}",
- ] + [
- f"{indexes:<{max_sizes[0]}} | {obtained:<{max_sizes[1]}} | {expected:<{max_sizes[2]}}"
- for indexes, obtained, expected in message_list
- ]
- return explanation
- # builtin pytest.approx helper
- class ApproxBase:
- """Provide shared utilities for making approximate comparisons between
- numbers or sequences of numbers."""
- # Tell numpy to use our `__eq__` operator instead of its.
- __array_ufunc__ = None
- __array_priority__ = 100
- def __init__(self, expected, rel=None, abs=None, nan_ok: bool = False) -> None:
- __tracebackhide__ = True
- self.expected = expected
- self.abs = abs
- self.rel = rel
- self.nan_ok = nan_ok
- self._check_type()
- def __repr__(self) -> str:
- raise NotImplementedError
- def _repr_compare(self, other_side: Any) -> List[str]:
- return [
- "comparison failed",
- f"Obtained: {other_side}",
- f"Expected: {self}",
- ]
- def __eq__(self, actual) -> bool:
- return all(
- a == self._approx_scalar(x) for a, x in self._yield_comparisons(actual)
- )
- def __bool__(self):
- __tracebackhide__ = True
- raise AssertionError(
- "approx() is not supported in a boolean context.\nDid you mean: `assert a == approx(b)`?"
- )
- # Ignore type because of https://github.com/python/mypy/issues/4266.
- __hash__ = None # type: ignore
- def __ne__(self, actual) -> bool:
- return not (actual == self)
- def _approx_scalar(self, x) -> "ApproxScalar":
- if isinstance(x, Decimal):
- return ApproxDecimal(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok)
- return ApproxScalar(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok)
- def _yield_comparisons(self, actual):
- """Yield all the pairs of numbers to be compared.
- This is used to implement the `__eq__` method.
- """
- raise NotImplementedError
- def _check_type(self) -> None:
- """Raise a TypeError if the expected value is not a valid type."""
- # This is only a concern if the expected value is a sequence. In every
- # other case, the approx() function ensures that the expected value has
- # a numeric type. For this reason, the default is to do nothing. The
- # classes that deal with sequences should reimplement this method to
- # raise if there are any non-numeric elements in the sequence.
- def _recursive_sequence_map(f, x):
- """Recursively map a function over a sequence of arbitrary depth"""
- if isinstance(x, (list, tuple)):
- seq_type = type(x)
- return seq_type(_recursive_sequence_map(f, xi) for xi in x)
- else:
- return f(x)
- class ApproxNumpy(ApproxBase):
- """Perform approximate comparisons where the expected value is numpy array."""
- def __repr__(self) -> str:
- list_scalars = _recursive_sequence_map(
- self._approx_scalar, self.expected.tolist()
- )
- return f"approx({list_scalars!r})"
- def _repr_compare(self, other_side: "ndarray") -> List[str]:
- import itertools
- import math
- def get_value_from_nested_list(
- nested_list: List[Any], nd_index: Tuple[Any, ...]
- ) -> Any:
- """
- Helper function to get the value out of a nested list, given an n-dimensional index.
- This mimics numpy's indexing, but for raw nested python lists.
- """
- value: Any = nested_list
- for i in nd_index:
- value = value[i]
- return value
- np_array_shape = self.expected.shape
- approx_side_as_seq = _recursive_sequence_map(
- self._approx_scalar, self.expected.tolist()
- )
- if np_array_shape != other_side.shape:
- return [
- "Impossible to compare arrays with different shapes.",
- f"Shapes: {np_array_shape} and {other_side.shape}",
- ]
- number_of_elements = self.expected.size
- max_abs_diff = -math.inf
- max_rel_diff = -math.inf
- different_ids = []
- for index in itertools.product(*(range(i) for i in np_array_shape)):
- approx_value = get_value_from_nested_list(approx_side_as_seq, index)
- other_value = get_value_from_nested_list(other_side, index)
- if approx_value != other_value:
- abs_diff = abs(approx_value.expected - other_value)
- max_abs_diff = max(max_abs_diff, abs_diff)
- if other_value == 0.0:
- max_rel_diff = math.inf
- else:
- max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value))
- different_ids.append(index)
- message_data = [
- (
- str(index),
- str(get_value_from_nested_list(other_side, index)),
- str(get_value_from_nested_list(approx_side_as_seq, index)),
- )
- for index in different_ids
- ]
- return _compare_approx(
- self.expected,
- message_data,
- number_of_elements,
- different_ids,
- max_abs_diff,
- max_rel_diff,
- )
- def __eq__(self, actual) -> bool:
- import numpy as np
- # self.expected is supposed to always be an array here.
