1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564 |
- //===- InstCombinePHI.cpp -------------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visitPHINode function.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <optional>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "instcombine"
- static cl::opt<unsigned>
- MaxNumPhis("instcombine-max-num-phis", cl::init(512),
- cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
- STATISTIC(NumPHIsOfInsertValues,
- "Number of phi-of-insertvalue turned into insertvalue-of-phis");
- STATISTIC(NumPHIsOfExtractValues,
- "Number of phi-of-extractvalue turned into extractvalue-of-phi");
- STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
- /// The PHI arguments will be folded into a single operation with a PHI node
- /// as input. The debug location of the single operation will be the merged
- /// locations of the original PHI node arguments.
- void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
- auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
- Inst->setDebugLoc(FirstInst->getDebugLoc());
- // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
- // will be inefficient.
- assert(!isa<CallInst>(Inst));
- for (Value *V : drop_begin(PN.incoming_values())) {
- auto *I = cast<Instruction>(V);
- Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
- }
- }
- // Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
- // If there is an existing pointer typed PHI that produces the same value as PN,
- // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
- // PHI node:
- //
- // Case-1:
- // bb1:
- // int_init = PtrToInt(ptr_init)
- // br label %bb2
- // bb2:
- // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
- // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
- // ptr_val2 = IntToPtr(int_val)
- // ...
- // use(ptr_val2)
- // ptr_val_inc = ...
- // inc_val_inc = PtrToInt(ptr_val_inc)
- //
- // ==>
- // bb1:
- // br label %bb2
- // bb2:
- // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
- // ...
- // use(ptr_val)
- // ptr_val_inc = ...
- //
- // Case-2:
- // bb1:
- // int_ptr = BitCast(ptr_ptr)
- // int_init = Load(int_ptr)
- // br label %bb2
- // bb2:
- // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
- // ptr_val2 = IntToPtr(int_val)
- // ...
- // use(ptr_val2)
- // ptr_val_inc = ...
- // inc_val_inc = PtrToInt(ptr_val_inc)
- // ==>
- // bb1:
- // ptr_init = Load(ptr_ptr)
- // br label %bb2
- // bb2:
- // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
- // ...
- // use(ptr_val)
- // ptr_val_inc = ...
- // ...
- //
- bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) {
- if (!PN.getType()->isIntegerTy())
- return false;
- if (!PN.hasOneUse())
- return false;
- auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
- if (!IntToPtr)
- return false;
- // Check if the pointer is actually used as pointer:
- auto HasPointerUse = [](Instruction *IIP) {
- for (User *U : IIP->users()) {
- Value *Ptr = nullptr;
- if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
- Ptr = LoadI->getPointerOperand();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- Ptr = SI->getPointerOperand();
- } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
- Ptr = GI->getPointerOperand();
- }
- if (Ptr && Ptr == IIP)
- return true;
- }
- return false;
- };
- if (!HasPointerUse(IntToPtr))
- return false;
- if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
- DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
- return false;
- SmallVector<Value *, 4> AvailablePtrVals;
- for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) {
- BasicBlock *BB = std::get<0>(Incoming);
- Value *Arg = std::get<1>(Incoming);
- // First look backward:
- if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
- AvailablePtrVals.emplace_back(PI->getOperand(0));
- continue;
- }
- // Next look forward:
- Value *ArgIntToPtr = nullptr;
- for (User *U : Arg->users()) {
- if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
- (DT.dominates(cast<Instruction>(U), BB) ||
- cast<Instruction>(U)->getParent() == BB)) {
- ArgIntToPtr = U;
- break;
- }
- }
- if (ArgIntToPtr) {
- AvailablePtrVals.emplace_back(ArgIntToPtr);
- continue;
- }
- // If Arg is defined by a PHI, allow it. This will also create
- // more opportunities iteratively.
- if (isa<PHINode>(Arg)) {
- AvailablePtrVals.emplace_back(Arg);
- continue;
- }
- // For a single use integer load:
- auto *LoadI = dyn_cast<LoadInst>(Arg);
- if (!LoadI)
- return false;
- if (!LoadI->hasOneUse())
- return false;
- // Push the integer typed Load instruction into the available
- // value set, and fix it up later when the pointer typed PHI
- // is synthesized.
- AvailablePtrVals.emplace_back(LoadI);
- }
- // Now search for a matching PHI
- auto *BB = PN.getParent();
- assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
- "Not enough available ptr typed incoming values");
- PHINode *MatchingPtrPHI = nullptr;
- unsigned NumPhis = 0;
- for (PHINode &PtrPHI : BB->phis()) {
- // FIXME: consider handling this in AggressiveInstCombine
- if (NumPhis++ > MaxNumPhis)
- return false;
- if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType())
- continue;
- if (any_of(zip(PN.blocks(), AvailablePtrVals),
- [&](const auto &BlockAndValue) {
- BasicBlock *BB = std::get<0>(BlockAndValue);
- Value *V = std::get<1>(BlockAndValue);
- return PtrPHI.getIncomingValueForBlock(BB) != V;
- }))
- continue;
- MatchingPtrPHI = &PtrPHI;
- break;
- }
- if (MatchingPtrPHI) {
- assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
- "Phi's Type does not match with IntToPtr");
- // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
- // to make sure another transform can't undo it in the meantime.
- replaceInstUsesWith(*IntToPtr, MatchingPtrPHI);
- eraseInstFromFunction(*IntToPtr);
- eraseInstFromFunction(PN);
- return true;
- }
- // If it requires a conversion for every PHI operand, do not do it.
- if (all_of(AvailablePtrVals, [&](Value *V) {
- return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
- }))
- return false;
- // If any of the operand that requires casting is a terminator
- // instruction, do not do it. Similarly, do not do the transform if the value
- // is PHI in a block with no insertion point, for example, a catchswitch
- // block, since we will not be able to insert a cast after the PHI.
