//===- InstCombinePHI.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the visitPHINode function. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/InstCombine/InstCombiner.h" #include "llvm/Transforms/Utils/Local.h" #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "instcombine" static cl::opt MaxNumPhis("instcombine-max-num-phis", cl::init(512), cl::desc("Maximum number phis to handle in intptr/ptrint folding")); STATISTIC(NumPHIsOfInsertValues, "Number of phi-of-insertvalue turned into insertvalue-of-phis"); STATISTIC(NumPHIsOfExtractValues, "Number of phi-of-extractvalue turned into extractvalue-of-phi"); STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); /// The PHI arguments will be folded into a single operation with a PHI node /// as input. The debug location of the single operation will be the merged /// locations of the original PHI node arguments. void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) { auto *FirstInst = cast(PN.getIncomingValue(0)); Inst->setDebugLoc(FirstInst->getDebugLoc()); // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc // will be inefficient. assert(!isa(Inst)); for (Value *V : drop_begin(PN.incoming_values())) { auto *I = cast(V); Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc()); } } // Replace Integer typed PHI PN if the PHI's value is used as a pointer value. // If there is an existing pointer typed PHI that produces the same value as PN, // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new // PHI node: // // Case-1: // bb1: // int_init = PtrToInt(ptr_init) // br label %bb2 // bb2: // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] // ptr_val2 = IntToPtr(int_val) // ... // use(ptr_val2) // ptr_val_inc = ... // inc_val_inc = PtrToInt(ptr_val_inc) // // ==> // bb1: // br label %bb2 // bb2: // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] // ... // use(ptr_val) // ptr_val_inc = ... // // Case-2: // bb1: // int_ptr = BitCast(ptr_ptr) // int_init = Load(int_ptr) // br label %bb2 // bb2: // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] // ptr_val2 = IntToPtr(int_val) // ... // use(ptr_val2) // ptr_val_inc = ... // inc_val_inc = PtrToInt(ptr_val_inc) // ==> // bb1: // ptr_init = Load(ptr_ptr) // br label %bb2 // bb2: // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] // ... // use(ptr_val) // ptr_val_inc = ... // ... // bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) { if (!PN.getType()->isIntegerTy()) return false; if (!PN.hasOneUse()) return false; auto *IntToPtr = dyn_cast(PN.user_back()); if (!IntToPtr) return false; // Check if the pointer is actually used as pointer: auto HasPointerUse = [](Instruction *IIP) { for (User *U : IIP->users()) { Value *Ptr = nullptr; if (LoadInst *LoadI = dyn_cast(U)) { Ptr = LoadI->getPointerOperand(); } else if (StoreInst *SI = dyn_cast(U)) { Ptr = SI->getPointerOperand(); } else if (GetElementPtrInst *GI = dyn_cast(U)) { Ptr = GI->getPointerOperand(); } if (Ptr && Ptr == IIP) return true; } return false; }; if (!HasPointerUse(IntToPtr)) return false; if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) != DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType())) return false; SmallVector AvailablePtrVals; for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) { BasicBlock *BB = std::get<0>(Incoming); Value *Arg = std::get<1>(Incoming); // First look backward: if (auto *PI = dyn_cast(Arg)) { AvailablePtrVals.emplace_back(PI->getOperand(0)); continue; } // Next look forward: Value *ArgIntToPtr = nullptr; for (User *U : Arg->users()) { if (isa(U) && U->getType() == IntToPtr->getType() && (DT.dominates(cast(U), BB) || cast(U)->getParent() == BB)) { ArgIntToPtr = U; break; } } if (ArgIntToPtr) { AvailablePtrVals.emplace_back(ArgIntToPtr); continue; } // If Arg is defined by a PHI, allow it. This will also create // more opportunities iteratively. if (isa(Arg)) { AvailablePtrVals.emplace_back(Arg); continue; } // For a single use integer load: auto *LoadI = dyn_cast(Arg); if (!LoadI) return false; if (!LoadI->hasOneUse()) return false; // Push the integer typed Load instruction into the available // value set, and fix it up later when the pointer typed PHI // is synthesized. AvailablePtrVals.emplace_back(LoadI); } // Now search for a matching PHI auto *BB = PN.getParent(); assert(AvailablePtrVals.size() == PN.getNumIncomingValues() && "Not enough available ptr typed incoming values"); PHINode *MatchingPtrPHI = nullptr; unsigned NumPhis = 0; for (PHINode &PtrPHI : BB->phis()) { // FIXME: consider handling this in AggressiveInstCombine if (NumPhis++ > MaxNumPhis) return false; if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType()) continue; if (any_of(zip(PN.blocks(), AvailablePtrVals), [&](const auto &BlockAndValue) { BasicBlock *BB = std::get<0>(BlockAndValue); Value *V = std::get<1>(BlockAndValue); return PtrPHI.getIncomingValueForBlock(BB) != V; })) continue; MatchingPtrPHI = &PtrPHI; break; } if (MatchingPtrPHI) { assert(MatchingPtrPHI->getType() == IntToPtr->getType() && "Phi's Type does not match with IntToPtr"); // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here, // to make sure another transform can't undo it in the meantime. replaceInstUsesWith(*IntToPtr, MatchingPtrPHI); eraseInstFromFunction(*IntToPtr); eraseInstFromFunction(PN); return true; } // If it requires a conversion for every PHI operand, do not do it. if (all_of(AvailablePtrVals, [&](Value *V) { return (V->getType() != IntToPtr->getType()) || isa(V); })) return false; // If any of the operand that requires casting is a terminator // instruction, do not do it. Similarly, do not do the transform if the value // is PHI in a block with no insertion point, for example, a catchswitch // block, since we will not be able to insert a cast after the PHI. if (any_of(AvailablePtrVals, [&](Value *V) { if (V->getType() == IntToPtr->getType()) return false; auto *Inst = dyn_cast(V); if (!Inst) return false; if (Inst->isTerminator()) return true; auto *BB = Inst->getParent(); if (isa(Inst) && BB->getFirstInsertionPt() == BB->end()) return true; return false; })) return false; PHINode *NewPtrPHI = PHINode::Create( IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr"); InsertNewInstBefore(NewPtrPHI, PN); SmallDenseMap Casts; for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) { auto *IncomingBB = std::get<0>(Incoming); auto *IncomingVal = std::get<1>(Incoming); if (IncomingVal->getType() == IntToPtr->getType()) { NewPtrPHI->addIncoming(IncomingVal, IncomingBB); continue; } #ifndef NDEBUG LoadInst *LoadI = dyn_cast(IncomingVal); assert((isa(IncomingVal) || IncomingVal->getType()->isPointerTy() || (LoadI && LoadI->hasOneUse())) && "Can not replace LoadInst with multiple uses"); #endif // Need to insert a BitCast. // For an integer Load instruction with a single use, the load + IntToPtr // cast will be simplified into a pointer load: // %v = load i64, i64* %a.ip, align 8 // %v.cast = inttoptr i64 %v to float ** // ==> // %v.ptrp = bitcast i64 * %a.ip to float ** // %v.cast = load float *, float ** %v.ptrp, align 8 Instruction *&CI = Casts[IncomingVal]; if (!CI) { CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(), IncomingVal->getName() + ".ptr"); if (auto *IncomingI = dyn_cast(IncomingVal)) { BasicBlock::iterator InsertPos(IncomingI); InsertPos++; BasicBlock *BB = IncomingI->getParent(); if (isa(IncomingI)) InsertPos = BB->getFirstInsertionPt(); assert(InsertPos != BB->end() && "should have checked above"); InsertNewInstBefore(CI, *InsertPos); } else { auto *InsertBB = &IncomingBB->getParent()->getEntryBlock(); InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt()); } } NewPtrPHI->addIncoming(CI, IncomingBB); } // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here, // to make sure another transform can't undo it in the meantime. replaceInstUsesWith(*IntToPtr, NewPtrPHI); eraseInstFromFunction(*IntToPtr); eraseInstFromFunction(PN); return true; } // Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and // fold Phi-operand to bitcast. Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) { // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] ) // Make sure all uses of phi are ptr2int. if (!all_of(PN.users(), [](User *U) { return isa(U); })) return nullptr; // Iterating over all operands to check presence of target pointers for // optimization. bool OperandWithRoundTripCast = false; for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) { if (auto *NewOp = simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) { PN.setIncomingValue(OpNum, NewOp); OperandWithRoundTripCast = true; } } if (!OperandWithRoundTripCast) return nullptr; return &PN; } /// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)], /// turn this into a phi[a,c] and phi[b,d] and a single insertvalue. Instruction * InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) { auto *FirstIVI = cast(PN.getIncomingValue(0)); // Scan to see if all operands are `insertvalue`'s with the same indicies, // and all have a single use. for (Value *V : drop_begin(PN.incoming_values())) { auto *I = dyn_cast(V); if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices()) return nullptr; } // For each operand of an `insertvalue` std::array NewOperands; for (int OpIdx : {0, 1}) { auto *&NewOperand = NewOperands[OpIdx]; // Create a new PHI node to receive the values the operand has in each // incoming basic block. NewOperand = PHINode::Create( FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(), FirstIVI->getOperand(OpIdx)->getName() + ".pn"); // And populate each operand's PHI with said values. for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) NewOperand->addIncoming( cast(std::get<1>(Incoming))->getOperand(OpIdx), std::get<0>(Incoming)); InsertNewInstBefore(NewOperand, PN); } // And finally, create `insertvalue` over the newly-formed PHI nodes. auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1], FirstIVI->getIndices(), PN.getName()); PHIArgMergedDebugLoc(NewIVI, PN); ++NumPHIsOfInsertValues; return NewIVI; } /// If we have something like phi [extractvalue(a,0), extractvalue(b,0)], /// turn this into a phi[a,b] and a single extractvalue. Instruction * InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) { auto *FirstEVI = cast(PN.getIncomingValue(0)); // Scan to see if all operands are `extractvalue`'s with the same indicies, // and all have a single use. for (Value *V : drop_begin(PN.incoming_values())) { auto *I = dyn_cast(V); if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() || I->getAggregateOperand()->getType() != FirstEVI->getAggregateOperand()->getType()) return nullptr; } // Create a new PHI node to receive the values the aggregate operand has // in each incoming basic block. auto *NewAggregateOperand = PHINode::Create( FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(), FirstEVI->getAggregateOperand()->getName() + ".pn"); // And populate the PHI with said values. for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) NewAggregateOperand->addIncoming( cast(std::get<1>(Incoming))->getAggregateOperand(), std::get<0>(Incoming)); InsertNewInstBefore(NewAggregateOperand, PN); // And finally, create `extractvalue` over the newly-formed PHI nodes. auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand, FirstEVI->getIndices(), PN.getName()); PHIArgMergedDebugLoc(NewEVI, PN); ++NumPHIsOfExtractValues; return NewEVI; } /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the /// adds all have a single user, turn this into a phi and a single binop. Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) { Instruction *FirstInst = cast(PN.getIncomingValue(0)); assert(isa(FirstInst) || isa(FirstInst)); unsigned Opc = FirstInst->getOpcode(); Value *LHSVal = FirstInst->getOperand(0); Value *RHSVal = FirstInst->getOperand(1); Type *LHSType = LHSVal->getType(); Type *RHSType = RHSVal->getType(); // Scan to see if all operands are the same opcode, and all have one user. for (Value *V : drop_begin(PN.incoming_values())) { Instruction *I = dyn_cast(V); if (!I || I->getOpcode() != Opc || !I->hasOneUser() || // Verify type of the LHS matches so we don't fold cmp's of different // types. I->getOperand(0)->getType() != LHSType || I->getOperand(1)->getType() != RHSType) return nullptr; // If they are CmpInst instructions, check their predicates if (CmpInst *CI = dyn_cast(I)) if (CI->getPredicate() != cast(FirstInst)->getPredicate()) return nullptr; // Keep track of which operand needs a phi node. if (I->getOperand(0) != LHSVal) LHSVal = nullptr; if (I->getOperand(1) != RHSVal) RHSVal = nullptr; } // If both LHS and RHS would need a PHI, don't do this transformation, // because it would increase the number of PHIs entering the block, // which leads to higher register pressure. This is especially // bad when the PHIs are in the header of a loop. if (!LHSVal && !RHSVal) return nullptr; // Otherwise, this is safe to transform! Value *InLHS = FirstInst->getOperand(0); Value *InRHS = FirstInst->getOperand(1); PHINode *NewLHS = nullptr, *NewRHS = nullptr; if (!LHSVal) { NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(), FirstInst->getOperand(0)->getName() + ".pn"); NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); InsertNewInstBefore(NewLHS, PN); LHSVal = NewLHS; } if (!RHSVal) { NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(), FirstInst->getOperand(1)->getName() + ".pn"); NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); InsertNewInstBefore(NewRHS, PN); RHSVal = NewRHS; } // Add all operands to the new PHIs. if (NewLHS || NewRHS) { for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { BasicBlock *InBB = std::get<0>(Incoming); Value *InVal = std::get<1>(Incoming); Instruction *InInst = cast(InVal); if (NewLHS) { Value *NewInLHS = InInst->getOperand(0); NewLHS->addIncoming(NewInLHS, InBB); } if (NewRHS) { Value *NewInRHS = InInst->getOperand(1); NewRHS->addIncoming(NewInRHS, InBB); } } } if (CmpInst *CIOp = dyn_cast(FirstInst)) { CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal, RHSVal); PHIArgMergedDebugLoc(NewCI, PN); return NewCI; } BinaryOperator *BinOp = cast(FirstInst); BinaryOperator *NewBinOp = BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); NewBinOp->copyIRFlags(PN.getIncomingValue(0)); for (Value *V : drop_begin(PN.incoming_values())) NewBinOp->andIRFlags(V); PHIArgMergedDebugLoc(NewBinOp, PN); return NewBinOp; } Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) { GetElementPtrInst *FirstInst =cast(PN.getIncomingValue(0)); SmallVector FixedOperands(FirstInst->op_begin(), FirstInst->op_end()); // This is true if all GEP bases are allocas and if all indices into them are // constants. bool AllBasePointersAreAllocas = true; // We don't want to replace this phi if the replacement would require // more than one phi, which leads to higher register pressure. This is // especially bad when the PHIs are in the header of a loop. bool NeededPhi = false; bool AllInBounds = true; // Scan to see if all operands are the same opcode, and all have one user. for (Value *V : drop_begin(PN.incoming_values())) { GetElementPtrInst *GEP = dyn_cast(V); if (!GEP || !GEP->hasOneUser() || GEP->getSourceElementType() != FirstInst->getSourceElementType() || GEP->getNumOperands() != FirstInst->getNumOperands()) return nullptr; AllInBounds &= GEP->isInBounds(); // Keep track of whether or not all GEPs are of alloca pointers. if (AllBasePointersAreAllocas && (!isa(GEP->getOperand(0)) || !GEP->hasAllConstantIndices())) AllBasePointersAreAllocas = false; // Compare the operand lists. for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) { if (FirstInst->getOperand(Op) == GEP->getOperand(Op)) continue; // Don't merge two GEPs when two operands differ (introducing phi nodes) // if one of the PHIs has a constant for the index. The index may be // substantially cheaper to compute for the constants, so making it a // variable index could pessimize the path. This also handles the case // for struct indices, which must always be constant. if (isa(FirstInst->getOperand(Op)) || isa(GEP->getOperand(Op))) return nullptr; if (FirstInst->getOperand(Op)->getType() != GEP->getOperand(Op)->getType()) return nullptr; // If we already needed a PHI for an earlier operand, and another operand // also requires a PHI, we'd be introducing more PHIs than we're // eliminating, which increases register pressure on entry to the PHI's // block. if (NeededPhi) return nullptr; FixedOperands[Op] = nullptr; // Needs a PHI. NeededPhi = true; } } // If all of the base pointers of the PHI'd GEPs are from allocas, don't // bother doing this transformation. At best, this will just save a bit of // offset calculation, but all the predecessors will have to materialize the // stack address into a register anyway. We'd actually rather *clone* the // load up into the predecessors so that we have a load of a gep of an alloca, // which can usually all be folded into the load. if (AllBasePointersAreAllocas) return nullptr; // Otherwise, this is safe to transform. Insert PHI nodes for each operand // that is variable. SmallVector OperandPhis(FixedOperands.size()); bool HasAnyPHIs = false; for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) { if (FixedOperands[I]) continue; // operand doesn't need a phi. Value *FirstOp = FirstInst->getOperand(I); PHINode *NewPN = PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn"); InsertNewInstBefore(NewPN, PN); NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); OperandPhis[I] = NewPN; FixedOperands[I] = NewPN; HasAnyPHIs = true; } // Add all operands to the new PHIs. if (HasAnyPHIs) { for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { BasicBlock *InBB = std::get<0>(Incoming); Value *InVal = std::get<1>(Incoming); GetElementPtrInst *InGEP = cast(InVal); for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op) if (PHINode *OpPhi = OperandPhis[Op]) OpPhi->addIncoming(InGEP->getOperand(Op), InBB); } } Value *Base = FixedOperands[0]; GetElementPtrInst *NewGEP = GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base, ArrayRef(FixedOperands).slice(1)); if (AllInBounds) NewGEP->setIsInBounds(); PHIArgMergedDebugLoc(NewGEP, PN); return NewGEP; } /// Return true if we know that it is safe to sink the load out of the block /// that defines it. This means that it must be obvious the value of the load is /// not changed from the point of the load to the end of the block it is in. /// /// Finally, it is safe, but not profitable, to sink a load targeting a /// non-address-taken