- if not np.isscalar(actual):
- try:
- actual = np.asarray(actual)
- except Exception as e:
- raise TypeError(f"cannot compare '{actual}' to numpy.ndarray") from e
- if not np.isscalar(actual) and actual.shape != self.expected.shape:
- return False
- return super().__eq__(actual)
- def _yield_comparisons(self, actual):
- import numpy as np
- # `actual` can either be a numpy array or a scalar, it is treated in
- # `__eq__` before being passed to `ApproxBase.__eq__`, which is the
- # only method that calls this one.
- if np.isscalar(actual):
- for i in np.ndindex(self.expected.shape):
- yield actual, self.expected[i].item()
- else:
- for i in np.ndindex(self.expected.shape):
- yield actual[i].item(), self.expected[i].item()
- class ApproxMapping(ApproxBase):
- """Perform approximate comparisons where the expected value is a mapping
- with numeric values (the keys can be anything)."""
- def __repr__(self) -> str:
- return "approx({!r})".format(
- {k: self._approx_scalar(v) for k, v in self.expected.items()}
- )
- def _repr_compare(self, other_side: Mapping[object, float]) -> List[str]:
- import math
- approx_side_as_map = {
- k: self._approx_scalar(v) for k, v in self.expected.items()
- }
- number_of_elements = len(approx_side_as_map)
- max_abs_diff = -math.inf
- max_rel_diff = -math.inf
- different_ids = []
- for (approx_key, approx_value), other_value in zip(
- approx_side_as_map.items(), other_side.values()
- ):
- if approx_value != other_value:
- if approx_value.expected is not None and other_value is not None:
- max_abs_diff = max(
- max_abs_diff, abs(approx_value.expected - other_value)
- )
- if approx_value.expected == 0.0:
- max_rel_diff = math.inf
- else:
- max_rel_diff = max(
- max_rel_diff,
- abs(
- (approx_value.expected - other_value)
- / approx_value.expected
- ),
- )
- different_ids.append(approx_key)
- message_data = [
- (str(key), str(other_side[key]), str(approx_side_as_map[key]))
- for key in different_ids
- ]
- return _compare_approx(
- self.expected,
- message_data,
- number_of_elements,
- different_ids,
- max_abs_diff,
- max_rel_diff,
- )
- def __eq__(self, actual) -> bool:
- try:
- if set(actual.keys()) != set(self.expected.keys()):
- return False
- except AttributeError:
- return False
- return super().__eq__(actual)
- def _yield_comparisons(self, actual):
- for k in self.expected.keys():
- yield actual[k], self.expected[k]
- def _check_type(self) -> None:
- __tracebackhide__ = True
- for key, value in self.expected.items():
- if isinstance(value, type(self.expected)):
- msg = "pytest.approx() does not support nested dictionaries: key={!r} value={!r}\n full mapping={}"
- raise TypeError(msg.format(key, value, pprint.pformat(self.expected)))
- class ApproxSequenceLike(ApproxBase):
- """Perform approximate comparisons where the expected value is a sequence of numbers."""
