123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437 |
- // Copyright 2022 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // Implementation of CRCs (aka Rabin Fingerprints).
- // Treats the input as a polynomial with coefficients in Z(2),
- // and finds the remainder when divided by an irreducible polynomial
- // of the appropriate length.
- // It handles all CRC sizes from 8 to 128 bits.
- // It's somewhat complicated by having separate implementations optimized for
- // CRC's <=32 bits, <= 64 bits, and <= 128 bits.
- // The input string is prefixed with a "1" bit, and has "degree" "0" bits
- // appended to it before the remainder is found. This ensures that
- // short strings are scrambled somewhat and that strings consisting
- // of all nulls have a non-zero CRC.
- //
- // Uses the "interleaved word-by-word" method from
- // "Everything we know about CRC but afraid to forget" by Andrew Kadatch
- // and Bob Jenkins,
- // http://crcutil.googlecode.com/files/crc-doc.1.0.pdf
- //
- // The idea is to compute kStride CRCs simultaneously, allowing the
- // processor to more effectively use multiple execution units. Each of
- // the CRCs is calculated on one word of data followed by kStride - 1
- // words of zeroes; the CRC starting points are staggered by one word.
- // Assuming a stride of 4 with data words "ABCDABCDABCD", the first
- // CRC is over A000A000A, the second over 0B000B000B, and so on.
- // The CRC of the whole data is then calculated by properly aligning the
- // CRCs by appending zeroes until the data lengths agree then XORing
- // the CRCs.
- #include "absl/crc/internal/crc.h"
- #include <cstdint>
- #include "absl/base/internal/endian.h"
- #include "absl/base/internal/raw_logging.h"
- #include "absl/base/prefetch.h"
- #include "absl/crc/internal/crc_internal.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace crc_internal {
- namespace {
- // Constants
- #if defined(__i386__) || defined(__x86_64__)
- constexpr bool kNeedAlignedLoads = false;
- #else
- constexpr bool kNeedAlignedLoads = true;
- #endif
- // We express the number of zeroes as a number in base ZEROES_BASE. By
- // pre-computing the zero extensions for all possible components of such an
- // expression (numbers in a form a*ZEROES_BASE**b), we can calculate the
- // resulting extension by multiplying the extensions for individual components
- // using log_{ZEROES_BASE}(num_zeroes) polynomial multiplications. The tables of
- // zero extensions contain (ZEROES_BASE - 1) * (log_{ZEROES_BASE}(64)) entries.
- constexpr int ZEROES_BASE_LG = 4; // log_2(ZEROES_BASE)
- constexpr int ZEROES_BASE = (1 << ZEROES_BASE_LG); // must be a power of 2
- constexpr uint32_t kCrc32cPoly = 0x82f63b78;
- uint32_t ReverseBits(uint32_t bits) {
- bits = (bits & 0xaaaaaaaau) >> 1 | (bits & 0x55555555u) << 1;
- bits = (bits & 0xccccccccu) >> 2 | (bits & 0x33333333u) << 2;
- bits = (bits & 0xf0f0f0f0u) >> 4 | (bits & 0x0f0f0f0fu) << 4;
- return absl::gbswap_32(bits);
- }
- // Polynomial long multiplication mod the polynomial of degree 32.
- void PolyMultiply(uint32_t* val, uint32_t m, uint32_t poly) {
- uint32_t l = *val;
- uint32_t result = 0;
- auto onebit = uint32_t{0x80000000u};
- for (uint32_t one = onebit; one != 0; one >>= 1) {
- if ((l & one) != 0) {
- result ^= m;
- }
- if (m & 1) {
- m = (m >> 1) ^ poly;
- } else {
- m >>= 1;
- }
- }
- *val = result;
- }
- } // namespace
- void CRCImpl::FillWordTable(uint32_t poly, uint32_t last, int word_size,
- Uint32By256* t) {
- for (int j = 0; j != word_size; j++) { // for each byte of extension....
