//===- DependenceGraphBuilder.cpp ------------------------------------------==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This file implements common steps of the build algorithm for construction // of dependence graphs such as DDG and PDG. //===----------------------------------------------------------------------===// #include "llvm/Analysis/DependenceGraphBuilder.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/EnumeratedArray.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DDG.h" using namespace llvm; #define DEBUG_TYPE "dgb" STATISTIC(TotalGraphs, "Number of dependence graphs created."); STATISTIC(TotalDefUseEdges, "Number of def-use edges created."); STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created."); STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created."); STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created."); STATISTIC(TotalConfusedEdges, "Number of confused memory dependencies between two nodes."); STATISTIC(TotalEdgeReversals, "Number of times the source and sink of dependence was reversed to " "expose cycles in the graph."); using InstructionListType = SmallVector; //===--------------------------------------------------------------------===// // AbstractDependenceGraphBuilder implementation //===--------------------------------------------------------------------===// template void AbstractDependenceGraphBuilder::computeInstructionOrdinals() { // The BBList is expected to be in program order. size_t NextOrdinal = 1; for (auto *BB : BBList) for (auto &I : *BB) InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++)); } template void AbstractDependenceGraphBuilder::createFineGrainedNodes() { ++TotalGraphs; assert(IMap.empty() && "Expected empty instruction map at start"); for (BasicBlock *BB : BBList) for (Instruction &I : *BB) { auto &NewNode = createFineGrainedNode(I); IMap.insert(std::make_pair(&I, &NewNode)); NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I))); ++TotalFineGrainedNodes; } } template void AbstractDependenceGraphBuilder::createAndConnectRootNode() { // Create a root node that connects to every connected component of the graph. // This is done to allow graph iterators to visit all the disjoint components // of the graph, in a single walk. // // This algorithm works by going through each node of the graph and for each // node N, do a DFS starting from N. A rooted edge is established between the // root node and N (if N is not yet visited). All the nodes reachable from N // are marked as visited and are skipped in the DFS of subsequent nodes. // // Note: This algorithm tries to limit the number of edges out of the root // node to some extent, but there may be redundant edges created depending on // the iteration order. For example for a graph {A -> B}, an edge from the // root node is added to both nodes if B is visited before A. While it does // not result in minimal number of edges, this approach saves compile-time // while keeping the number of edges in check. auto &RootNode = createRootNode(); df_iterator_default_set Visited; for (auto *N : Graph) { if (*N == RootNode) continue; for (auto I : depth_first_ext(N, Visited)) if (I == N) createRootedEdge(RootNode, *N); } } template void AbstractDependenceGraphBuilder::createPiBlocks() { if (!shouldCreatePiBlocks()) return; LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n"); // The overall algorithm is as follows: // 1. Identify SCCs and for each SCC create a pi-block node containing all // the nodes in that SCC. // 2. Identify incoming edges incident to the nodes inside of the SCC and // reconnect them to the pi-block node. // 3. Identify outgoing edges from the nodes inside of the SCC to nodes // outside of it and reconnect them so that the edges are coming out of the // SCC node instead. // Adding nodes as we iterate through the SCCs cause the SCC // iterators to get invalidated. To prevent this invalidation, we first // collect a list of nodes that are part of an SCC, and then iterate over // those lists to create the pi-block nodes. Each element of the list is a // list of nodes in an SCC. Note: trivial SCCs containing a single node are // ignored. SmallVector ListOfSCCs; for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) { if (SCC.size() > 1) ListOfSCCs.emplace_back(SCC.begin(), SCC.end()); } for (NodeListType &NL : ListOfSCCs) { LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size() << " nodes in it.