- def __repr__(self) -> str:
- seq_type = type(self.expected)
- if seq_type not in (tuple, list):
- seq_type = list
- return "approx({!r})".format(
- seq_type(self._approx_scalar(x) for x in self.expected)
- )
- def _repr_compare(self, other_side: Sequence[float]) -> List[str]:
- import math
- if len(self.expected) != len(other_side):
- return [
- "Impossible to compare lists with different sizes.",
- f"Lengths: {len(self.expected)} and {len(other_side)}",
- ]
- approx_side_as_map = _recursive_sequence_map(self._approx_scalar, self.expected)
- number_of_elements = len(approx_side_as_map)
- max_abs_diff = -math.inf
- max_rel_diff = -math.inf
- different_ids = []
- for i, (approx_value, other_value) in enumerate(
- zip(approx_side_as_map, other_side)
- ):
- if approx_value != other_value:
- abs_diff = abs(approx_value.expected - other_value)
- max_abs_diff = max(max_abs_diff, abs_diff)
- if other_value == 0.0:
- max_rel_diff = math.inf
- else:
- max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value))
- different_ids.append(i)
- message_data = [
- (str(i), str(other_side[i]), str(approx_side_as_map[i]))
- for i in different_ids
- ]
- return _compare_approx(
- self.expected,
- message_data,
- number_of_elements,
- different_ids,
- max_abs_diff,
- max_rel_diff,
- )
- def __eq__(self, actual) -> bool:
- try:
- if len(actual) != len(self.expected):
- return False
- except TypeError:
- return False
- return super().__eq__(actual)
- def _yield_comparisons(self, actual):
- return zip(actual, self.expected)
- def _check_type(self) -> None:
- __tracebackhide__ = True
- for index, x in enumerate(self.expected):
- if isinstance(x, type(self.expected)):
- msg = "pytest.approx() does not support nested data structures: {!r} at index {}\n full sequence: {}"
- raise TypeError(msg.format(x, index, pprint.pformat(self.expected)))
- class ApproxScalar(ApproxBase):
- """Perform approximate comparisons where the expected value is a single number."""
- # Using Real should be better than this Union, but not possible yet:
- # https://github.com/python/typeshed/pull/3108
- DEFAULT_ABSOLUTE_TOLERANCE: Union[float, Decimal] = 1e-12
- DEFAULT_RELATIVE_TOLERANCE: Union[float, Decimal] = 1e-6
- def __repr__(self) -> str:
- """Return a string communicating both the expected value and the
- tolerance for the comparison being made.
- For example, ``1.0 ± 1e-6``, ``(3+4j) ± 5e-6 ∠ ±180°``.
- """
- # Don't show a tolerance for values that aren't compared using
- # tolerances, i.e. non-numerics and infinities. Need to call abs to
- # handle complex numbers, e.g. (inf + 1j).
- if (not isinstance(self.expected, (Complex, Decimal))) or math.isinf(
- abs(self.expected) # type: ignore[arg-type]
- ):
- return str(self.expected)
- # If a sensible tolerance can't be calculated, self.tolerance will
- # raise a ValueError. In this case, display '???'.
- try:
- vetted_tolerance = f"{self.tolerance:.1e}"
- if (
- isinstance(self.expected, Complex)
- and self.expected.imag
- and not math.isinf(self.tolerance)
- ):
- vetted_tolerance += " ∠ ±180°"
- except ValueError:
- vetted_tolerance = "???"
- return f"{self.expected} ± {vetted_tolerance}"
- def __eq__(self, actual) -> bool:
- """Return whether the given value is equal to the expected value
- within the pre-specified tolerance."""
- asarray = _as_numpy_array(actual)
- if asarray is not None:
- # Call ``__eq__()`` manually to prevent infinite-recursion with
- # numpy<1.13. See #3748.
- return all(self.__eq__(a) for a in asarray.flat)
- # Short-circuit exact equality.
- if actual == self.expected:
- return True
- # If either type is non-numeric, fall back to strict equality.
- # NB: we need Complex, rather than just Number, to ensure that __abs__,
- # __sub__, and __float__ are defined.
- if not (
- isinstance(self.expected, (Complex, Decimal))
- and isinstance(actual, (Complex, Decimal))
- ):
- return False
- # Allow the user to control whether NaNs are considered equal to each
- # other or not. The abs() calls are for compatibility with complex
- # numbers.