- if (any_of(AvailablePtrVals, [&](Value *V) {
- if (V->getType() == IntToPtr->getType())
- return false;
- auto *Inst = dyn_cast<Instruction>(V);
- if (!Inst)
- return false;
- if (Inst->isTerminator())
- return true;
- auto *BB = Inst->getParent();
- if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
- return true;
- return false;
- }))
- return false;
- PHINode *NewPtrPHI = PHINode::Create(
- IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
- InsertNewInstBefore(NewPtrPHI, PN);
- SmallDenseMap<Value *, Instruction *> Casts;
- for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) {
- auto *IncomingBB = std::get<0>(Incoming);
- auto *IncomingVal = std::get<1>(Incoming);
- if (IncomingVal->getType() == IntToPtr->getType()) {
- NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
- continue;
- }
- #ifndef NDEBUG
- LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
- assert((isa<PHINode>(IncomingVal) ||
- IncomingVal->getType()->isPointerTy() ||
- (LoadI && LoadI->hasOneUse())) &&
- "Can not replace LoadInst with multiple uses");
- #endif
- // Need to insert a BitCast.
- // For an integer Load instruction with a single use, the load + IntToPtr
- // cast will be simplified into a pointer load:
- // %v = load i64, i64* %a.ip, align 8
- // %v.cast = inttoptr i64 %v to float **
- // ==>
- // %v.ptrp = bitcast i64 * %a.ip to float **
- // %v.cast = load float *, float ** %v.ptrp, align 8
- Instruction *&CI = Casts[IncomingVal];
- if (!CI) {
- CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
- IncomingVal->getName() + ".ptr");
- if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
- BasicBlock::iterator InsertPos(IncomingI);
- InsertPos++;
- BasicBlock *BB = IncomingI->getParent();
- if (isa<PHINode>(IncomingI))
- InsertPos = BB->getFirstInsertionPt();
- assert(InsertPos != BB->end() && "should have checked above");
- InsertNewInstBefore(CI, *InsertPos);
- } else {
- auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
- InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt());
- }
- }
- NewPtrPHI->addIncoming(CI, IncomingBB);
- }
- // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
- // to make sure another transform can't undo it in the meantime.
- replaceInstUsesWith(*IntToPtr, NewPtrPHI);
- eraseInstFromFunction(*IntToPtr);
- eraseInstFromFunction(PN);
- return true;
- }
- // Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and
- // fold Phi-operand to bitcast.
- Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) {
- // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] )
- // Make sure all uses of phi are ptr2int.
- if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); }))
- return nullptr;
- // Iterating over all operands to check presence of target pointers for
- // optimization.
- bool OperandWithRoundTripCast = false;
- for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) {
- if (auto *NewOp =
- simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) {
- PN.setIncomingValue(OpNum, NewOp);
- OperandWithRoundTripCast = true;
- }
- }
- if (!OperandWithRoundTripCast)
- return nullptr;
- return &PN;
- }
- /// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)],
- /// turn this into a phi[a,c] and phi[b,d] and a single insertvalue.
- Instruction *
- InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) {
- auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0));
- // Scan to see if all operands are `insertvalue`'s with the same indicies,
- // and all have a single use.
- for (Value *V : drop_begin(PN.incoming_values())) {
- auto *I = dyn_cast<InsertValueInst>(V);
- if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices())
- return nullptr;
- }
- // For each operand of an `insertvalue`
- std::array<PHINode *, 2> NewOperands;
- for (int OpIdx : {0, 1}) {
- auto *&NewOperand = NewOperands[OpIdx];
- // Create a new PHI node to receive the values the operand has in each
- // incoming basic block.
- NewOperand = PHINode::Create(
- FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(),
- FirstIVI->getOperand(OpIdx)->getName() + ".pn");
- // And populate each operand's PHI with said values.
- for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
- NewOperand->addIncoming(
- cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx),
- std::get<0>(Incoming));
- InsertNewInstBefore(NewOperand, PN);
- }
- // And finally, create `insertvalue` over the newly-formed PHI nodes.
- auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1],
- FirstIVI->getIndices(), PN.getName());
- PHIArgMergedDebugLoc(NewIVI, PN);
- ++NumPHIsOfInsertValues;
- return NewIVI;
- }
- /// If we have something like phi [extractvalue(a,0), extractvalue(b,0)],
- /// turn this into a phi[a,b] and a single extractvalue.
- Instruction *
- InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) {
- auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0));
- // Scan to see if all operands are `extractvalue`'s with the same indicies,
- // and all have a single use.
- for (Value *V : drop_begin(PN.incoming_values())) {
- auto *I = dyn_cast<ExtractValueInst>(V);
- if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() ||
- I->getAggregateOperand()->getType() !=
- FirstEVI->getAggregateOperand()->getType())
- return nullptr;
- }
- // Create a new PHI node to receive the values the aggregate operand has
- // in each incoming basic block.
- auto *NewAggregateOperand = PHINode::Create(
- FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(),
- FirstEVI->getAggregateOperand()->getName() + ".pn");
- // And populate the PHI with said values.
- for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
- NewAggregateOperand->addIncoming(
- cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(),
- std::get<0>(Incoming));
- InsertNewInstBefore(NewAggregateOperand, PN);
- // And finally, create `extractvalue` over the newly-formed PHI nodes.
- auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand,
- FirstEVI->getIndices(), PN.getName());
- PHIArgMergedDebugLoc(NewEVI, PN);
- ++NumPHIsOfExtractValues;
- return NewEVI;
- }
- /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
- /// adds all have a single user, turn this into a phi and a single binop.
- Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) {
- Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
- assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
- unsigned Opc = FirstInst->getOpcode();
- Value *LHSVal = FirstInst->getOperand(0);
- Value *RHSVal = FirstInst->getOperand(1);
- Type *LHSType = LHSVal->getType();
- Type *RHSType = RHSVal->getType();
- // Scan to see if all operands are the same opcode, and all have one user.
- for (Value *V : drop_begin(PN.incoming_values())) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || I->getOpcode() != Opc || !I->hasOneUser() ||
- // Verify type of the LHS matches so we don't fold cmp's of different
- // types.
- I->getOperand(0)->getType() != LHSType ||
- I->getOperand(1)->getType() != RHSType)
- return nullptr;
- // If they are CmpInst instructions, check their predicates
- if (CmpInst *CI = dyn_cast<CmpInst>(I))
- if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
- return nullptr;
- // Keep track of which operand needs a phi node.