\n"); // SCC iterator may put the nodes in an order that's different from the // program order. To preserve original program order, we sort the list of // nodes based on ordinal numbers computed earlier. llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) { return getOrdinal(*LHS) < getOrdinal(*RHS); }); NodeType &PiNode = createPiBlock(NL); ++TotalPiBlockNodes; // Build a set to speed up the lookup for edges whose targets // are inside the SCC. SmallPtrSet NodesInSCC(NL.begin(), NL.end()); // We have the set of nodes in the SCC. We go through the set of nodes // that are outside of the SCC and look for edges that cross the two sets. for (NodeType *N : Graph) { // Skip the SCC node and all the nodes inside of it. if (*N == PiNode || NodesInSCC.count(N)) continue; enum Direction { Incoming, // Incoming edges to the SCC Outgoing, // Edges going ot of the SCC DirectionCount // To make the enum usable as an array index. }; // Use these flags to help us avoid creating redundant edges. If there // are more than one edges from an outside node to inside nodes, we only // keep one edge from that node to the pi-block node. Similarly, if // there are more than one edges from inside nodes to an outside node, // we only keep one edge from the pi-block node to the outside node. // There is a flag defined for each direction (incoming vs outgoing) and // for each type of edge supported, using a two-dimensional boolean // array. using EdgeKind = typename EdgeType::EdgeKind; EnumeratedArray EdgeAlreadyCreated[DirectionCount]{false, false}; auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst, const EdgeKind K) { switch (K) { case EdgeKind::RegisterDefUse: createDefUseEdge(Src, Dst); break; case EdgeKind::MemoryDependence: createMemoryEdge(Src, Dst); break; case EdgeKind::Rooted: createRootedEdge(Src, Dst); break; default: llvm_unreachable("Unsupported type of edge."); } }; auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New, const Direction Dir) { if (!Src->hasEdgeTo(*Dst)) return; LLVM_DEBUG( dbgs() << "reconnecting(" << (Dir == Direction::Incoming ? "incoming)" : "outgoing)") << ":\nSrc:" << *Src << "\nDst:" << *Dst << "\nNew:" << *New << "\n"); assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) && "Invalid direction."); SmallVector EL; Src->findEdgesTo(*Dst, EL); for (EdgeType *OldEdge : EL) { EdgeKind Kind = OldEdge->getKind(); if (!EdgeAlreadyCreated[Dir][Kind]) { if (Dir == Direction::Incoming) { createEdgeOfKind(*Src, *New, Kind); LLVM_DEBUG(dbgs() << "created edge from Src to New.\n"); } else if (Dir == Direction::Outgoing) { createEdgeOfKind(*New, *Dst, Kind); LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n"); } EdgeAlreadyCreated[Dir][Kind] = true; } Src->removeEdge(*OldEdge); destroyEdge(*OldEdge); LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n"); } }; for (NodeType *SCCNode : NL) { // Process incoming edges incident to the pi-block node. reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming); // Process edges that are coming out of the pi-block node. reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing); } } } // Ordinal maps are no longer needed. InstOrdinalMap.clear(); NodeOrdinalMap.clear(); LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n"); } template void AbstractDependenceGraphBuilder::createDefUseEdges() { for (NodeType *N : Graph) { InstructionListType SrcIList; N->collectInstructions([](const Instruction *I) { return true; }, SrcIList); // Use a set to mark the targets that we link to N, so we don't add // duplicate def-use edges