- if math.isnan(abs(self.expected)): # type: ignore[arg-type]
- return self.nan_ok and math.isnan(abs(actual)) # type: ignore[arg-type]
- # Infinity shouldn't be approximately equal to anything but itself, but
- # if there's a relative tolerance, it will be infinite and infinity
- # will seem approximately equal to everything. The equal-to-itself
- # case would have been short circuited above, so here we can just
- # return false if the expected value is infinite. The abs() call is
- # for compatibility with complex numbers.
- if math.isinf(abs(self.expected)): # type: ignore[arg-type]
- return False
- # Return true if the two numbers are within the tolerance.
- result: bool = abs(self.expected - actual) <= self.tolerance
- return result
- # Ignore type because of https://github.com/python/mypy/issues/4266.
- __hash__ = None # type: ignore
- @property
- def tolerance(self):
- """Return the tolerance for the comparison.
- This could be either an absolute tolerance or a relative tolerance,
- depending on what the user specified or which would be larger.
- """
- def set_default(x, default):
- return x if x is not None else default
- # Figure out what the absolute tolerance should be. ``self.abs`` is
- # either None or a value specified by the user.
- absolute_tolerance = set_default(self.abs, self.DEFAULT_ABSOLUTE_TOLERANCE)
- if absolute_tolerance < 0:
- raise ValueError(
- f"absolute tolerance can't be negative: {absolute_tolerance}"
- )
- if math.isnan(absolute_tolerance):
- raise ValueError("absolute tolerance can't be NaN.")
- # If the user specified an absolute tolerance but not a relative one,
- # just return the absolute tolerance.
- if self.rel is None:
- if self.abs is not None:
- return absolute_tolerance
- # Figure out what the relative tolerance should be. ``self.rel`` is
- # either None or a value specified by the user. This is done after
- # we've made sure the user didn't ask for an absolute tolerance only,
- # because we don't want to raise errors about the relative tolerance if
- # we aren't even going to use it.
- relative_tolerance = set_default(
- self.rel, self.DEFAULT_RELATIVE_TOLERANCE
- ) * abs(self.expected)
- if relative_tolerance < 0:
- raise ValueError(
- f"relative tolerance can't be negative: {relative_tolerance}"
- )
- if math.isnan(relative_tolerance):
- raise ValueError("relative tolerance can't be NaN.")
- # Return the larger of the relative and absolute tolerances.
- return max(relative_tolerance, absolute_tolerance)
- class ApproxDecimal(ApproxScalar):
- """Perform approximate comparisons where the expected value is a Decimal."""
- DEFAULT_ABSOLUTE_TOLERANCE = Decimal("1e-12")
- DEFAULT_RELATIVE_TOLERANCE = Decimal("1e-6")
- def approx(expected, rel=None, abs=None, nan_ok: bool = False) -> ApproxBase:
- """Assert that two numbers (or two ordered sequences of numbers) are equal to each other
- within some tolerance.
- Due to the :doc:`python:tutorial/floatingpoint`, numbers that we
- would intuitively expect to be equal are not always so::
- >>> 0.1 + 0.2 == 0.3
- False
- This problem is commonly encountered when writing tests, e.g. when making
- sure that floating-point values are what you expect them to be. One way to
- deal with this problem is to assert that two floating-point numbers are
- equal to within some appropriate tolerance::
- >>> abs((0.1 + 0.2) - 0.3) < 1e-6
- True
- However, comparisons like this are tedious to write and difficult to
- understand. Furthermore, absolute comparisons like the one above are
- usually discouraged because there's no tolerance that works well for all
- situations. ``1e-6`` is good for numbers around ``1``, but too small for
- very big numbers and too big for very small ones. It's better to express
- the tolerance as a fraction of the expected value, but relative comparisons
- like that are even more difficult to write correctly and concisely.
- The ``approx`` class performs floating-point comparisons using a syntax
- that's as intuitive as possible::
- >>> from pytest import approx
- >>> 0.1 + 0.2 == approx(0.3)
- True
- The same syntax also works for ordered sequences of numbers::
- >>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
- True
- ``numpy`` arrays::
- >>> import numpy as np # doctest: +SKIP
- >>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6])) # doctest: +SKIP
- True
- And for a ``numpy`` array against a scalar::
- >>> import numpy as np # doctest: +SKIP
- >>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3) # doctest: +SKIP
- True
- Only ordered sequences are supported, because ``approx`` needs
- to infer the relative position of the sequences without ambiguity. This means
- ``sets`` and other unordered sequences are not supported.