- t[j][0] = 0; // a zero has no effect
- for (int i = 128; i != 0; i >>= 1) { // fill in entries for powers of 2
- if (j == 0 && i == 128) {
- t[j][i] = last; // top bit in last byte is given
- } else {
- // each successive power of two is derived from the previous
- // one, either in this table, or the last table
- uint32_t pred;
- if (i == 128) {
- pred = t[j - 1][1];
- } else {
- pred = t[j][i << 1];
- }
- // Advance the CRC by one bit (multiply by X, and take remainder
- // through one step of polynomial long division)
- if (pred & 1) {
- t[j][i] = (pred >> 1) ^ poly;
- } else {
- t[j][i] = pred >> 1;
- }
- }
- }
- // CRCs have the property that CRC(a xor b) == CRC(a) xor CRC(b)
- // so we can make all the tables for non-powers of two by
- // xoring previously created entries.
- for (int i = 2; i != 256; i <<= 1) {
- for (int k = i + 1; k != (i << 1); k++) {
- t[j][k] = t[j][i] ^ t[j][k - i];
- }
- }
- }
- }
- int CRCImpl::FillZeroesTable(uint32_t poly, Uint32By256* t) {
- uint32_t inc = 1;
- inc <<= 31;
- // Extend by one zero bit. We know degree > 1 so (inc & 1) == 0.
- inc >>= 1;
- // Now extend by 2, 4, and 8 bits, so now `inc` is extended by one zero byte.
- for (int i = 0; i < 3; ++i) {
- PolyMultiply(&inc, inc, poly);
- }
- int j = 0;
- for (uint64_t inc_len = 1; inc_len != 0; inc_len <<= ZEROES_BASE_LG) {
- // Every entry in the table adds an additional inc_len zeroes.
- uint32_t v = inc;
- for (int a = 1; a != ZEROES_BASE; a++) {
- t[0][j] = v;
- PolyMultiply(&v, inc, poly);
- j++;
- }
- inc = v;
- }
- ABSL_RAW_CHECK(j <= 256, "");
- return j;
- }
- // Internal version of the "constructor".
- CRCImpl* CRCImpl::NewInternal() {
- // Find an accelearated implementation first.
- CRCImpl* result = TryNewCRC32AcceleratedX86ARMCombined();
- // Fall back to generic implementions if no acceleration is available.
- if (result == nullptr) {
- result = new CRC32();
- }
- result->InitTables();
- return result;
- }
- // The 32-bit implementation
- void CRC32::InitTables() {
- // Compute the table for extending a CRC by one byte.
- Uint32By256* t = new Uint32By256[4];
- FillWordTable(kCrc32cPoly, kCrc32cPoly, 1, t);
- for (int i = 0; i != 256; i++) {
- this->table0_[i] = t[0][i];
- }
- // Construct a table for updating the CRC by 4 bytes data followed by
- // 12 bytes of zeroes.
- //
- // Note: the data word size could be larger than the CRC size; it might
- // be slightly faster to use a 64-bit data word, but doing so doubles the
- // table size.
- uint32_t last = kCrc32cPoly;
- const size_t size = 12;
- for (size_t i = 0; i < size; ++i) {
- last = (last >> 8) ^ this->table0_[last & 0xff];
- }
- FillWordTable(kCrc32cPoly, last, 4, t);
- for (size_t b = 0; b < 4; ++b) {
- for (int i = 0; i < 256; ++i) {
- this->table_[b][i] = t[b][i];
- }
- }
- int j = FillZeroesTable(kCrc32cPoly, t);
- ABSL_RAW_CHECK(j <= static_cast<int>(ABSL_ARRAYSIZE(this->zeroes_)), "");
- for (int i = 0; i < j; i++) {
- this->zeroes_[i] = t[0][i];
- }
- delete[] t;
- // Build up tables for _reversing_ the operation of doing CRC operations on
- // zero bytes.