alloca. Doing so will cause us to not promote the alloca /// to a register. static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end(); for (++BBI; BBI != E; ++BBI) if (BBI->mayWriteToMemory()) { // Calls that only access inaccessible memory do not block sinking the // load. if (auto *CB = dyn_cast(BBI)) if (CB->onlyAccessesInaccessibleMemory()) continue; return false; } // Check for non-address taken alloca. If not address-taken already, it isn't // profitable to do this xform. if (AllocaInst *AI = dyn_cast(L->getOperand(0))) { bool IsAddressTaken = false; for (User *U : AI->users()) { if (isa(U)) continue; if (StoreInst *SI = dyn_cast(U)) { // If storing TO the alloca, then the address isn't taken. if (SI->getOperand(1) == AI) continue; } IsAddressTaken = true; break; } if (!IsAddressTaken && AI->isStaticAlloca()) return false; } // If this load is a load from a GEP with a constant offset from an alloca, // then we don't want to sink it. In its present form, it will be // load [constant stack offset]. Sinking it will cause us to have to // materialize the stack addresses in each predecessor in a register only to // do a shared load from register in the successor. if (GetElementPtrInst *GEP = dyn_cast(L->getOperand(0))) if (AllocaInst *AI = dyn_cast(GEP->getOperand(0))) if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) return false; return true; } Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) { LoadInst *FirstLI = cast(PN.getIncomingValue(0)); // Can't forward swifterror through a phi. if (FirstLI->getOperand(0)->isSwiftError()) return nullptr; // FIXME: This is overconservative; this transform is allowed in some cases // for atomic operations. if (FirstLI->isAtomic()) return nullptr; // When processing loads, we need to propagate two bits of information to the // sunk load: whether it is volatile, and what its alignment is. bool IsVolatile = FirstLI->isVolatile(); Align LoadAlignment = FirstLI->getAlign(); const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); // We can't sink the load if the loaded value could be modified between the // load and the PHI. if (FirstLI->getParent() != PN.getIncomingBlock(0) || !isSafeAndProfitableToSinkLoad(FirstLI)) return nullptr; // If the PHI is of volatile loads and the load block has multiple // successors, sinking it would remove a load of the volatile value from // the path through the other successor. if (IsVolatile && FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) return nullptr; for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { BasicBlock *InBB = std::get<0>(Incoming); Value *InVal = std::get<1>(Incoming); LoadInst *LI = dyn_cast(InVal); if (!LI || !LI->hasOneUser() || LI->isAtomic()) return nullptr; // Make sure all arguments are the same type of operation. if (LI->isVolatile() != IsVolatile || LI->getPointerAddressSpace() != LoadAddrSpace) return nullptr; // Can't forward swifterror through a phi. if (LI->getOperand(0)->isSwiftError()) return nullptr; // We can't sink the load if the loaded value could be modified between // the load and the PHI. if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI)) return nullptr; LoadAlignment = std::min(LoadAlignment, LI->getAlign()); // If the PHI is of volatile loads and the load block has multiple // successors, sinking it would remove a load of the volatile value from // the path through the other successor. if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1) return nullptr; } // Okay, they are all the same operation. Create a new PHI node of the // correct type, and PHI together all of the LHS's of the instructions. PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), PN.getNumIncomingValues(), PN.getName()+".in"); Value *InVal = FirstLI->getOperand(0); NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); LoadInst *NewLI = new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment); unsigned KnownIDs[] = { LLVMContext::MD_tbaa, LLVMContext::MD_range, LLVMContext::MD_invariant_load, LLVMContext::MD_alias_scope, LLVMContext::MD_noalias, LLVMContext::MD_nonnull, LLVMContext::MD_align, LLVMContext::MD_dereferenceable, LLVMContext::MD_dereferenceable_or_null, LLVMContext::MD_access_group, }; for (unsigned ID : KnownIDs) NewLI->setMetadata(ID, FirstLI->getMetadata(ID)); // Add all operands to the new PHI and combine TBAA metadata. for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { BasicBlock *BB = std::get<0>(Incoming); Value *V = std::get<1>(Incoming); LoadInst *LI = cast(V); combineMetadata(NewLI, LI, KnownIDs, true); Value *NewInVal = LI->getOperand(0); if (NewInVal != InVal) InVal = nullptr; NewPN->addIncoming(NewInVal, BB); } if (InVal) { // The new PHI unions all of the same values together. This is really // common, so we handle it intelligently here for compile-time speed. NewLI->setOperand(0, InVal); delete NewPN; } else { InsertNewInstBefore(NewPN, PN); } // If this was a volatile load that we are merging, make sure to loop through // and mark all the input loads as non-volatile. If we don't do this, we will // insert a new volatile load and the old ones will not be deletable. if (IsVolatile) for (Value *IncValue : PN.incoming_values()) cast(IncValue)->setVolatile(false); PHIArgMergedDebugLoc(NewLI, PN); return NewLI; } /// TODO: This function could handle other cast types, but then it might /// require special-casing a cast from the 'i1' type. See the comment in /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types. Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) { // We cannot create a new instruction after the PHI if the terminator is an // EHPad because there is no valid insertion point. if (Instruction *TI = Phi.getParent()->getTerminator()) if (TI->isEHPad()) return nullptr; // Early exit for the common case of a phi with two operands. These are // handled elsewhere. See the comment below where we check the count of zexts // and constants for more details. unsigned NumIncomingValues = Phi.getNumIncomingValues(); if (NumIncomingValues < 3) return nullptr; // Find the narrower type specified by the first zext. Type *NarrowType = nullptr; for (Value *V : Phi.incoming_values()) { if (auto *Zext = dyn_cast(V)) { NarrowType = Zext->getSrcTy(); break; } } if (!NarrowType) return nullptr; // Walk the phi operands checking that we only have zexts or constants that // we can shrink for free. Store the new operands for the new phi. SmallVector NewIncoming; unsigned NumZexts = 0; unsigned NumConsts = 0; for (Value *V : Phi.incoming_values()) { if (auto *Zext = dyn_cast(V)) { // All zexts must be identical and have one user. if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser()) return nullptr; NewIncoming.push_back(Zext->getOperand(0)); NumZexts++; } else if (auto *C = dyn_cast(V)) { // Make sure that constants can fit in the new type. Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType); if (ConstantExpr::getZExt(Trunc, C->getType()) != C) return nullptr; NewIncoming.push_back(Trunc); NumConsts++; } else { // If it's not a cast or a constant, bail out. return nullptr; } } // The more common cases of a phi with no constant operands or just one // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi() // respectively. foldOpIntoPhi() wants to do the opposite transform that is // performed here. It tries to replicate a cast in the phi operand's basic // block to expose other folding opportunities. Thus, InstCombine will // infinite loop without this check. if (NumConsts == 0 || NumZexts < 2) return nullptr; // All incoming values are zexts or constants that are safe to truncate. // Create a new phi node of the narrow type, phi together all of the new // operands, and zext the result back to the original type. PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues, Phi.getName() + ".shrunk"); for (unsigned I = 0; I != NumIncomingValues; ++I) NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I)); InsertNewInstBefore(NewPhi, Phi); return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType()); } /// If all operands to a PHI node are the same "unary" operator and they all are /// only used by the PHI, PHI together their inputs, and do the operation once, /// to the result of the PHI. Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) { // We cannot create a new instruction after the PHI if the terminator is an // EHPad because there is no valid insertion point. if (Instruction *TI = PN.getParent()->getTerminator()) if (TI->isEHPad()) return nullptr; Instruction *FirstInst = cast(PN.getIncomingValue(0)); if (isa(FirstInst)) return foldPHIArgGEPIntoPHI(PN); if (isa(FirstInst)) return foldPHIArgLoadIntoPHI(PN); if (isa(FirstInst)) return foldPHIArgInsertValueInstructionIntoPHI(PN); if (isa(FirstInst)) return foldPHIArgExtractValueInstructionIntoPHI(PN); // Scan the instruction, looking for input operations that can be folded away. // If all input operands to the phi are the same instruction (e.g. a cast from // the same type or "+42") we can pull the operation through the PHI, reducing // code size and simplifying code. Constant *ConstantOp = nullptr; Type *CastSrcTy = nullptr; if (isa(FirstInst)) { CastSrcTy = FirstInst->getOperand(0)->getType(); // Be careful about transforming integer PHIs. We don't want to pessimize // the code by turning an i32 into an i1293. if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { if (!shouldChangeType(PN.getType(), CastSrcTy)) return nullptr; } } else if (isa(FirstInst) || isa(FirstInst)) { // Can fold binop, compare or shift here if the RHS is a constant, // otherwise call FoldPHIArgBinOpIntoPHI. ConstantOp = dyn_cast(FirstInst->getOperand(1)); if (!ConstantOp) return foldPHIArgBinOpIntoPHI(PN); } else { return nullptr; // Cannot fold this operation. } // Check to see if all arguments are the same operation. for (Value *V : drop_begin(PN.incoming_values())) { Instruction *I = dyn_cast(V); if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst)) return nullptr; if (CastSrcTy) { if (I->getOperand(0)->getType() != CastSrcTy) return nullptr; // Cast operation must match. } else if (I->getOperand(1) != ConstantOp) { return nullptr; } } // Okay, they are all the same operation. Create a new PHI node of the // correct type, and PHI together all of the LHS's of the instructions. PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), PN.getNumIncomingValues(), PN.getName()+".in"); Value *InVal = FirstInst->getOperand(0); NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); // Add all operands to the new PHI. for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { BasicBlock *BB = std::get<0>(Incoming); Value *V = std::get<1>(Incoming); Value *NewInVal = cast(V)->getOperand(0); if (NewInVal != InVal) InVal = nullptr; NewPN->addIncoming(NewInVal, BB); } Value *PhiVal; if (InVal) { // The new PHI unions all of the same values together. This is really // common, so we handle it intelligently here for compile-time speed. PhiVal = InVal; delete NewPN; } else { InsertNewInstBefore(NewPN, PN); PhiVal = NewPN; } // Insert and return the new operation. if (CastInst *FirstCI = dyn_cast(FirstInst)) { CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType()); PHIArgMergedDebugLoc(NewCI, PN); return NewCI; } if (BinaryOperator *BinOp = dyn_cast(FirstInst)) { BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); BinOp->copyIRFlags(PN.getIncomingValue(0)); for (Value *V : drop_begin(PN.incoming_values())) BinOp->andIRFlags(V); PHIArgMergedDebugLoc(BinOp, PN); return BinOp; } CmpInst *CIOp = cast(FirstInst); CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), PhiVal, ConstantOp); PHIArgMergedDebugLoc(NewCI, PN); return NewCI; } /// Return true if this PHI node is only used by a PHI node cycle that is dead. static bool isDeadPHICycle(PHINode *PN, SmallPtrSetImpl &PotentiallyDeadPHIs) { if (PN->use_empty()) return true; if (!PN->hasOneUse()) return false; // Remember this node, and if we find the cycle, return. if (!PotentiallyDeadPHIs.insert(PN).second) return true; // Don't scan crazily complex things. if (PotentiallyDeadPHIs.size() == 16) return false; if (PHINode *PU = dyn_cast(PN->user_back())) return isDeadPHICycle(PU, PotentiallyDeadPHIs); return false; } /// Return true if this phi node is always equal to NonPhiInVal. /// This happens with mutually cyclic