- Finally, dictionary *values* can also be compared::
- >>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
- True
- The comparison will be true if both mappings have the same keys and their
- respective values match the expected tolerances.
- **Tolerances**
- By default, ``approx`` considers numbers within a relative tolerance of
- ``1e-6`` (i.e. one part in a million) of its expected value to be equal.
- This treatment would lead to surprising results if the expected value was
- ``0.0``, because nothing but ``0.0`` itself is relatively close to ``0.0``.
- To handle this case less surprisingly, ``approx`` also considers numbers
- within an absolute tolerance of ``1e-12`` of its expected value to be
- equal. Infinity and NaN are special cases. Infinity is only considered
- equal to itself, regardless of the relative tolerance. NaN is not
- considered equal to anything by default, but you can make it be equal to
- itself by setting the ``nan_ok`` argument to True. (This is meant to
- facilitate comparing arrays that use NaN to mean "no data".)
- Both the relative and absolute tolerances can be changed by passing
- arguments to the ``approx`` constructor::
- >>> 1.0001 == approx(1)
- False
- >>> 1.0001 == approx(1, rel=1e-3)
- True
- >>> 1.0001 == approx(1, abs=1e-3)
- True
- If you specify ``abs`` but not ``rel``, the comparison will not consider
- the relative tolerance at all. In other words, two numbers that are within
- the default relative tolerance of ``1e-6`` will still be considered unequal
- if they exceed the specified absolute tolerance. If you specify both
- ``abs`` and ``rel``, the numbers will be considered equal if either
- tolerance is met::
- >>> 1 + 1e-8 == approx(1)
- True
- >>> 1 + 1e-8 == approx(1, abs=1e-12)
- False
- >>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
- True
- You can also use ``approx`` to compare nonnumeric types, or dicts and
- sequences containing nonnumeric types, in which case it falls back to
- strict equality. This can be useful for comparing dicts and sequences that
- can contain optional values::
- >>> {"required": 1.0000005, "optional": None} == approx({"required": 1, "optional": None})
- True
- >>> [None, 1.0000005] == approx([None,1])
- True
- >>> ["foo", 1.0000005] == approx([None,1])
- False
- If you're thinking about using ``approx``, then you might want to know how
- it compares to other good ways of comparing floating-point numbers. All of
- these algorithms are based on relative and absolute tolerances and should
- agree for the most part, but they do have meaningful differences:
- - ``math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0)``: True if the relative
- tolerance is met w.r.t. either ``a`` or ``b`` or if the absolute
- tolerance is met. Because the relative tolerance is calculated w.r.t.
- both ``a`` and ``b``, this test is symmetric (i.e. neither ``a`` nor
- ``b`` is a "reference value"). You have to specify an absolute tolerance
- if you want to compare to ``0.0`` because there is no tolerance by
- default. More information: :py:func:`math.isclose`.
- - ``numpy.isclose(a, b, rtol=1e-5, atol=1e-8)``: True if the difference
- between ``a`` and ``b`` is less that the sum of the relative tolerance
- w.r.t. ``b`` and the absolute tolerance. Because the relative tolerance
- is only calculated w.r.t. ``b``, this test is asymmetric and you can
- think of ``b`` as the reference value. Support for comparing sequences
- is provided by :py:func:`numpy.allclose`. More information:
- :std:doc:`numpy:reference/generated/numpy.isclose`.
- - ``unittest.TestCase.assertAlmostEqual(a, b)``: True if ``a`` and ``b``
- are within an absolute tolerance of ``1e-7``. No relative tolerance is
- considered , so this function is not appropriate for very large or very
- small numbers. Also, it's only available in subclasses of ``unittest.TestCase``
- and it's ugly because it doesn't follow PEP8. More information:
- :py:meth:`unittest.TestCase.assertAlmostEqual`.
