123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- #
- # The Python Imaging Library.
- # $Id$
- #
- # global image statistics
- #
- # History:
- # 1996-04-05 fl Created
- # 1997-05-21 fl Added mask; added rms, var, stddev attributes
- # 1997-08-05 fl Added median
- # 1998-07-05 hk Fixed integer overflow error
- #
- # Notes:
- # This class shows how to implement delayed evaluation of attributes.
- # To get a certain value, simply access the corresponding attribute.
- # The __getattr__ dispatcher takes care of the rest.
- #
- # Copyright (c) Secret Labs AB 1997.
- # Copyright (c) Fredrik Lundh 1996-97.
- #
- # See the README file for information on usage and redistribution.
- #
- import functools
- import math
- import operator
- class Stat(object):
- def __init__(self, image_or_list, mask=None):
- try:
- if mask:
- self.h = image_or_list.histogram(mask)
- else:
- self.h = image_or_list.histogram()
- except AttributeError:
- self.h = image_or_list # assume it to be a histogram list
- if not isinstance(self.h, list):
- raise TypeError("first argument must be image or list")
- self.bands = list(range(len(self.h) // 256))
- def __getattr__(self, id):
- """Calculate missing attribute"""
- if id[:4] == "_get":
- raise AttributeError(id)
- # calculate missing attribute
- v = getattr(self, "_get" + id)()
- setattr(self, id, v)
- return v
- def _getextrema(self):
- """Get min/max values for each band in the image"""
- def minmax(histogram):
- n = 255
- x = 0
- for i in range(256):
- if histogram[i]:
- n = min(n, i)
- x = max(x, i)
- return n, x # returns (255, 0) if there's no data in the histogram
- v = []
- for i in range(0, len(self.h), 256):
- v.append(minmax(self.h[i:]))
- return v
- def _getcount(self):
- """Get total number of pixels in each layer"""
- v = []
- for i in range(0, len(self.h), 256):
- v.append(functools.reduce(operator.add, self.h[i : i + 256]))
- return v
- def _getsum(self):
- """Get sum of all pixels in each layer"""
- v = []
- for i in range(0, len(self.h), 256):
- layerSum = 0.0
- for j in range(256):
- layerSum += j * self.h[i + j]
- v.append(layerSum)
- return v
- def _getsum2(self):
- """Get squared sum of all pixels in each layer"""
- v = []
- for i in range(0, len(self.h), 256):
- sum2 = 0.0
- for j in range(256):
- sum2 += (j ** 2) * float(self.h[i + j])
- v.append(sum2)
- return v
- def _getmean(self):
- """Get average pixel level for each layer"""
- v = []
- for i in self.bands:
- v.append(self.sum[i] / self.count[i])
- return v
- def _getmedian(self):
- """Get median pixel level for each layer"""
- v = []
- for i in self.bands:
- s = 0
- half = self.count[i] // 2
- b = i * 256
- for j in range(256):
- s = s + self.h[b + j]
- if s > half:
- break
- v.append(j)
- return v
- def _getrms(self):
- """Get RMS for each layer"""
- v = []
- for i in self.bands:
- v.append(math.sqrt(self.sum2[i] / self.count[i]))
- return v
- def _getvar(self):
- """Get variance for each layer"""
- v = []
- for i in self.bands:
- n = self.count[i]
- v.append((self.sum2[i] - (self.sum[i] ** 2.0) / n) / n)
- return v
- def _getstddev(self):
- """Get standard deviation for each layer"""
- v = []
- for i in self.bands:
- v.append(math.sqrt(self.var[i]))
- return v
- Global = Stat # compatibility
|