- if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
- if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
- }
- // If both LHS and RHS would need a PHI, don't do this transformation,
- // because it would increase the number of PHIs entering the block,
- // which leads to higher register pressure. This is especially
- // bad when the PHIs are in the header of a loop.
- if (!LHSVal && !RHSVal)
- return nullptr;
- // Otherwise, this is safe to transform!
- Value *InLHS = FirstInst->getOperand(0);
- Value *InRHS = FirstInst->getOperand(1);
- PHINode *NewLHS = nullptr, *NewRHS = nullptr;
- if (!LHSVal) {
- NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
- FirstInst->getOperand(0)->getName() + ".pn");
- NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
- InsertNewInstBefore(NewLHS, PN);
- LHSVal = NewLHS;
- }
- if (!RHSVal) {
- NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
- FirstInst->getOperand(1)->getName() + ".pn");
- NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
- InsertNewInstBefore(NewRHS, PN);
- RHSVal = NewRHS;
- }
- // Add all operands to the new PHIs.
- if (NewLHS || NewRHS) {
- for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
- BasicBlock *InBB = std::get<0>(Incoming);
- Value *InVal = std::get<1>(Incoming);
- Instruction *InInst = cast<Instruction>(InVal);
- if (NewLHS) {
- Value *NewInLHS = InInst->getOperand(0);
- NewLHS->addIncoming(NewInLHS, InBB);
- }
- if (NewRHS) {
- Value *NewInRHS = InInst->getOperand(1);
- NewRHS->addIncoming(NewInRHS, InBB);
- }
- }
- }
- if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
- CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
- LHSVal, RHSVal);
- PHIArgMergedDebugLoc(NewCI, PN);
- return NewCI;
- }
- BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
- BinaryOperator *NewBinOp =
- BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
- NewBinOp->copyIRFlags(PN.getIncomingValue(0));
- for (Value *V : drop_begin(PN.incoming_values()))
- NewBinOp->andIRFlags(V);
- PHIArgMergedDebugLoc(NewBinOp, PN);
- return NewBinOp;
- }
- Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) {
- GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
- SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
- FirstInst->op_end());
- // This is true if all GEP bases are allocas and if all indices into them are
- // constants.
- bool AllBasePointersAreAllocas = true;
- // We don't want to replace this phi if the replacement would require
- // more than one phi, which leads to higher register pressure. This is
- // especially bad when the PHIs are in the header of a loop.
- bool NeededPhi = false;
- bool AllInBounds = true;
- // Scan to see if all operands are the same opcode, and all have one user.
- for (Value *V : drop_begin(PN.incoming_values())) {
- GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
- if (!GEP || !GEP->hasOneUser() ||
- GEP->getSourceElementType() != FirstInst->getSourceElementType() ||
- GEP->getNumOperands() != FirstInst->getNumOperands())
- return nullptr;
- AllInBounds &= GEP->isInBounds();
- // Keep track of whether or not all GEPs are of alloca pointers.
- if (AllBasePointersAreAllocas &&
- (!isa<AllocaInst>(GEP->getOperand(0)) ||
- !GEP->hasAllConstantIndices()))
- AllBasePointersAreAllocas = false;
- // Compare the operand lists.
- for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) {
- if (FirstInst->getOperand(Op) == GEP->getOperand(Op))
- continue;
- // Don't merge two GEPs when two operands differ (introducing phi nodes)
- // if one of the PHIs has a constant for the index. The index may be
- // substantially cheaper to compute for the constants, so making it a
- // variable index could pessimize the path. This also handles the case
- // for struct indices, which must always be constant.
- if (isa<ConstantInt>(FirstInst->getOperand(Op)) ||
- isa<ConstantInt>(GEP->getOperand(Op)))
- return nullptr;
- if (FirstInst->getOperand(Op)->getType() !=
- GEP->getOperand(Op)->getType())
- return nullptr;
- // If we already needed a PHI for an earlier operand, and another operand
- // also requires a PHI, we'd be introducing more PHIs than we're
- // eliminating, which increases register pressure on entry to the PHI's
- // block.
- if (NeededPhi)
- return nullptr;
- FixedOperands[Op] = nullptr; // Needs a PHI.
- NeededPhi = true;
- }
- }
- // If all of the base pointers of the PHI'd GEPs are from allocas, don't
- // bother doing this transformation. At best, this will just save a bit of
- // offset calculation, but all the predecessors will have to materialize the
- // stack address into a register anyway. We'd actually rather *clone* the
- // load up into the predecessors so that we have a load of a gep of an alloca,
- // which can usually all be folded into the load.
- if (AllBasePointersAreAllocas)
- return nullptr;
- // Otherwise, this is safe to transform. Insert PHI nodes for each operand
- // that is variable.
- SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
- bool HasAnyPHIs = false;
- for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) {
- if (FixedOperands[I])
- continue; // operand doesn't need a phi.
- Value *FirstOp = FirstInst->getOperand(I);
- PHINode *NewPN =
- PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn");
- InsertNewInstBefore(NewPN, PN);
- NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
- OperandPhis[I] = NewPN;
- FixedOperands[I] = NewPN;
- HasAnyPHIs = true;
- }
- // Add all operands to the new PHIs.
- if (HasAnyPHIs) {
- for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
- BasicBlock *InBB = std::get<0>(Incoming);
- Value *InVal = std::get<1>(Incoming);
- GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal);
- for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op)
- if (PHINode *OpPhi = OperandPhis[Op])
- OpPhi->addIncoming(InGEP->getOperand(Op), InBB);
- }
- }
- Value *Base = FixedOperands[0];
- GetElementPtrInst *NewGEP =
- GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
- ArrayRef(FixedOperands).slice(1));
- if (AllInBounds) NewGEP->setIsInBounds();
- PHIArgMergedDebugLoc(NewGEP, PN);
- return NewGEP;
- }
- /// Return true if we know that it is safe to sink the load out of the block
- /// that defines it. This means that it must be obvious the value of the load is
- /// not changed from the point of the load to the end of the block it is in.