- // In C++, extending `crc` by a single zero bit is done by the following:
- // (A) bool low_bit_set = (crc & 1);
- // crc >>= 1;
- // if (low_bit_set) crc ^= kCrc32cPoly;
- //
- // In particular note that the high bit of `crc` after this operation will be
- // set if and only if the low bit of `crc` was set before it. This means that
- // no information is lost, and the operation can be reversed, as follows:
- // (B) bool high_bit_set = (crc & 0x80000000u);
- // if (high_bit_set) crc ^= kCrc32cPoly;
- // crc <<= 1;
- // if (high_bit_set) crc ^= 1;
- //
- // Or, equivalently:
- // (C) bool high_bit_set = (crc & 0x80000000u);
- // crc <<= 1;
- // if (high_bit_set) crc ^= ((kCrc32cPoly << 1) ^ 1);
- //
- // The last observation is, if we store our checksums in variable `rcrc`,
- // with order of the bits reversed, the inverse operation becomes:
- // (D) bool low_bit_set = (rcrc & 1);
- // rcrc >>= 1;
- // if (low_bit_set) rcrc ^= ReverseBits((kCrc32cPoly << 1) ^ 1)
- //
- // This is the same algorithm (A) that we started with, only with a different
- // polynomial bit pattern. This means that by building up our tables with
- // this alternate polynomial, we can apply the CRC algorithms to a
- // bit-reversed CRC checksum to perform inverse zero-extension.
- const uint32_t kCrc32cUnextendPoly =
- ReverseBits(static_cast<uint32_t>((kCrc32cPoly << 1) ^ 1));
- FillWordTable(kCrc32cUnextendPoly, kCrc32cUnextendPoly, 1, &reverse_table0_);
- j = FillZeroesTable(kCrc32cUnextendPoly, &reverse_zeroes_);
- ABSL_RAW_CHECK(j <= static_cast<int>(ABSL_ARRAYSIZE(this->reverse_zeroes_)),
- "");
- }
- void CRC32::Extend(uint32_t* crc, const void* bytes, size_t length) const {
- const uint8_t* p = static_cast<const uint8_t*>(bytes);
- const uint8_t* e = p + length;
- uint32_t l = *crc;
- auto step_one_byte = [this, &p, &l]() {
- int c = (l & 0xff) ^ *p++;
- l = this->table0_[c] ^ (l >> 8);
- };
- if (kNeedAlignedLoads) {
- // point x at first 4-byte aligned byte in string. this might be past the
- // end of the string.
- const uint8_t* x = RoundUp<4>(p);
- if (x <= e) {
- // Process bytes until finished or p is 4-byte aligned
- while (p != x) {
- step_one_byte();
- }
- }
- }
- const size_t kSwathSize = 16;
- if (static_cast<size_t>(e - p) >= kSwathSize) {
- // Load one swath of data into the operating buffers.
- uint32_t buf0 = absl::little_endian::Load32(p) ^ l;
- uint32_t buf1 = absl::little_endian::Load32(p + 4);
- uint32_t buf2 = absl::little_endian::Load32(p + 8);
- uint32_t buf3 = absl::little_endian::Load32(p + 12);
- p += kSwathSize;
- // Increment a CRC value by a "swath"; this combines the four bytes
- // starting at `ptr` and twelve zero bytes, so that four CRCs can be
- // built incrementally and combined at the end.
- const auto step_swath = [this](uint32_t crc_in, const std::uint8_t* ptr) {
- return absl::little_endian::Load32(ptr) ^
- this->table_[3][crc_in & 0xff] ^
- this->table_[2][(crc_in >> 8) & 0xff] ^
- this->table_[1][(crc_in >> 16) & 0xff] ^
- this->table_[0][crc_in >> 24];
- };
- // Run one CRC calculation step over all swaths in one 16-byte stride
- const auto step_stride = [&]() {
- buf0 = step_swath(buf0, p);
- buf1 = step_swath(buf1, p + 4);
- buf2 = step_swath(buf2, p + 8);
- buf3 = step_swath(buf3, p + 12);
- p += 16;
- };
- // Process kStride interleaved swaths through the data in parallel.
- while ((e - p) > kPrefetchHorizon) {
- PrefetchToLocalCacheNta(
- reinterpret_cast<const void*>(p + kPrefetchHorizon));
- // Process 64 bytes at a time
- step_stride();
- step_stride();
- step_stride();
- step_stride();
- }
- while (static_cast<size_t>(e - p) >= kSwathSize) {
- step_stride();
- }
- // Now advance one word at a time as far as possible. This isn't worth
- // doing if we have word-advance tables.