- - ``a == pytest.approx(b, rel=1e-6, abs=1e-12)``: True if the relative
- tolerance is met w.r.t. ``b`` or if the absolute tolerance is met.
- Because the relative tolerance is only calculated w.r.t. ``b``, this test
- is asymmetric and you can think of ``b`` as the reference value. In the
- special case that you explicitly specify an absolute tolerance but not a
- relative tolerance, only the absolute tolerance is considered.
- .. note::
- ``approx`` can handle numpy arrays, but we recommend the
- specialised test helpers in :std:doc:`numpy:reference/routines.testing`
- if you need support for comparisons, NaNs, or ULP-based tolerances.
- To match strings using regex, you can use
- `Matches <https://github.com/asottile/re-assert#re_assertmatchespattern-str-args-kwargs>`_
- from the
- `re_assert package <https://github.com/asottile/re-assert>`_.
- .. warning::
- .. versionchanged:: 3.2
- In order to avoid inconsistent behavior, :py:exc:`TypeError` is
- raised for ``>``, ``>=``, ``<`` and ``<=`` comparisons.
- The example below illustrates the problem::
- assert approx(0.1) > 0.1 + 1e-10 # calls approx(0.1).__gt__(0.1 + 1e-10)
- assert 0.1 + 1e-10 > approx(0.1) # calls approx(0.1).__lt__(0.1 + 1e-10)
- In the second example one expects ``approx(0.1).__le__(0.1 + 1e-10)``
- to be called. But instead, ``approx(0.1).__lt__(0.1 + 1e-10)`` is used to
- comparison. This is because the call hierarchy of rich comparisons
- follows a fixed behavior. More information: :py:meth:`object.__ge__`
- .. versionchanged:: 3.7.1
- ``approx`` raises ``TypeError`` when it encounters a dict value or
- sequence element of nonnumeric type.
- .. versionchanged:: 6.1.0
- ``approx`` falls back to strict equality for nonnumeric types instead
- of raising ``TypeError``.
- """
- # Delegate the comparison to a class that knows how to deal with the type
- # of the expected value (e.g. int, float, list, dict, numpy.array, etc).
- #
- # The primary responsibility of these classes is to implement ``__eq__()``
- # and ``__repr__()``. The former is used to actually check if some
- # "actual" value is equivalent to the given expected value within the
- # allowed tolerance. The latter is used to show the user the expected
- # value and tolerance, in the case that a test failed.
- #
- # The actual logic for making approximate comparisons can be found in
- # ApproxScalar, which is used to compare individual numbers. All of the
- # other Approx classes eventually delegate to this class. The ApproxBase
- # class provides some convenient methods and overloads, but isn't really
- # essential.
- __tracebackhide__ = True
- if isinstance(expected, Decimal):
- cls: Type[ApproxBase] = ApproxDecimal
- elif isinstance(expected, Mapping):
- cls = ApproxMapping
- elif _is_numpy_array(expected):
- expected = _as_numpy_array(expected)
- cls = ApproxNumpy
- elif (
- hasattr(expected, "__getitem__")
- and isinstance(expected, Sized)
- # Type ignored because the error is wrong -- not unreachable.
- and not isinstance(expected, STRING_TYPES) # type: ignore[unreachable]
- ):
- cls = ApproxSequenceLike
- elif (
- isinstance(expected, Collection)
- # Type ignored because the error is wrong -- not unreachable.
- and not isinstance(expected, STRING_TYPES) # type: ignore[unreachable]
- ):
- msg = f"pytest.approx() only supports ordered sequences, but got: {repr(expected)}"
- raise TypeError(msg)
- else:
- cls = ApproxScalar
- return cls(expected, rel, abs, nan_ok)
- def _is_numpy_array(obj: object) -> bool:
- """
- Return true if the given object is implicitly convertible to ndarray,
- and numpy is already imported.
- """
- return _as_numpy_array(obj) is not None
- def _as_numpy_array(obj: object) -> Optional["ndarray"]:
- """
- Return an ndarray if the given object is implicitly convertible to ndarray,
- and numpy is already imported, otherwise None.