- ///
- /// Finally, it is safe, but not profitable, to sink a load targeting a
- /// non-address-taken alloca. Doing so will cause us to not promote the alloca
- /// to a register.
- static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
- BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
- for (++BBI; BBI != E; ++BBI)
- if (BBI->mayWriteToMemory()) {
- // Calls that only access inaccessible memory do not block sinking the
- // load.
- if (auto *CB = dyn_cast<CallBase>(BBI))
- if (CB->onlyAccessesInaccessibleMemory())
- continue;
- return false;
- }
- // Check for non-address taken alloca. If not address-taken already, it isn't
- // profitable to do this xform.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
- bool IsAddressTaken = false;
- for (User *U : AI->users()) {
- if (isa<LoadInst>(U)) continue;
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- // If storing TO the alloca, then the address isn't taken.
- if (SI->getOperand(1) == AI) continue;
- }
- IsAddressTaken = true;
- break;
- }
- if (!IsAddressTaken && AI->isStaticAlloca())
- return false;
- }
- // If this load is a load from a GEP with a constant offset from an alloca,
- // then we don't want to sink it. In its present form, it will be
- // load [constant stack offset]. Sinking it will cause us to have to
- // materialize the stack addresses in each predecessor in a register only to
- // do a shared load from register in the successor.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
- if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
- if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
- return false;
- return true;
- }
- Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) {
- LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
- // Can't forward swifterror through a phi.
- if (FirstLI->getOperand(0)->isSwiftError())
- return nullptr;
- // FIXME: This is overconservative; this transform is allowed in some cases
- // for atomic operations.
- if (FirstLI->isAtomic())
- return nullptr;
- // When processing loads, we need to propagate two bits of information to the
- // sunk load: whether it is volatile, and what its alignment is.
- bool IsVolatile = FirstLI->isVolatile();
- Align LoadAlignment = FirstLI->getAlign();
- const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
- // We can't sink the load if the loaded value could be modified between the
- // load and the PHI.
- if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
- !isSafeAndProfitableToSinkLoad(FirstLI))
- return nullptr;
- // If the PHI is of volatile loads and the load block has multiple
- // successors, sinking it would remove a load of the volatile value from
- // the path through the other successor.
- if (IsVolatile &&
- FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
- return nullptr;
- for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
- BasicBlock *InBB = std::get<0>(Incoming);
- Value *InVal = std::get<1>(Incoming);
- LoadInst *LI = dyn_cast<LoadInst>(InVal);
- if (!LI || !LI->hasOneUser() || LI->isAtomic())
- return nullptr;
- // Make sure all arguments are the same type of operation.
- if (LI->isVolatile() != IsVolatile ||
- LI->getPointerAddressSpace() != LoadAddrSpace)
- return nullptr;
- // Can't forward swifterror through a phi.
- if (LI->getOperand(0)->isSwiftError())
- return nullptr;
- // We can't sink the load if the loaded value could be modified between
- // the load and the PHI.
- if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI))
- return nullptr;
- LoadAlignment = std::min(LoadAlignment, LI->getAlign());
- // If the PHI is of volatile loads and the load block has multiple
- // successors, sinking it would remove a load of the volatile value from
- // the path through the other successor.
- if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1)
- return nullptr;
- }
- // Okay, they are all the same operation. Create a new PHI node of the
- // correct type, and PHI together all of the LHS's of the instructions.
- PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
- PN.getNumIncomingValues(),
- PN.getName()+".in");
- Value *InVal = FirstLI->getOperand(0);
- NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
- LoadInst *NewLI =
- new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment);
- unsigned KnownIDs[] = {
- LLVMContext::MD_tbaa,
- LLVMContext::MD_range,
- LLVMContext::MD_invariant_load,
- LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias,
- LLVMContext::MD_nonnull,
- LLVMContext::MD_align,
- LLVMContext::MD_dereferenceable,
- LLVMContext::MD_dereferenceable_or_null,
- LLVMContext::MD_access_group,
- };
- for (unsigned ID : KnownIDs)
- NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
- // Add all operands to the new PHI and combine TBAA metadata.
- for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
- BasicBlock *BB = std::get<0>(Incoming);
- Value *V = std::get<1>(Incoming);
- LoadInst *LI = cast<LoadInst>(V);
- combineMetadata(NewLI, LI, KnownIDs, true);
- Value *NewInVal = LI->getOperand(0);
- if (NewInVal != InVal)
- InVal = nullptr;
- NewPN->addIncoming(NewInVal, BB);
- }
- if (InVal) {
- // The new PHI unions all of the same values together. This is really
- // common, so we handle it intelligently here for compile-time speed.
- NewLI->setOperand(0, InVal);
- delete NewPN;
- } else {
- InsertNewInstBefore(NewPN, PN);
- }
- // If this was a volatile load that we are merging, make sure to loop through
- // and mark all the input loads as non-volatile. If we don't do this, we will
- // insert a new volatile load and the old ones will not be deletable.
- if (IsVolatile)
- for (Value *IncValue : PN.incoming_values())
- cast<LoadInst>(IncValue)->setVolatile(false);
- PHIArgMergedDebugLoc(NewLI, PN);
- return NewLI;
- }
- /// TODO: This function could handle other cast types, but then it might
- /// require special-casing a cast from the 'i1' type. See the comment in
- /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
- Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) {
- // We cannot create a new instruction after the PHI if the terminator is an
- // EHPad because there is no valid insertion point.
- if (Instruction *TI = Phi.getParent()->getTerminator())
- if (TI->isEHPad())
- return nullptr;
- // Early exit for the common case of a phi with two operands. These are
- // handled elsewhere. See the comment below where we check the count of zexts
- // and constants for more details.
- unsigned NumIncomingValues = Phi.getNumIncomingValues();
- if (NumIncomingValues < 3)
- return nullptr;
- // Find the narrower type specified by the first zext.
