123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509 |
- //===- DependenceGraphBuilder.cpp ------------------------------------------==//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- // This file implements common steps of the build algorithm for construction
- // of dependence graphs such as DDG and PDG.
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/DependenceGraphBuilder.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/EnumeratedArray.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/SCCIterator.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/DDG.h"
- using namespace llvm;
- #define DEBUG_TYPE "dgb"
- STATISTIC(TotalGraphs, "Number of dependence graphs created.");
- STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
- STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
- STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
- STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created.");
- STATISTIC(TotalConfusedEdges,
- "Number of confused memory dependencies between two nodes.");
- STATISTIC(TotalEdgeReversals,
- "Number of times the source and sink of dependence was reversed to "
- "expose cycles in the graph.");
- using InstructionListType = SmallVector<Instruction *, 2>;
- //===--------------------------------------------------------------------===//
- // AbstractDependenceGraphBuilder implementation
- //===--------------------------------------------------------------------===//
- template <class G>
- void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() {
- // The BBList is expected to be in program order.
- size_t NextOrdinal = 1;
- for (auto *BB : BBList)
- for (auto &I : *BB)
- InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++));
- }
- template <class G>
- void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
- ++TotalGraphs;
- assert(IMap.empty() && "Expected empty instruction map at start");
- for (BasicBlock *BB : BBList)
- for (Instruction &I : *BB) {
- auto &NewNode = createFineGrainedNode(I);
- IMap.insert(std::make_pair(&I, &NewNode));
- NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I)));
- ++TotalFineGrainedNodes;
- }
- }
- template <class G>
- void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
- // Create a root node that connects to every connected component of the graph.
- // This is done to allow graph iterators to visit all the disjoint components
- // of the graph, in a single walk.
- //
- // This algorithm works by going through each node of the graph and for each
- // node N, do a DFS starting from N. A rooted edge is established between the
- // root node and N (if N is not yet visited). All the nodes reachable from N
- // are marked as visited and are skipped in the DFS of subsequent nodes.
- //
- // Note: This algorithm tries to limit the number of edges out of the root
- // node to some extent, but there may be redundant edges created depending on
- // the iteration order. For example for a graph {A -> B}, an edge from the
- // root node is added to both nodes if B is visited before A. While it does
- // not result in minimal number of edges, this approach saves compile-time
- // while keeping the number of edges in check.
- auto &RootNode = createRootNode();
- df_iterator_default_set<const NodeType *, 4> Visited;
- for (auto *N : Graph) {
- if (*N == RootNode)
- continue;
- for (auto I : depth_first_ext(N, Visited))
- if (I == N)
- createRootedEdge(RootNode, *N);
- }
- }
- template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() {
- if (!shouldCreatePiBlocks())
- return;
- LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n");
- // The overall algorithm is as follows:
- // 1. Identify SCCs and for each SCC create a pi-block node containing all
- // the nodes in that SCC.
- // 2. Identify incoming edges incident to the nodes inside of the SCC and
- // reconnect them to the pi-block node.
- // 3. Identify outgoing edges from the nodes inside of the SCC to nodes
- // outside of it and reconnect them so that the edges are coming out of the
- // SCC node instead.
- // Adding nodes as we iterate through the SCCs cause the SCC
- // iterators to get invalidated. To prevent this invalidation, we first
- // collect a list of nodes that are part of an SCC, and then iterate over
- // those lists to create the pi-block nodes. Each element of the list is a
- // list of nodes in an SCC. Note: trivial SCCs containing a single node are
- // ignored.
- SmallVector<NodeListType, 4> ListOfSCCs;
- for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) {
- if (SCC.size() > 1)
- ListOfSCCs.emplace_back(SCC.begin(), SCC.end());
- }
- for (NodeListType &NL : ListOfSCCs) {
- LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size()
- << " nodes in it.\n");
- // SCC iterator may put the nodes in an order that's different from the
- // program order. To preserve original program order, we sort the list of
- // nodes based on ordinal numbers computed earlier.
- llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) {
- return getOrdinal(*LHS) < getOrdinal(*RHS);
- });
- NodeType &PiNode = createPiBlock(NL);
- ++TotalPiBlockNodes;
- // Build a set to speed up the lookup for edges whose targets
- // are inside the SCC.
- SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end());
- // We have the set of nodes in the SCC. We go through the set of nodes
- // that are outside of the SCC and look for edges that cross the two sets.
- for (NodeType *N : Graph) {
- // Skip the SCC node and all the nodes inside of it.
- if (*N == PiNode || NodesInSCC.count(N))
- continue;
- enum Direction {
- Incoming, // Incoming edges to the SCC
- Outgoing, // Edges going ot of the SCC
- DirectionCount // To make the enum usable as an array index.
- };
- // Use these flags to help us avoid creating redundant edges. If there
- // are more than one edges from an outside node to inside nodes, we only
- // keep one edge from that node to the pi-block node. Similarly, if
- // there are more than one edges from inside nodes to an outside node,
- // we only keep one edge from the pi-block node to the outside node.
- // There is a flag defined for each direction (incoming vs outgoing) and
- // for each type of edge supported, using a two-dimensional boolean
- // array.
- using EdgeKind = typename EdgeType::EdgeKind;
- EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{false,
- false};
- auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst,
- const EdgeKind K) {
- switch (K) {
- case EdgeKind::RegisterDefUse:
- createDefUseEdge(Src, Dst);
- break;
- case EdgeKind::MemoryDependence:
- createMemoryEdge(Src, Dst);
- break;
- case EdgeKind::Rooted:
- createRootedEdge(Src, Dst);
- break;
- default:
- llvm_unreachable("Unsupported type of edge.");
- }
- };
- auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New,
- const Direction Dir) {
- if (!Src->hasEdgeTo(*Dst))
- return;
- LLVM_DEBUG(
- dbgs() << "reconnecting("
- << (Dir == Direction::Incoming ? "incoming)" : "outgoing)")
- << ":\nSrc:" << *Src << "\nDst:" << *Dst << "\nNew:" << *New
- << "\n");
- assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) &&
- "Invalid direction.");
- SmallVector<EdgeType *, 10> EL;
- Src->findEdgesTo(*Dst, EL);
- for (EdgeType *OldEdge : EL) {
- EdgeKind Kind = OldEdge->getKind();
- if (!EdgeAlreadyCreated[Dir][Kind]) {
- if (Dir == Direction::Incoming) {
- createEdgeOfKind(*Src, *New, Kind);
- LLVM_DEBUG(dbgs() << "created edge from Src to New.\n");
- } else if (Dir == Direction::Outgoing) {
- createEdgeOfKind(*New, *Dst, Kind);
- LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n");
- }
- EdgeAlreadyCreated[Dir][Kind] = true;
- }
- Src->removeEdge(*OldEdge);
- destroyEdge(*OldEdge);
- LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n");
- }
- };
- for (NodeType *SCCNode : NL) {
- // Process incoming edges incident to the pi-block node.
- reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming);
- // Process edges that are coming out of the pi-block node.
- reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing);
- }
- }
- }
- // Ordinal maps are no longer needed.
- InstOrdinalMap.clear();
- NodeOrdinalMap.clear();
- LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n");
- }
- template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
- for (NodeType *N : Graph) {
- InstructionListType SrcIList;
- N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);
- // Use a set to mark the targets that we link to N, so we don't add
- // duplicate def-use edges when more than one instruction in a target node
- // use results of instructions that are contained in N.
- SmallPtrSet<NodeType *, 4> VisitedTargets;
- for (Instruction *II : SrcIList) {
- for (User *U : II->users()) {
- Instruction *UI = dyn_cast<Instruction>(U);
- if (!UI)
- continue;
- NodeType *DstNode = nullptr;
- if (IMap.find(UI) != IMap.end())
- DstNode = IMap.find(UI)->second;
- // In the case of loops, the scope of the subgraph is all the
- // basic blocks (and instructions within them) belonging to the loop. We
- // simply ignore all the edges coming from (or going into) instructions
- // or basic blocks outside of this range.
- if (!DstNode) {
- LLVM_DEBUG(
- dbgs()
- << "skipped def-use edge since the sink" << *UI
- << " is outside the range of instructions being considered.\n");
- continue;
- }
- // Self dependencies are ignored because they are redundant and
- // uninteresting.