when more than one instruction in a target node // use results of instructions that are contained in N. SmallPtrSet VisitedTargets; for (Instruction *II : SrcIList) { for (User *U : II->users()) { Instruction *UI = dyn_cast(U); if (!UI) continue; NodeType *DstNode = nullptr; if (IMap.find(UI) != IMap.end()) DstNode = IMap.find(UI)->second; // In the case of loops, the scope of the subgraph is all the // basic blocks (and instructions within them) belonging to the loop. We // simply ignore all the edges coming from (or going into) instructions // or basic blocks outside of this range. if (!DstNode) { LLVM_DEBUG( dbgs() << "skipped def-use edge since the sink" << *UI << " is outside the range of instructions being considered.\n"); continue; } // Self dependencies are ignored because they are redundant and // uninteresting. if (DstNode == N) { LLVM_DEBUG(dbgs() << "skipped def-use edge since the sink and the source (" << N << ") are the same.\n"); continue; } if (VisitedTargets.insert(DstNode).second) { createDefUseEdge(*N, *DstNode); ++TotalDefUseEdges; } } } } } template void AbstractDependenceGraphBuilder::createMemoryDependencyEdges() { using DGIterator = typename G::iterator; auto isMemoryAccess = [](const Instruction *I) { return I->mayReadOrWriteMemory(); }; for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) { InstructionListType SrcIList; (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList); if (SrcIList.empty()) continue; for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) { if (**SrcIt == **DstIt) continue; InstructionListType DstIList; (*DstIt)->collectInstructions(isMemoryAccess, DstIList); if (DstIList.empty()) continue; bool ForwardEdgeCreated = false; bool BackwardEdgeCreated = false; for (Instruction *ISrc : SrcIList) { for (Instruction *IDst : DstIList) { auto D = DI.depends(ISrc, IDst, true); if (!D) continue; // If we have a dependence with its left-most non-'=' direction // being '>' we need to reverse the direction of the edge, because // the source of the dependence cannot occur after the sink. For // confused dependencies, we will create edges in both directions to // represent the possibility of a cycle. auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) { if (!ForwardEdgeCreated) { createMemoryEdge(Src, Dst); ++TotalMemoryEdges; } if (!BackwardEdgeCreated) { createMemoryEdge(Dst, Src); ++TotalMemoryEdges; } ForwardEdgeCreated = BackwardEdgeCreated = true; ++TotalConfusedEdges; }; auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) { if (!ForwardEdgeCreated) { createMemoryEdge(Src, Dst); ++TotalMemoryEdges; } ForwardEdgeCreated = true; }; auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) { if (!BackwardEdgeCreated) { createMemoryEdge(Dst, Src); ++TotalMemoryEdges; } BackwardEdgeCreated = true; }; if (D->isConfused()) createConfusedEdges(**SrcIt, **DstIt); else if (D->isOrdered() && !D->isLoopIndependent()) { bool ReversedEdge = false; for (unsigned Level = 1; Level <= D->getLevels(); ++Level) { if (D->getDirection(Level) == Dependence::DVEntry::EQ) continue; else if (D->getDirection(Level) == Dependence::DVEntry::GT) { createBackwardEdge(**SrcIt, **DstIt); ReversedEdge = true; ++TotalEdgeReversals; break; } else if (D->getDirection(Level) == Dependence::DVEntry::LT) break; else { createConfusedEdges(**SrcIt, **DstIt); break; } } if (!ReversedEdge) createForwardEdge(**SrcIt, **DstIt); } else createForwardEdge(**SrcIt, **DstIt); // Avoid creating duplicate edges. if (ForwardEdgeCreated && BackwardEdgeCreated) break; } // If we've created edges in both directions, there is no more // unique edge that we can create between these two nodes, so we // can exit early. if (ForwardEdgeCreated && BackwardEdgeCreated) break; } } } } template void AbstractDependenceGraphBuilder::simplify() { if (!shouldSimplify()) return; LLVM_DEBUG(dbgs() << "==== Start of Graph Simplification ===\n"); // This algorithm works by first collecting a set of candidate nodes that have // an out-degree