- """
- import sys
- np: Any = sys.modules.get("numpy")
- if np is not None:
- # avoid infinite recursion on numpy scalars, which have __array__
- if np.isscalar(obj):
- return None
- elif isinstance(obj, np.ndarray):
- return obj
- elif hasattr(obj, "__array__") or hasattr("obj", "__array_interface__"):
- return np.asarray(obj)
- return None
- # builtin pytest.raises helper
- E = TypeVar("E", bound=BaseException)
- @overload
- def raises(
- expected_exception: Union[Type[E], Tuple[Type[E], ...]],
- *,
- match: Optional[Union[str, Pattern[str]]] = ...,
- ) -> "RaisesContext[E]":
- ...
- @overload
- def raises( # noqa: F811
- expected_exception: Union[Type[E], Tuple[Type[E], ...]],
- func: Callable[..., Any],
- *args: Any,
- **kwargs: Any,
- ) -> _pytest._code.ExceptionInfo[E]:
- ...
- def raises( # noqa: F811
- expected_exception: Union[Type[E], Tuple[Type[E], ...]], *args: Any, **kwargs: Any
- ) -> Union["RaisesContext[E]", _pytest._code.ExceptionInfo[E]]:
- r"""Assert that a code block/function call raises an exception.
- :param typing.Type[E] | typing.Tuple[typing.Type[E], ...] expected_exception:
- The expected exception type, or a tuple if one of multiple possible
- exception types are expected.
- :kwparam str | typing.Pattern[str] | None match:
- If specified, a string containing a regular expression,
- or a regular expression object, that is tested against the string
- representation of the exception using :func:`re.search`.
- To match a literal string that may contain :ref:`special characters
- <re-syntax>`, the pattern can first be escaped with :func:`re.escape`.
- (This is only used when :py:func:`pytest.raises` is used as a context manager,
- and passed through to the function otherwise.
- When using :py:func:`pytest.raises` as a function, you can use:
- ``pytest.raises(Exc, func, match="passed on").match("my pattern")``.)
- .. currentmodule:: _pytest._code
- Use ``pytest.raises`` as a context manager, which will capture the exception of the given
- type::
- >>> import pytest
- >>> with pytest.raises(ZeroDivisionError):
- ... 1/0
- If the code block does not raise the expected exception (``ZeroDivisionError`` in the example
- above), or no exception at all, the check will fail instead.
- You can also use the keyword argument ``match`` to assert that the
- exception matches a text or regex::
- >>> with pytest.raises(ValueError, match='must be 0 or None'):
- ... raise ValueError("value must be 0 or None")
- >>> with pytest.raises(ValueError, match=r'must be \d+$'):
- ... raise ValueError("value must be 42")
- The context manager produces an :class:`ExceptionInfo` object which can be used to inspect the
- details of the captured exception::
- >>> with pytest.raises(ValueError) as exc_info:
- ... raise ValueError("value must be 42")
- >>> assert exc_info.type is ValueError
- >>> assert exc_info.value.args[0] == "value must be 42"
- .. note::
- When using ``pytest.raises`` as a context manager, it's worthwhile to
- note that normal context manager rules apply and that the exception
- raised *must* be the final line in the scope of the context manager.
- Lines of code after that, within the scope of the context manager will
- not be executed. For example::
- >>> value = 15
- >>> with pytest.raises(ValueError) as exc_info:
- ... if value > 10:
- ... raise ValueError("value must be <= 10")
- ... assert exc_info.type is ValueError # this will not execute
- Instead, the following approach must be taken (note the difference in
- scope)::
- >>> with pytest.raises(ValueError) as exc_info:
- ... if value > 10:
- ... raise ValueError("value must be <= 10")
- ...
- >>> assert exc_info.type is ValueError
- **Using with** ``pytest.mark.parametrize``
- When using :ref:`pytest.mark.parametrize ref`
- it is possible to parametrize tests such that
- some runs raise an exception and others do not.
- See :ref:`parametrizing_conditional_raising` for an example.