- if (DstNode == N) {
- LLVM_DEBUG(dbgs()
- << "skipped def-use edge since the sink and the source ("
- << N << ") are the same.\n");
- continue;
- }
- if (VisitedTargets.insert(DstNode).second) {
- createDefUseEdge(*N, *DstNode);
- ++TotalDefUseEdges;
- }
- }
- }
- }
- }
- template <class G>
- void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
- using DGIterator = typename G::iterator;
- auto isMemoryAccess = [](const Instruction *I) {
- return I->mayReadOrWriteMemory();
- };
- for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
- InstructionListType SrcIList;
- (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
- if (SrcIList.empty())
- continue;
- for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
- if (**SrcIt == **DstIt)
- continue;
- InstructionListType DstIList;
- (*DstIt)->collectInstructions(isMemoryAccess, DstIList);
- if (DstIList.empty())
- continue;
- bool ForwardEdgeCreated = false;
- bool BackwardEdgeCreated = false;
- for (Instruction *ISrc : SrcIList) {
- for (Instruction *IDst : DstIList) {
- auto D = DI.depends(ISrc, IDst, true);
- if (!D)
- continue;
- // If we have a dependence with its left-most non-'=' direction
- // being '>' we need to reverse the direction of the edge, because
- // the source of the dependence cannot occur after the sink. For
- // confused dependencies, we will create edges in both directions to
- // represent the possibility of a cycle.
- auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
- if (!ForwardEdgeCreated) {
- createMemoryEdge(Src, Dst);
- ++TotalMemoryEdges;
- }
- if (!BackwardEdgeCreated) {
- createMemoryEdge(Dst, Src);
- ++TotalMemoryEdges;
- }
- ForwardEdgeCreated = BackwardEdgeCreated = true;
- ++TotalConfusedEdges;
- };
- auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
- if (!ForwardEdgeCreated) {
- createMemoryEdge(Src, Dst);
- ++TotalMemoryEdges;
- }
- ForwardEdgeCreated = true;
- };
- auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
- if (!BackwardEdgeCreated) {
- createMemoryEdge(Dst, Src);
- ++TotalMemoryEdges;
- }
- BackwardEdgeCreated = true;
- };
- if (D->isConfused())
- createConfusedEdges(**SrcIt, **DstIt);
- else if (D->isOrdered() && !D->isLoopIndependent()) {
- bool ReversedEdge = false;
- for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
- if (D->getDirection(Level) == Dependence::DVEntry::EQ)
- continue;
- else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
- createBackwardEdge(**SrcIt, **DstIt);
- ReversedEdge = true;
- ++TotalEdgeReversals;
- break;
- } else if (D->getDirection(Level) == Dependence::DVEntry::LT)
- break;
- else {
- createConfusedEdges(**SrcIt, **DstIt);
- break;
- }
- }
- if (!ReversedEdge)
- createForwardEdge(**SrcIt, **DstIt);
- } else
- createForwardEdge(**SrcIt, **DstIt);
- // Avoid creating duplicate edges.
- if (ForwardEdgeCreated && BackwardEdgeCreated)
- break;
- }
- // If we've created edges in both directions, there is no more
- // unique edge that we can create between these two nodes, so we
- // can exit early.
- if (ForwardEdgeCreated && BackwardEdgeCreated)
- break;
- }
- }
- }
- }
- template <class G> void AbstractDependenceGraphBuilder<G>::simplify() {
- if (!shouldSimplify())
- return;
- LLVM_DEBUG(dbgs() << "==== Start of Graph Simplification ===\n");
- // This algorithm works by first collecting a set of candidate nodes that have
- // an out-degree of one (in terms of def-use edges), and then ignoring those
- // whose targets have an in-degree more than one. Each node in the resulting
- // set can then be merged with its corresponding target and put back into the
- // worklist until no further merge candidates are available.
- SmallPtrSet<NodeType *, 32> CandidateSourceNodes;
- // A mapping between nodes and their in-degree. To save space, this map
- // only contains nodes that are targets of nodes in the CandidateSourceNodes.
- DenseMap<NodeType *, unsigned> TargetInDegreeMap;
- for (NodeType *N : Graph) {
- if (N->getEdges().size() != 1)
- continue;
- EdgeType &Edge = N->back();
- if (!Edge.isDefUse())
- continue;
- CandidateSourceNodes.insert(N);
- // Insert an element into the in-degree map and initialize to zero. The
- // count will get updated in the next step.