- while (static_cast<size_t>(e - p) >= 4) {
- buf0 = step_swath(buf0, p);
- uint32_t tmp = buf0;
- buf0 = buf1;
- buf1 = buf2;
- buf2 = buf3;
- buf3 = tmp;
- p += 4;
- }
- // Combine the results from the different swaths. This is just a CRC
- // on the data values in the bufX words.
- auto combine_one_word = [this](uint32_t crc_in, uint32_t w) {
- w ^= crc_in;
- for (size_t i = 0; i < 4; ++i) {
- w = (w >> 8) ^ this->table0_[w & 0xff];
- }
- return w;
- };
- l = combine_one_word(0, buf0);
- l = combine_one_word(l, buf1);
- l = combine_one_word(l, buf2);
- l = combine_one_word(l, buf3);
- }
- // Process the last few bytes
- while (p != e) {
- step_one_byte();
- }
- *crc = l;
- }
- void CRC32::ExtendByZeroesImpl(uint32_t* crc, size_t length,
- const uint32_t zeroes_table[256],
- const uint32_t poly_table[256]) {
- if (length != 0) {
- uint32_t l = *crc;
- // For each ZEROES_BASE_LG bits in length
- // (after the low-order bits have been removed)
- // we lookup the appropriate polynomial in the zeroes_ array
- // and do a polynomial long multiplication (mod the CRC polynomial)
- // to extend the CRC by the appropriate number of bits.
- for (int i = 0; length != 0;
- i += ZEROES_BASE - 1, length >>= ZEROES_BASE_LG) {
- int c = length & (ZEROES_BASE - 1); // pick next ZEROES_BASE_LG bits
- if (c != 0) { // if they are not zero,
- // multiply by entry in table
- // Build a table to aid in multiplying 2 bits at a time.
- // It takes too long to build tables for more bits.
- uint64_t m = zeroes_table[c + i - 1];
- m <<= 1;
- uint64_t m2 = m << 1;
- uint64_t mtab[4] = {0, m, m2, m2 ^ m};
- // Do the multiply one byte at a time.
- uint64_t result = 0;
- for (int x = 0; x < 32; x += 8) {
- // The carry-less multiply.
- result ^= mtab[l & 3] ^ (mtab[(l >> 2) & 3] << 2) ^
- (mtab[(l >> 4) & 3] << 4) ^ (mtab[(l >> 6) & 3] << 6);
- l >>= 8;
- // Reduce modulo the polynomial
- result = (result >> 8) ^ poly_table[result & 0xff];
- }
- l = static_cast<uint32_t>(result);
- }
- }
- *crc = l;
- }
- }
- void CRC32::ExtendByZeroes(uint32_t* crc, size_t length) const {
- return CRC32::ExtendByZeroesImpl(crc, length, zeroes_, table0_);
- }
- void CRC32::UnextendByZeroes(uint32_t* crc, size_t length) const {
- // See the comment in CRC32::InitTables() for an explanation of the algorithm
- // below.
- *crc = ReverseBits(*crc);
- ExtendByZeroesImpl(crc, length, reverse_zeroes_, reverse_table0_);
- *crc = ReverseBits(*crc);
- }
- void CRC32::Scramble(uint32_t* crc) const {
- // Rotate by near half the word size plus 1. See the scramble comment in
- // crc_internal.h for an explanation.
- constexpr int scramble_rotate = (32 / 2) + 1;
- *crc = RotateRight<uint32_t>(static_cast<unsigned int>(*crc + kScrambleLo),
- 32, scramble_rotate) &
- MaskOfLength<uint32_t>(32);
- }
- void CRC32::Unscramble(uint32_t* crc) const {
- constexpr int scramble_rotate = (32 / 2) + 1;
- uint64_t rotated = RotateRight<uint32_t>(static_cast<unsigned int>(*crc), 32,
- 32 - scramble_rotate);
- *crc = (rotated - kScrambleLo) & MaskOfLength<uint32_t>(32);
- }
- // Constructor and destructor for base class CRC.
- CRC::~CRC() {}
- CRC::CRC() {}
- // The "constructor" for a CRC32C with a standard polynomial.
- CRC* CRC::Crc32c() {
- static CRC* singleton = CRCImpl::NewInternal();
- return singleton;
- }
- } // namespace crc_internal
- ABSL_NAMESPACE_END
- } // namespace absl
|