- Type *NarrowType = nullptr;
- for (Value *V : Phi.incoming_values()) {
- if (auto *Zext = dyn_cast<ZExtInst>(V)) {
- NarrowType = Zext->getSrcTy();
- break;
- }
- }
- if (!NarrowType)
- return nullptr;
- // Walk the phi operands checking that we only have zexts or constants that
- // we can shrink for free. Store the new operands for the new phi.
- SmallVector<Value *, 4> NewIncoming;
- unsigned NumZexts = 0;
- unsigned NumConsts = 0;
- for (Value *V : Phi.incoming_values()) {
- if (auto *Zext = dyn_cast<ZExtInst>(V)) {
- // All zexts must be identical and have one user.
- if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser())
- return nullptr;
- NewIncoming.push_back(Zext->getOperand(0));
- NumZexts++;
- } else if (auto *C = dyn_cast<Constant>(V)) {
- // Make sure that constants can fit in the new type.
- Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType);
- if (ConstantExpr::getZExt(Trunc, C->getType()) != C)
- return nullptr;
- NewIncoming.push_back(Trunc);
- NumConsts++;
- } else {
- // If it's not a cast or a constant, bail out.
- return nullptr;
- }
- }
- // The more common cases of a phi with no constant operands or just one
- // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
- // respectively. foldOpIntoPhi() wants to do the opposite transform that is
- // performed here. It tries to replicate a cast in the phi operand's basic
- // block to expose other folding opportunities. Thus, InstCombine will
- // infinite loop without this check.
- if (NumConsts == 0 || NumZexts < 2)
- return nullptr;
- // All incoming values are zexts or constants that are safe to truncate.
- // Create a new phi node of the narrow type, phi together all of the new
- // operands, and zext the result back to the original type.
- PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
- Phi.getName() + ".shrunk");
- for (unsigned I = 0; I != NumIncomingValues; ++I)
- NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I));
- InsertNewInstBefore(NewPhi, Phi);
- return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
- }
- /// If all operands to a PHI node are the same "unary" operator and they all are
- /// only used by the PHI, PHI together their inputs, and do the operation once,
- /// to the result of the PHI.
- Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) {
- // We cannot create a new instruction after the PHI if the terminator is an
- // EHPad because there is no valid insertion point.
- if (Instruction *TI = PN.getParent()->getTerminator())
- if (TI->isEHPad())
- return nullptr;
- Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
- if (isa<GetElementPtrInst>(FirstInst))
- return foldPHIArgGEPIntoPHI(PN);
- if (isa<LoadInst>(FirstInst))
- return foldPHIArgLoadIntoPHI(PN);
- if (isa<InsertValueInst>(FirstInst))
- return foldPHIArgInsertValueInstructionIntoPHI(PN);
- if (isa<ExtractValueInst>(FirstInst))
- return foldPHIArgExtractValueInstructionIntoPHI(PN);
- // Scan the instruction, looking for input operations that can be folded away.
- // If all input operands to the phi are the same instruction (e.g. a cast from
- // the same type or "+42") we can pull the operation through the PHI, reducing
- // code size and simplifying code.
- Constant *ConstantOp = nullptr;
- Type *CastSrcTy = nullptr;
- if (isa<CastInst>(FirstInst)) {
- CastSrcTy = FirstInst->getOperand(0)->getType();
- // Be careful about transforming integer PHIs. We don't want to pessimize
- // the code by turning an i32 into an i1293.
- if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
- if (!shouldChangeType(PN.getType(), CastSrcTy))
- return nullptr;
- }
- } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
- // Can fold binop, compare or shift here if the RHS is a constant,
- // otherwise call FoldPHIArgBinOpIntoPHI.
- ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
- if (!ConstantOp)
- return foldPHIArgBinOpIntoPHI(PN);
- } else {
- return nullptr; // Cannot fold this operation.
- }
- // Check to see if all arguments are the same operation.
- for (Value *V : drop_begin(PN.incoming_values())) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst))
- return nullptr;
- if (CastSrcTy) {
- if (I->getOperand(0)->getType() != CastSrcTy)
- return nullptr; // Cast operation must match.
- } else if (I->getOperand(1) != ConstantOp) {
- return nullptr;
- }
- }
- // Okay, they are all the same operation. Create a new PHI node of the
- // correct type, and PHI together all of the LHS's of the instructions.
- PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
- PN.getNumIncomingValues(),
- PN.getName()+".in");
- Value *InVal = FirstInst->getOperand(0);
- NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
- // Add all operands to the new PHI.
- for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
- BasicBlock *BB = std::get<0>(Incoming);
- Value *V = std::get<1>(Incoming);
- Value *NewInVal = cast<Instruction>(V)->getOperand(0);
- if (NewInVal != InVal)
- InVal = nullptr;
- NewPN->addIncoming(NewInVal, BB);
- }
- Value *PhiVal;
- if (InVal) {
- // The new PHI unions all of the same values together. This is really
- // common, so we handle it intelligently here for compile-time speed.
- PhiVal = InVal;
- delete NewPN;
- } else {
- InsertNewInstBefore(NewPN, PN);
- PhiVal = NewPN;
- }
- // Insert and return the new operation.
- if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
- CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
- PN.getType());
- PHIArgMergedDebugLoc(NewCI, PN);
- return NewCI;
- }
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
- BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
- BinOp->copyIRFlags(PN.getIncomingValue(0));
- for (Value *V : drop_begin(PN.incoming_values()))
- BinOp->andIRFlags(V);
- PHIArgMergedDebugLoc(BinOp, PN);
- return BinOp;
- }
- CmpInst *CIOp = cast<CmpInst>(FirstInst);
- CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
- PhiVal, ConstantOp);
- PHIArgMergedDebugLoc(NewCI, PN);
- return NewCI;
- }
- /// Return true if this PHI node is only used by a PHI node cycle that is dead.
- static bool isDeadPHICycle(PHINode *PN,
- SmallPtrSetImpl<PHINode *> &PotentiallyDeadPHIs) {
- if (PN->use_empty()) return true;
- if (!PN->hasOneUse()) return false;
- // Remember this node, and if we find the cycle, return.
- if (!PotentiallyDeadPHIs.insert(PN).second)
- return true;
- // Don't scan crazily complex things.