- TargetInDegreeMap.insert({&Edge.getTargetNode(), 0});
- }
- LLVM_DEBUG({
- dbgs() << "Size of candidate src node list:" << CandidateSourceNodes.size()
- << "\nNode with single outgoing def-use edge:\n";
- for (NodeType *N : CandidateSourceNodes) {
- dbgs() << N << "\n";
- }
- });
- for (NodeType *N : Graph) {
- for (EdgeType *E : *N) {
- NodeType *Tgt = &E->getTargetNode();
- auto TgtIT = TargetInDegreeMap.find(Tgt);
- if (TgtIT != TargetInDegreeMap.end())
- ++(TgtIT->second);
- }
- }
- LLVM_DEBUG({
- dbgs() << "Size of target in-degree map:" << TargetInDegreeMap.size()
- << "\nContent of in-degree map:\n";
- for (auto &I : TargetInDegreeMap) {
- dbgs() << I.first << " --> " << I.second << "\n";
- }
- });
- SmallVector<NodeType *, 32> Worklist(CandidateSourceNodes.begin(),
- CandidateSourceNodes.end());
- while (!Worklist.empty()) {
- NodeType &Src = *Worklist.pop_back_val();
- // As nodes get merged, we need to skip any node that has been removed from
- // the candidate set (see below).
- if (!CandidateSourceNodes.erase(&Src))
- continue;
- assert(Src.getEdges().size() == 1 &&
- "Expected a single edge from the candidate src node.");
- NodeType &Tgt = Src.back().getTargetNode();
- assert(TargetInDegreeMap.find(&Tgt) != TargetInDegreeMap.end() &&
- "Expected target to be in the in-degree map.");
- if (TargetInDegreeMap[&Tgt] != 1)
- continue;
- if (!areNodesMergeable(Src, Tgt))
- continue;
- // Do not merge if there is also an edge from target to src (immediate
- // cycle).
- if (Tgt.hasEdgeTo(Src))
- continue;
- LLVM_DEBUG(dbgs() << "Merging:" << Src << "\nWith:" << Tgt << "\n");
- mergeNodes(Src, Tgt);
- // If the target node is in the candidate set itself, we need to put the
- // src node back into the worklist again so it gives the target a chance
- // to get merged into it. For example if we have:
- // {(a)->(b), (b)->(c), (c)->(d), ...} and the worklist is initially {b, a},
- // then after merging (a) and (b) together, we need to put (a,b) back in
- // the worklist so that (c) can get merged in as well resulting in
- // {(a,b,c) -> d}
- // We also need to remove the old target (b), from the worklist. We first
- // remove it from the candidate set here, and skip any item from the
- // worklist that is not in the set.
- if (CandidateSourceNodes.erase(&Tgt)) {
- Worklist.push_back(&Src);
- CandidateSourceNodes.insert(&Src);
- LLVM_DEBUG(dbgs() << "Putting " << &Src << " back in the worklist.\n");
- }
- }
- LLVM_DEBUG(dbgs() << "=== End of Graph Simplification ===\n");
- }
- template <class G>
- void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() {
- // If we don't create pi-blocks, then we may not have a DAG.
- if (!shouldCreatePiBlocks())
- return;
- SmallVector<NodeType *, 64> NodesInPO;
- using NodeKind = typename NodeType::NodeKind;
- for (NodeType *N : post_order(&Graph)) {
- if (N->getKind() == NodeKind::PiBlock) {
- // Put members of the pi-block right after the pi-block itself, for
- // convenience.
- const NodeListType &PiBlockMembers = getNodesInPiBlock(*N);
- llvm::append_range(NodesInPO, PiBlockMembers);
- }
- NodesInPO.push_back(N);
- }
- size_t OldSize = Graph.Nodes.size();
- Graph.Nodes.clear();
- append_range(Graph.Nodes, reverse(NodesInPO));
- if (Graph.Nodes.size() != OldSize)
- assert(false &&
- "Expected the number of nodes to stay the same after the sort");
- }
- template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
- template class llvm::DependenceGraphInfo<DDGNode>;
|