phi nodes like: /// z = some value; x = phi (y, z); y = phi (x, z) static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, SmallPtrSetImpl &ValueEqualPHIs) { // See if we already saw this PHI node. if (!ValueEqualPHIs.insert(PN).second) return true; // Don't scan crazily complex things. if (ValueEqualPHIs.size() == 16) return false; // Scan the operands to see if they are either phi nodes or are equal to // the value. for (Value *Op : PN->incoming_values()) { if (PHINode *OpPN = dyn_cast(Op)) { if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) return false; } else if (Op != NonPhiInVal) return false; } return true; } /// Return an existing non-zero constant if this phi node has one, otherwise /// return constant 1. static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) { assert(isa(PN.getType()) && "Expect only integer type phi"); for (Value *V : PN.operands()) if (auto *ConstVA = dyn_cast(V)) if (!ConstVA->isZero()) return ConstVA; return ConstantInt::get(cast(PN.getType()), 1); } namespace { struct PHIUsageRecord { unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) unsigned Shift; // The amount shifted. Instruction *Inst; // The trunc instruction. PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User) : PHIId(Pn), Shift(Sh), Inst(User) {} bool operator<(const PHIUsageRecord &RHS) const { if (PHIId < RHS.PHIId) return true; if (PHIId > RHS.PHIId) return false; if (Shift < RHS.Shift) return true; if (Shift > RHS.Shift) return false; return Inst->getType()->getPrimitiveSizeInBits() < RHS.Inst->getType()->getPrimitiveSizeInBits(); } }; struct LoweredPHIRecord { PHINode *PN; // The PHI that was lowered. unsigned Shift; // The amount shifted. unsigned Width; // The width extracted. LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty) : PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} // Ctor form used by DenseMap. LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {} }; } // namespace namespace llvm { template<> struct DenseMapInfo { static inline LoweredPHIRecord getEmptyKey() { return LoweredPHIRecord(nullptr, 0); } static inline LoweredPHIRecord getTombstoneKey() { return LoweredPHIRecord(nullptr, 1); } static unsigned getHashValue(const LoweredPHIRecord &Val) { return DenseMapInfo::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ (Val.Width>>3); } static bool isEqual(const LoweredPHIRecord &LHS, const LoweredPHIRecord &RHS) { return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && LHS.Width == RHS.Width; } }; } // namespace llvm /// This is an integer PHI and we know that it has an illegal type: see if it is /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into /// the various pieces being extracted. This sort of thing is introduced when /// SROA promotes an aggregate to large integer values. /// /// TODO: The user of the trunc may be an bitcast to float/double/vector or an /// inttoptr. We should produce new PHIs in the right type. /// Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { // PHIUsers - Keep track of all of the truncated values extracted from a set // of PHIs, along with their offset. These are the things we want to rewrite. SmallVector PHIUsers; // PHIs are often mutually cyclic, so we keep track of a whole set of PHI // nodes which are extracted from. PHIsToSlice is a set we use to avoid // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to // check the uses of (to ensure they are all extracts). SmallVector PHIsToSlice; SmallPtrSet PHIsInspected; PHIsToSlice.push_back(&FirstPhi); PHIsInspected.insert(&FirstPhi); for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { PHINode *PN = PHIsToSlice[PHIId]; // Scan the input list of the PHI. If any input is an invoke, and if the // input is defined in the predecessor, then we won't be split the critical // edge which is required to insert a truncate. Because of this, we have to // bail out. for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) { BasicBlock *BB = std::get<0>(Incoming); Value *V = std::get<1>(Incoming); InvokeInst *II = dyn_cast(V); if (!II) continue; if (II->getParent() != BB) continue; // If we have a phi, and if it's directly in the predecessor, then we have // a critical edge where we need to put the truncate. Since we can't // split the edge in instcombine, we have to bail out. return nullptr; } // If the incoming value is a PHI node before a catchswitch, we cannot // extract the value within that BB because we cannot insert any non-PHI // instructions in the BB. for (auto *Pred : PN->blocks()) if (Pred->getFirstInsertionPt() == Pred->end()) return nullptr; for (User *U : PN->users()) { Instruction *UserI = cast(U); // If the user is a PHI, inspect its uses recursively. if (PHINode *UserPN = dyn_cast(UserI)) { if (PHIsInspected.insert(UserPN).second) PHIsToSlice.push_back(UserPN); continue; } // Truncates are always ok. if (isa(UserI)) { PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI)); continue; } // Otherwise it must be a lshr which can only be used by one trunc. if (UserI->getOpcode() != Instruction::LShr || !UserI->hasOneUse() || !isa(UserI->user_back()) || !isa(UserI->getOperand(1))) return nullptr; // Bail on out of range shifts. unsigned SizeInBits = UserI->getType()->getScalarSizeInBits(); if (cast(UserI->getOperand(1))->getValue().uge(SizeInBits)) return nullptr; unsigned Shift = cast(UserI->getOperand(1))->getZExtValue(); PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back())); } } // If we have no users, they must be all self uses, just nuke the PHI. if (PHIUsers.empty()) return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType())); // If this phi node is transformable, create new PHIs for all the pieces // extracted out of it. First, sort the users by their offset and size. array_pod_sort(PHIUsers.begin(), PHIUsers.end()); LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n'; for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs() << "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n'); // PredValues - This is a temporary used when rewriting PHI nodes. It is // hoisted out here to avoid construction/destruction thrashing. DenseMap PredValues; // ExtractedVals - Each new PHI we introduce is saved here so we don't // introduce redundant PHIs. DenseMap ExtractedVals; for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { unsigned PHIId = PHIUsers[UserI].PHIId; PHINode *PN = PHIsToSlice[PHIId]; unsigned Offset = PHIUsers[UserI].Shift; Type *Ty = PHIUsers[UserI].Inst->getType(); PHINode *EltPHI; // If we've already lowered a user like this, reuse the previously lowered // value. if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) { // Otherwise, Create the new PHI node for this user. EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(), PN->getName()+".off"+Twine(Offset), PN); assert(EltPHI->getType() != PN->getType() && "Truncate didn't shrink phi?"); for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) { BasicBlock *Pred = std::get<0>(Incoming); Value *InVal = std::get<1>(Incoming); Value *&PredVal = PredValues[Pred]; // If we already have a value for this predecessor, reuse it. if (PredVal) { EltPHI->addIncoming(PredVal, Pred); continue; } // Handle the PHI self-reuse case. if (InVal == PN) { PredVal = EltPHI; EltPHI->addIncoming(PredVal, Pred); continue; } if (PHINode *InPHI = dyn_cast(PN)) { // If the incoming value was a PHI, and if it was one of the PHIs we // already rewrote it, just use the lowered value. if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { PredVal = Res; EltPHI->addIncoming(PredVal, Pred); continue; } } // Otherwise, do an extract in the predecessor. Builder.SetInsertPoint(Pred->getTerminator()); Value *Res = InVal; if (Offset) Res = Builder.CreateLShr( Res, ConstantInt::get(InVal->getType(), Offset), "extract"); Res = Builder.CreateTrunc(Res, Ty, "extract.t"); PredVal = Res; EltPHI->addIncoming(Res, Pred); // If the incoming value was a PHI, and if it was one of the PHIs we are // rewriting, we will ultimately delete the code we inserted. This // means we need to revisit that PHI to make sure we extract out the // needed piece. if (PHINode *OldInVal = dyn_cast(InVal)) if (PHIsInspected.count(OldInVal)) { unsigned RefPHIId = find(PHIsToSlice, OldInVal) - PHIsToSlice.begin(); PHIUsers.push_back( PHIUsageRecord(RefPHIId, Offset, cast(Res))); ++UserE; } } PredValues.clear(); LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": " << *EltPHI << '\n'); ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; } // Replace the use of this piece with the PHI node. replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); } // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) // with poison. Value *Poison = PoisonValue::get(FirstPhi.getType()); for (PHINode *PHI : drop_begin(PHIsToSlice)) replaceInstUsesWith(*PHI, Poison); return replaceInstUsesWith(FirstPhi, Poison); } static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN, const DominatorTree &DT) { // Simplify the following patterns: // if (cond) // / \ // ... ... // \ / // phi [true] [false] // and // switch (cond) // case v1: / \ case v2: // ... ... // \ / // phi [v1] [v2] // Make sure all inputs are constants. if (!all_of(PN.operands(), [](Value *V) { return isa(V); })) return nullptr; BasicBlock *BB = PN.getParent(); // Do not bother with unreachable instructions. if (!DT.isReachableFromEntry(BB)) return nullptr; // Determine which value the condition of the idom has for which successor. LLVMContext &Context = PN.getContext(); auto *IDom = DT.getNode(BB)->getIDom()->getBlock(); Value *Cond; SmallDenseMap SuccForValue; SmallDenseMap SuccCount; auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) { SuccForValue[C] = Succ; ++SuccCount[Succ]; }; if (auto *BI = dyn_cast(IDom->getTerminator())) { if (BI->isUnconditional()) return nullptr; Cond = BI->getCondition(); AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0)); AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1)); } else if (auto *SI = dyn_cast(IDom->getTerminator())) { Cond = SI->getCondition(); ++SuccCount[SI->getDefaultDest()]; for (auto Case : SI->cases()) AddSucc(Case.getCaseValue(), Case.getCaseSuccessor()); } else { return nullptr; } if (Cond->getType() != PN.getType()) return nullptr; // Check that edges outgoing from the idom's terminators dominate respective // inputs of the Phi. std::optional Invert; for (auto Pair : zip(PN.incoming_values(), PN.blocks())) { auto *Input = cast(std::get<0>(Pair)); BasicBlock *Pred = std::get<1>(Pair); auto IsCorrectInput = [&](ConstantInt *Input) { // The input needs to be dominated by the corresponding edge of the idom. // This edge cannot be a multi-edge, as that would imply that multiple // different condition values follow the same edge. auto It = SuccForValue.find(Input); return It != SuccForValue.end() && SuccCount[It->second] == 1 && DT.dominates(BasicBlockEdge(IDom, It->second), BasicBlockEdge(Pred, BB)); }; // Depending on the constant, the condition may need to be inverted. bool NeedsInvert; if (IsCorrectInput(Input)) NeedsInvert = false; else if (IsCorrectInput(cast(ConstantExpr::getNot(Input)))) NeedsInvert = true; else return nullptr; // Make sure the inversion requirement is always the same. if (Invert && *Invert != NeedsInvert) return nullptr; Invert = NeedsInvert; } if (!*Invert) return Cond; // This Phi is actually opposite to branching condition of IDom. We invert // the condition that will potentially open up some opportunities for // sinking. auto InsertPt = BB->getFirstInsertionPt(); if (InsertPt != BB->end()) { Self.Builder.SetInsertPoint(&*InsertPt); return Self.Builder.CreateNot(Cond); } return nullptr; } // PHINode simplification // Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) { if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN))) return replaceInstUsesWith(PN, V); if (Instruction *Result = foldPHIArgZextsIntoPHI(PN)) return Result; if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN)) return Result; // If all PHI operands are the same operation, pull them through the PHI, // reducing code size. if (isa(PN.getIncomingValue(0)) && isa(PN.getIncomingValue(1)) && cast(PN.getIncomingValue(0))->getOpcode() == cast(PN.getIncomingValue(1))->getOpcode() && PN.getIncomingValue(0)->hasOneUser()) if (Instruction *Result = foldPHIArgOpIntoPHI(PN)) return