of one (in terms of def-use edges), and then ignoring those // whose targets have an in-degree more than one. Each node in the resulting // set can then be merged with its corresponding target and put back into the // worklist until no further merge candidates are available. SmallPtrSet CandidateSourceNodes; // A mapping between nodes and their in-degree. To save space, this map // only contains nodes that are targets of nodes in the CandidateSourceNodes. DenseMap TargetInDegreeMap; for (NodeType *N : Graph) { if (N->getEdges().size() != 1) continue; EdgeType &Edge = N->back(); if (!Edge.isDefUse()) continue; CandidateSourceNodes.insert(N); // Insert an element into the in-degree map and initialize to zero. The // count will get updated in the next step. TargetInDegreeMap.insert({&Edge.getTargetNode(), 0}); } LLVM_DEBUG({ dbgs() << "Size of candidate src node list:" << CandidateSourceNodes.size() << "\nNode with single outgoing def-use edge:\n"; for (NodeType *N : CandidateSourceNodes) { dbgs() << N << "\n"; } }); for (NodeType *N : Graph) { for (EdgeType *E : *N) { NodeType *Tgt = &E->getTargetNode(); auto TgtIT = TargetInDegreeMap.find(Tgt); if (TgtIT != TargetInDegreeMap.end()) ++(TgtIT->second); } } LLVM_DEBUG({ dbgs() << "Size of target in-degree map:" << TargetInDegreeMap.size() << "\nContent of in-degree map:\n"; for (auto &I : TargetInDegreeMap) { dbgs() << I.first << " --> " << I.second << "\n"; } }); SmallVector Worklist(CandidateSourceNodes.begin(), CandidateSourceNodes.end()); while (!Worklist.empty()) { NodeType &Src = *Worklist.pop_back_val(); // As nodes get merged, we need to skip any node that has been removed from // the candidate set (see below). if (!CandidateSourceNodes.erase(&Src)) continue; assert(Src.getEdges().size() == 1 && "Expected a single edge from the candidate src node."); NodeType &Tgt = Src.back().getTargetNode(); assert(TargetInDegreeMap.find(&Tgt) != TargetInDegreeMap.end() && "Expected target to be in the in-degree map."); if (TargetInDegreeMap[&Tgt] != 1) continue; if (!areNodesMergeable(Src, Tgt)) continue; // Do not merge if there is also an edge from target to src (immediate // cycle). if (Tgt.hasEdgeTo(Src)) continue; LLVM_DEBUG(dbgs() << "Merging:" << Src << "\nWith:" << Tgt << "\n"); mergeNodes(Src, Tgt); // If the target node is in the candidate set itself, we need to put the // src node back into the worklist again so it gives the target a chance // to get merged into it. For example if we have: // {(a)->(b), (b)->(c), (c)->(d), ...} and the worklist is initially {b, a}, // then after merging (a) and (b) together, we need to put (a,b) back in // the worklist so that (c) can get merged in as well resulting in // {(a,b,c) -> d} // We also need to remove the old target (b), from the worklist. We first // remove it from the candidate set here, and skip any item from the // worklist that is not in the set. if (CandidateSourceNodes.erase(&Tgt)) { Worklist.push_back(&Src); CandidateSourceNodes.insert(&Src); LLVM_DEBUG(dbgs() << "Putting " << &Src << " back in the worklist.\n"); } } LLVM_DEBUG(dbgs() << "=== End of Graph Simplification ===\n"); } template void AbstractDependenceGraphBuilder::sortNodesTopologically() { // If we don't create pi-blocks, then we may not have a DAG. if (!shouldCreatePiBlocks()) return; SmallVector NodesInPO; using NodeKind = typename NodeType::NodeKind; for (NodeType *N : post_order(&Graph)) { if (N->getKind() == NodeKind::PiBlock) { // Put members of the pi-block right after the pi-block itself, for // convenience. const NodeListType &PiBlockMembers = getNodesInPiBlock(*N); llvm::append_range(NodesInPO, PiBlockMembers); } NodesInPO.push_back(N); } size_t OldSize = Graph.Nodes.size(); Graph.Nodes.clear(); append_range(Graph.Nodes, reverse(NodesInPO)); if (Graph.Nodes.size() != OldSize) assert(false && "Expected the number of nodes to stay the same after the sort"); } template class llvm::AbstractDependenceGraphBuilder; template class llvm::DependenceGraphInfo;