- if (PotentiallyDeadPHIs.size() == 16)
- return false;
- if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
- return isDeadPHICycle(PU, PotentiallyDeadPHIs);
- return false;
- }
- /// Return true if this phi node is always equal to NonPhiInVal.
- /// This happens with mutually cyclic phi nodes like:
- /// z = some value; x = phi (y, z); y = phi (x, z)
- static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
- SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
- // See if we already saw this PHI node.
- if (!ValueEqualPHIs.insert(PN).second)
- return true;
- // Don't scan crazily complex things.
- if (ValueEqualPHIs.size() == 16)
- return false;
- // Scan the operands to see if they are either phi nodes or are equal to
- // the value.
- for (Value *Op : PN->incoming_values()) {
- if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
- if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
- return false;
- } else if (Op != NonPhiInVal)
- return false;
- }
- return true;
- }
- /// Return an existing non-zero constant if this phi node has one, otherwise
- /// return constant 1.
- static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) {
- assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
- for (Value *V : PN.operands())
- if (auto *ConstVA = dyn_cast<ConstantInt>(V))
- if (!ConstVA->isZero())
- return ConstVA;
- return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
- }
- namespace {
- struct PHIUsageRecord {
- unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
- unsigned Shift; // The amount shifted.
- Instruction *Inst; // The trunc instruction.
- PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User)
- : PHIId(Pn), Shift(Sh), Inst(User) {}
- bool operator<(const PHIUsageRecord &RHS) const {
- if (PHIId < RHS.PHIId) return true;
- if (PHIId > RHS.PHIId) return false;
- if (Shift < RHS.Shift) return true;
- if (Shift > RHS.Shift) return false;
- return Inst->getType()->getPrimitiveSizeInBits() <
- RHS.Inst->getType()->getPrimitiveSizeInBits();
- }
- };
- struct LoweredPHIRecord {
- PHINode *PN; // The PHI that was lowered.
- unsigned Shift; // The amount shifted.
- unsigned Width; // The width extracted.
- LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty)
- : PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
- // Ctor form used by DenseMap.
- LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {}
- };
- } // namespace
- namespace llvm {
- template<>
- struct DenseMapInfo<LoweredPHIRecord> {
- static inline LoweredPHIRecord getEmptyKey() {
- return LoweredPHIRecord(nullptr, 0);
- }
- static inline LoweredPHIRecord getTombstoneKey() {
- return LoweredPHIRecord(nullptr, 1);
- }
- static unsigned getHashValue(const LoweredPHIRecord &Val) {
- return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
- (Val.Width>>3);
- }
- static bool isEqual(const LoweredPHIRecord &LHS,
- const LoweredPHIRecord &RHS) {
- return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
- LHS.Width == RHS.Width;
- }
- };
- } // namespace llvm
- /// This is an integer PHI and we know that it has an illegal type: see if it is
- /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
- /// the various pieces being extracted. This sort of thing is introduced when
- /// SROA promotes an aggregate to large integer values.
- ///
- /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
- /// inttoptr. We should produce new PHIs in the right type.
- ///
- Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
- // PHIUsers - Keep track of all of the truncated values extracted from a set
- // of PHIs, along with their offset. These are the things we want to rewrite.
- SmallVector<PHIUsageRecord, 16> PHIUsers;
- // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
- // nodes which are extracted from. PHIsToSlice is a set we use to avoid
- // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
- // check the uses of (to ensure they are all extracts).
- SmallVector<PHINode*, 8> PHIsToSlice;
- SmallPtrSet<PHINode*, 8> PHIsInspected;
- PHIsToSlice.push_back(&FirstPhi);
- PHIsInspected.insert(&FirstPhi);
- for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
- PHINode *PN = PHIsToSlice[PHIId];
- // Scan the input list of the PHI. If any input is an invoke, and if the
- // input is defined in the predecessor, then we won't be split the critical
- // edge which is required to insert a truncate. Because of this, we have to
- // bail out.
- for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
- BasicBlock *BB = std::get<0>(Incoming);
- Value *V = std::get<1>(Incoming);
- InvokeInst *II = dyn_cast<InvokeInst>(V);
- if (!II)
- continue;
- if (II->getParent() != BB)
- continue;
- // If we have a phi, and if it's directly in the predecessor, then we have
- // a critical edge where we need to put the truncate. Since we can't
- // split the edge in instcombine, we have to bail out.
- return nullptr;
- }
- // If the incoming value is a PHI node before a catchswitch, we cannot
- // extract the value within that BB because we cannot insert any non-PHI
- // instructions in the BB.
- for (auto *Pred : PN->blocks())
- if (Pred->getFirstInsertionPt() == Pred->end())
- return nullptr;
- for (User *U : PN->users()) {
- Instruction *UserI = cast<Instruction>(U);
- // If the user is a PHI, inspect its uses recursively.
- if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
- if (PHIsInspected.insert(UserPN).second)
- PHIsToSlice.push_back(UserPN);
- continue;
- }
- // Truncates are always ok.
- if (isa<TruncInst>(UserI)) {
- PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
- continue;
- }
- // Otherwise it must be a lshr which can only be used by one trunc.
- if (UserI->getOpcode() != Instruction::LShr ||
- !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
- !isa<ConstantInt>(UserI->getOperand(1)))
- return nullptr;
- // Bail on out of range shifts.
- unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
- if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
- return nullptr;
- unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
- PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
- }
- }
- // If we have no users, they must be all self uses, just nuke the PHI.
- if (PHIUsers.empty())
- return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType()));
- // If this phi node is transformable, create new PHIs for all the pieces
- // extracted out of it. First, sort the users by their offset and size.
- array_pod_sort(PHIUsers.begin(), PHIUsers.end());
- LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
- for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs()
- << "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n');
- // PredValues - This is a temporary used when rewriting PHI nodes. It is
- // hoisted out here to avoid construction/destruction thrashing.
- DenseMap<BasicBlock*, Value*> PredValues;
- // ExtractedVals - Each new PHI we introduce is saved here so we don't
- // introduce redundant PHIs.
- DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
- for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
- unsigned PHIId = PHIUsers[UserI].PHIId;
- PHINode *PN = PHIsToSlice[PHIId];
- unsigned Offset = PHIUsers[UserI].Shift;
- Type *Ty = PHIUsers[UserI].Inst->getType();
- PHINode *EltPHI;
- // If we've already lowered a user like this, reuse the previously lowered
- // value.
- if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
- // Otherwise, Create the new PHI node for this user.
- EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
- PN->getName()+".off"+Twine(Offset), PN);
- assert(EltPHI->getType() != PN->getType() &&
- "Truncate didn't shrink phi?");
- for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
- BasicBlock *Pred = std::get<0>(Incoming);
- Value *InVal = std::get<1>(Incoming);
- Value *&PredVal = PredValues[Pred];
- // If we already have a value for this predecessor, reuse it.
- if (PredVal) {
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
- // Handle the PHI self-reuse case.
- if (InVal == PN) {
- PredVal = EltPHI;
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
- if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
- // If the incoming value was a PHI, and if it was one of the PHIs we
- // already rewrote it, just use the lowered value.
- if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
- PredVal = Res;
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
- }
- // Otherwise, do an extract in the predecessor.
- Builder.SetInsertPoint(Pred->getTerminator());
- Value *Res = InVal;
- if (Offset)
- Res = Builder.CreateLShr(
- Res, ConstantInt::get(InVal->getType(), Offset), "extract");
- Res = Builder.CreateTrunc(Res, Ty, "extract.t");
- PredVal = Res;
- EltPHI->addIncoming(Res, Pred);
- // If the incoming value was a PHI, and if it was one of the PHIs we are
- // rewriting, we will ultimately delete the code we inserted. This
- // means we need to revisit that PHI to make sure we extract out the
- // needed piece.
- if (PHINode *OldInVal = dyn_cast<PHINode>(InVal))
- if (PHIsInspected.count(OldInVal)) {
- unsigned RefPHIId =
- find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
- PHIUsers.push_back(
- PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res)));
- ++UserE;
- }
- }
- PredValues.clear();
- LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
- << *EltPHI << '\n');
- ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
- }
- // Replace the use of this piece with the PHI node.
- replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
- }
- // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
- // with poison.
- Value *Poison = PoisonValue::get(FirstPhi.getType());
- for (PHINode *PHI : drop_begin(PHIsToSlice))
- replaceInstUsesWith(*PHI, Poison);
- return replaceInstUsesWith(FirstPhi, Poison);
- }
- static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN,
- const DominatorTree &DT) {
- // Simplify the following patterns:
- // if (cond)
- // / \
- // ... ...
- // \ /
- // phi [true] [false]
- // and
- // switch (cond)
- // case v1: / \ case v2:
- // ... ...
- // \ /
- // phi [v1] [v2]
- // Make sure all inputs are constants.
- if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); }))
- return nullptr;
- BasicBlock *BB = PN.getParent();
- // Do not bother with unreachable instructions.
- if (!DT.isReachableFromEntry(BB))
- return nullptr;
- // Determine which value the condition of the idom has for which successor.
- LLVMContext &Context = PN.getContext();
- auto *IDom = DT.getNode(BB)->getIDom()->getBlock();
- Value *Cond;
- SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue;
- SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount;
- auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) {
- SuccForValue[C] = Succ;
- ++SuccCount[Succ];
- };
- if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) {
- if (BI->isUnconditional())
- return nullptr;
- Cond = BI->getCondition();
- AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0));
- AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1));
- } else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) {
- Cond = SI->getCondition();
- ++SuccCount[SI->getDefaultDest()];
- for (auto Case : SI->cases())
- AddSucc(Case.getCaseValue(), Case.getCaseSuccessor());
- } else {
- return nullptr;
- }
- if (Cond->getType() != PN.getType())
- return nullptr;
- // Check that edges outgoing from the idom's terminators dominate respective
- // inputs of the Phi.
- std::optional<bool> Invert;
- for (auto Pair : zip(PN.incoming_values(), PN.blocks())) {
- auto *Input = cast<ConstantInt>(std::get<0>(Pair));
- BasicBlock *Pred = std::get<1>(Pair);
- auto IsCorrectInput = [&](ConstantInt *Input) {
- // The input needs to be dominated by the corresponding edge of the idom.
- // This edge cannot be a multi-edge, as that would imply that multiple
- // different condition values follow the same edge.
- auto It = SuccForValue.find(Input);
- return It != SuccForValue.end() && SuccCount[It->second] == 1 &&
- DT.dominates(BasicBlockEdge(IDom, It->second),
- BasicBlockEdge(Pred, BB));
- };
- // Depending on the constant, the condition may need to be inverted.
- bool NeedsInvert;
- if (IsCorrectInput(Input))
- NeedsInvert = false;
- else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input))))
- NeedsInvert = true;
- else
- return nullptr;
- // Make sure the inversion requirement is always the same.
- if (Invert && *Invert != NeedsInvert)
- return nullptr;
- Invert = NeedsInvert;
- }
- if (!*Invert)
- return Cond;
- // This Phi is actually opposite to branching condition of IDom. We invert
- // the condition that will potentially open up some opportunities for
- // sinking.
- auto InsertPt = BB->getFirstInsertionPt();
- if (InsertPt != BB->end()) {
- Self.Builder.SetInsertPoint(&*InsertPt);
- return Self.Builder.CreateNot(Cond);
- }
- return nullptr;
- }
- // PHINode simplification
- //
- Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) {
- if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
- return replaceInstUsesWith(PN, V);
- if (Instruction *Result = foldPHIArgZextsIntoPHI(PN))
- return Result;
- if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN))
- return Result;
- // If all PHI operands are the same operation, pull them through the PHI,
- // reducing code size.
- if (isa<Instruction>(PN.getIncomingValue(0)) &&
- isa<Instruction>(PN.getIncomingValue(1)) &&
- cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
- cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
- PN.getIncomingValue(0)->hasOneUser())
- if (Instruction *Result = foldPHIArgOpIntoPHI(PN))
- return Result;
- // If the incoming values are pointer casts of the same original value,
- // replace the phi with a single cast iff we can insert a non-PHI instruction.