Result; // If the incoming values are pointer casts of the same original value, // replace the phi with a single cast iff we can insert a non-PHI instruction. if (PN.getType()->isPointerTy() && PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) { Value *IV0 = PN.getIncomingValue(0); Value *IV0Stripped = IV0->stripPointerCasts(); // Set to keep track of values known to be equal to IV0Stripped after // stripping pointer casts. SmallPtrSet CheckedIVs; CheckedIVs.insert(IV0); if (IV0 != IV0Stripped && all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) { return !CheckedIVs.insert(IV).second || IV0Stripped == IV->stripPointerCasts(); })) { return CastInst::CreatePointerCast(IV0Stripped, PN.getType()); } } // If this is a trivial cycle in the PHI node graph, remove it. Basically, if // this PHI only has a single use (a PHI), and if that PHI only has one use (a // PHI)... break the cycle. if (PN.hasOneUse()) { if (foldIntegerTypedPHI(PN)) return nullptr; Instruction *PHIUser = cast(PN.user_back()); if (PHINode *PU = dyn_cast(PHIUser)) { SmallPtrSet PotentiallyDeadPHIs; PotentiallyDeadPHIs.insert(&PN); if (isDeadPHICycle(PU, PotentiallyDeadPHIs)) return replaceInstUsesWith(PN, PoisonValue::get(PN.getType())); } // If this phi has a single use, and if that use just computes a value for // the next iteration of a loop, delete the phi. This occurs with unused // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this // common case here is good because the only other things that catch this // are induction variable analysis (sometimes) and ADCE, which is only run // late. if (PHIUser->hasOneUse() && (isa(PHIUser) || isa(PHIUser)) && PHIUser->user_back() == &PN) { return replaceInstUsesWith(PN, PoisonValue::get(PN.getType())); } // When a PHI is used only to be compared with zero, it is safe to replace // an incoming value proved as known nonzero with any non-zero constant. // For example, in the code below, the incoming value %v can be replaced // with any non-zero constant based on the fact that the PHI is only used to // be compared with zero and %v is a known non-zero value: // %v = select %cond, 1, 2 // %p = phi [%v, BB] ... // icmp eq, %p, 0 auto *CmpInst = dyn_cast(PHIUser); // FIXME: To be simple, handle only integer type for now. if (CmpInst && isa(PN.getType()) && CmpInst->isEquality() && match(CmpInst->getOperand(1), m_Zero())) { ConstantInt *NonZeroConst = nullptr; bool MadeChange = false; for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) { Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator(); Value *VA = PN.getIncomingValue(I); if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) { if (!NonZeroConst) NonZeroConst = getAnyNonZeroConstInt(PN); if (NonZeroConst != VA) { replaceOperand(PN, I, NonZeroConst); MadeChange = true; } } } if (MadeChange) return &PN; } } // We sometimes end up with phi cycles that non-obviously end up being the // same value, for example: // z = some value; x = phi (y, z); y = phi (x, z) // where the phi nodes don't necessarily need to be in the same block. Do a // quick check to see if the PHI node only contains a single non-phi value, if // so, scan to see if the phi cycle is actually equal to that value. { unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues(); // Scan for the first non-phi operand. while (InValNo != NumIncomingVals && isa(PN.getIncomingValue(InValNo))) ++InValNo; if (InValNo != NumIncomingVals) { Value *NonPhiInVal = PN.getIncomingValue(InValNo); // Scan the rest of the operands to see if there are any conflicts, if so // there is no need to recursively scan other phis. for (++InValNo; InValNo != NumIncomingVals; ++InValNo) { Value *OpVal = PN.getIncomingValue(InValNo); if (OpVal != NonPhiInVal && !isa(OpVal)) break; } // If we scanned over all operands, then we have one unique value plus // phi values. Scan PHI nodes to see if they all merge in each other or // the value. if (InValNo == NumIncomingVals) { SmallPtrSet ValueEqualPHIs; if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) return replaceInstUsesWith(PN, NonPhiInVal); } } } // If there are multiple PHIs, sort their operands so that they all list // the blocks in the same order. This will help identical PHIs be eliminated // by other passes. Other passes shouldn't depend on this for correctness // however. PHINode *FirstPN = cast(PN.getParent()->begin()); if (&PN != FirstPN) for (unsigned I = 0, E = FirstPN->getNumIncomingValues(); I != E; ++I) { BasicBlock *BBA = PN.getIncomingBlock(I); BasicBlock *BBB = FirstPN->getIncomingBlock(I); if (BBA != BBB) { Value *VA = PN.getIncomingValue(I); unsigned J = PN.getBasicBlockIndex(BBB); Value *VB = PN.getIncomingValue(J); PN.setIncomingBlock(I, BBB); PN.setIncomingValue(I, VB); PN.setIncomingBlock(J, BBA); PN.setIncomingValue(J, VA); // NOTE: Instcombine normally would want us to "return &PN" if we // modified any of the operands of an instruction. However, since we // aren't adding or removing uses (just rearranging them) we don't do // this in this case. } } // Is there an identical PHI node in this basic block? for (PHINode &IdenticalPN : PN.getParent()->phis()) { // Ignore the PHI node itself. if (&IdenticalPN == &PN) continue; // Note that even though we've just canonicalized this PHI, due to the // worklist visitation order, there are no guarantess that *every* PHI // has been canonicalized, so we can't just compare operands ranges. if (!PN.isIdenticalToWhenDefined(&IdenticalPN)) continue; // Just use that PHI instead then. ++NumPHICSEs; return replaceInstUsesWith(PN, &IdenticalPN); } // If this is an integer PHI and we know that it has an illegal type, see if // it is only used by trunc or trunc(lshr) operations. If so, we split the // PHI into the various pieces being extracted. This sort of thing is // introduced when SROA promotes an aggregate to a single large integer type. if (PN.getType()->isIntegerTy() && !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) return Res; // Ultimately, try to replace this Phi with a dominating condition. if (auto *V = simplifyUsingControlFlow(*this, PN, DT)) return replaceInstUsesWith(PN, V); return nullptr; }