- **Legacy form**
- It is possible to specify a callable by passing a to-be-called lambda::
- >>> raises(ZeroDivisionError, lambda: 1/0)
- <ExceptionInfo ...>
- or you can specify an arbitrary callable with arguments::
- >>> def f(x): return 1/x
- ...
- >>> raises(ZeroDivisionError, f, 0)
- <ExceptionInfo ...>
- >>> raises(ZeroDivisionError, f, x=0)
- <ExceptionInfo ...>
- The form above is fully supported but discouraged for new code because the
- context manager form is regarded as more readable and less error-prone.
- .. note::
- Similar to caught exception objects in Python, explicitly clearing
- local references to returned ``ExceptionInfo`` objects can
- help the Python interpreter speed up its garbage collection.
- Clearing those references breaks a reference cycle
- (``ExceptionInfo`` --> caught exception --> frame stack raising
- the exception --> current frame stack --> local variables -->
- ``ExceptionInfo``) which makes Python keep all objects referenced
- from that cycle (including all local variables in the current
- frame) alive until the next cyclic garbage collection run.
- More detailed information can be found in the official Python
- documentation for :ref:`the try statement <python:try>`.
- """
- __tracebackhide__ = True
- if not expected_exception:
- raise ValueError(
- f"Expected an exception type or a tuple of exception types, but got `{expected_exception!r}`. "
- f"Raising exceptions is already understood as failing the test, so you don't need "
- f"any special code to say 'this should never raise an exception'."
- )
- if isinstance(expected_exception, type):
- expected_exceptions: Tuple[Type[E], ...] = (expected_exception,)
- else:
- expected_exceptions = expected_exception
- for exc in expected_exceptions:
- if not isinstance(exc, type) or not issubclass(exc, BaseException):
- msg = "expected exception must be a BaseException type, not {}" # type: ignore[unreachable]
- not_a = exc.__name__ if isinstance(exc, type) else type(exc).__name__
- raise TypeError(msg.format(not_a))
- message = f"DID NOT RAISE {expected_exception}"
- if not args:
- match: Optional[Union[str, Pattern[str]]] = kwargs.pop("match", None)
- if kwargs:
- msg = "Unexpected keyword arguments passed to pytest.raises: "
- msg += ", ".join(sorted(kwargs))
- msg += "\nUse context-manager form instead?"
- raise TypeError(msg)
- return RaisesContext(expected_exception, message, match)
- else:
- func = args[0]
- if not callable(func):
- raise TypeError(f"{func!r} object (type: {type(func)}) must be callable")
- try:
- func(*args[1:], **kwargs)
- except expected_exception as e:
- return _pytest._code.ExceptionInfo.from_exception(e)
- fail(message)
- # This doesn't work with mypy for now. Use fail.Exception instead.
- raises.Exception = fail.Exception # type: ignore
- @final
- class RaisesContext(ContextManager[_pytest._code.ExceptionInfo[E]]):
- def __init__(
- self,
- expected_exception: Union[Type[E], Tuple[Type[E], ...]],
- message: str,
- match_expr: Optional[Union[str, Pattern[str]]] = None,
- ) -> None:
- self.expected_exception = expected_exception
- self.message = message
- self.match_expr = match_expr
- self.excinfo: Optional[_pytest._code.ExceptionInfo[E]] = None
- def __enter__(self) -> _pytest._code.ExceptionInfo[E]:
- self.excinfo = _pytest._code.ExceptionInfo.for_later()
- return self.excinfo
- def __exit__(
- self,
- exc_type: Optional[Type[BaseException]],
- exc_val: Optional[BaseException],
- exc_tb: Optional[TracebackType],
- ) -> bool:
- __tracebackhide__ = True
- if exc_type is None:
- fail(self.message)
- assert self.excinfo is not None
- if not issubclass(exc_type, self.expected_exception):
- return False
- # Cast to narrow the exception type now that it's verified.
- exc_info = cast(Tuple[Type[E], E, TracebackType], (exc_type, exc_val, exc_tb))
- self.excinfo.fill_unfilled(exc_info)
- if self.match_expr is not None:
- self.excinfo.match(self.match_expr)
- return True
|