- if (PN.getType()->isPointerTy() &&
- PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) {
- Value *IV0 = PN.getIncomingValue(0);
- Value *IV0Stripped = IV0->stripPointerCasts();
- // Set to keep track of values known to be equal to IV0Stripped after
- // stripping pointer casts.
- SmallPtrSet<Value *, 4> CheckedIVs;
- CheckedIVs.insert(IV0);
- if (IV0 != IV0Stripped &&
- all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) {
- return !CheckedIVs.insert(IV).second ||
- IV0Stripped == IV->stripPointerCasts();
- })) {
- return CastInst::CreatePointerCast(IV0Stripped, PN.getType());
- }
- }
- // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
- // this PHI only has a single use (a PHI), and if that PHI only has one use (a
- // PHI)... break the cycle.
- if (PN.hasOneUse()) {
- if (foldIntegerTypedPHI(PN))
- return nullptr;
- Instruction *PHIUser = cast<Instruction>(PN.user_back());
- if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
- SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
- PotentiallyDeadPHIs.insert(&PN);
- if (isDeadPHICycle(PU, PotentiallyDeadPHIs))
- return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
- }
- // If this phi has a single use, and if that use just computes a value for
- // the next iteration of a loop, delete the phi. This occurs with unused
- // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
- // common case here is good because the only other things that catch this
- // are induction variable analysis (sometimes) and ADCE, which is only run
- // late.
- if (PHIUser->hasOneUse() &&
- (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
- PHIUser->user_back() == &PN) {
- return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
- }
- // When a PHI is used only to be compared with zero, it is safe to replace
- // an incoming value proved as known nonzero with any non-zero constant.
- // For example, in the code below, the incoming value %v can be replaced
- // with any non-zero constant based on the fact that the PHI is only used to
- // be compared with zero and %v is a known non-zero value:
- // %v = select %cond, 1, 2
- // %p = phi [%v, BB] ...
- // icmp eq, %p, 0
- auto *CmpInst = dyn_cast<ICmpInst>(PHIUser);
- // FIXME: To be simple, handle only integer type for now.
- if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() &&
- match(CmpInst->getOperand(1), m_Zero())) {
- ConstantInt *NonZeroConst = nullptr;
- bool MadeChange = false;
- for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
- Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator();
- Value *VA = PN.getIncomingValue(I);
- if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
- if (!NonZeroConst)
- NonZeroConst = getAnyNonZeroConstInt(PN);
- if (NonZeroConst != VA) {
- replaceOperand(PN, I, NonZeroConst);
- MadeChange = true;
- }
- }
- }
- if (MadeChange)
- return &PN;
- }
- }
- // We sometimes end up with phi cycles that non-obviously end up being the
- // same value, for example:
- // z = some value; x = phi (y, z); y = phi (x, z)
- // where the phi nodes don't necessarily need to be in the same block. Do a
- // quick check to see if the PHI node only contains a single non-phi value, if
- // so, scan to see if the phi cycle is actually equal to that value.
- {
- unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
- // Scan for the first non-phi operand.
- while (InValNo != NumIncomingVals &&
- isa<PHINode>(PN.getIncomingValue(InValNo)))
- ++InValNo;
- if (InValNo != NumIncomingVals) {
- Value *NonPhiInVal = PN.getIncomingValue(InValNo);
- // Scan the rest of the operands to see if there are any conflicts, if so
- // there is no need to recursively scan other phis.
- for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
- Value *OpVal = PN.getIncomingValue(InValNo);
- if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
- break;
- }
- // If we scanned over all operands, then we have one unique value plus
- // phi values. Scan PHI nodes to see if they all merge in each other or
- // the value.
- if (InValNo == NumIncomingVals) {
- SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
- if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
- return replaceInstUsesWith(PN, NonPhiInVal);
- }
- }
- }
- // If there are multiple PHIs, sort their operands so that they all list
- // the blocks in the same order. This will help identical PHIs be eliminated
- // by other passes. Other passes shouldn't depend on this for correctness
- // however.
- PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
- if (&PN != FirstPN)
- for (unsigned I = 0, E = FirstPN->getNumIncomingValues(); I != E; ++I) {
- BasicBlock *BBA = PN.getIncomingBlock(I);
- BasicBlock *BBB = FirstPN->getIncomingBlock(I);
- if (BBA != BBB) {
- Value *VA = PN.getIncomingValue(I);
- unsigned J = PN.getBasicBlockIndex(BBB);
- Value *VB = PN.getIncomingValue(J);
- PN.setIncomingBlock(I, BBB);
- PN.setIncomingValue(I, VB);
- PN.setIncomingBlock(J, BBA);
- PN.setIncomingValue(J, VA);
- // NOTE: Instcombine normally would want us to "return &PN" if we
- // modified any of the operands of an instruction. However, since we
- // aren't adding or removing uses (just rearranging them) we don't do
- // this in this case.
- }
- }
- // Is there an identical PHI node in this basic block?
- for (PHINode &IdenticalPN : PN.getParent()->phis()) {
- // Ignore the PHI node itself.
- if (&IdenticalPN == &PN)
- continue;
- // Note that even though we've just canonicalized this PHI, due to the
- // worklist visitation order, there are no guarantess that *every* PHI
- // has been canonicalized, so we can't just compare operands ranges.
- if (!PN.isIdenticalToWhenDefined(&IdenticalPN))
- continue;
- // Just use that PHI instead then.
- ++NumPHICSEs;
- return replaceInstUsesWith(PN, &IdenticalPN);
- }
- // If this is an integer PHI and we know that it has an illegal type, see if
- // it is only used by trunc or trunc(lshr) operations. If so, we split the
- // PHI into the various pieces being extracted. This sort of thing is
- // introduced when SROA promotes an aggregate to a single large integer type.
- if (PN.getType()->isIntegerTy() &&
- !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
- if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
- return Res;
- // Ultimately, try to replace this Phi with a dominating condition.
- if (auto *V = simplifyUsingControlFlow(*this, PN, DT))
- return replaceInstUsesWith(PN, V);
- return nullptr;
- }
|