123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435 |
- //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis
- //Implementation -==//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements divergence analysis which determines whether a branch
- // in a GPU program is divergent.It can help branch optimizations such as jump
- // threading and loop unswitching to make better decisions.
- //
- // GPU programs typically use the SIMD execution model, where multiple threads
- // in the same execution group have to execute in lock-step. Therefore, if the
- // code contains divergent branches (i.e., threads in a group do not agree on
- // which path of the branch to take), the group of threads has to execute all
- // the paths from that branch with different subsets of threads enabled until
- // they converge at the immediately post-dominating BB of the paths.
- //
- // Due to this execution model, some optimizations such as jump
- // threading and loop unswitching can be unfortunately harmful when performed on
- // divergent branches. Therefore, an analysis that computes which branches in a
- // GPU program are divergent can help the compiler to selectively run these
- // optimizations.
- //
- // This file defines divergence analysis which computes a conservative but
- // non-trivial approximation of all divergent branches in a GPU program. It
- // partially implements the approach described in
- //
- // Divergence Analysis
- // Sampaio, Souza, Collange, Pereira
- // TOPLAS '13
- //
- // The divergence analysis identifies the sources of divergence (e.g., special
- // variables that hold the thread ID), and recursively marks variables that are
- // data or sync dependent on a source of divergence as divergent.
- //
- // While data dependency is a well-known concept, the notion of sync dependency
- // is worth more explanation. Sync dependence characterizes the control flow
- // aspect of the propagation of branch divergence. For example,
- //
- // %cond = icmp slt i32 %tid, 10
- // br i1 %cond, label %then, label %else
- // then:
- // br label %merge
- // else:
- // br label %merge
- // merge:
- // %a = phi i32 [ 0, %then ], [ 1, %else ]
- //
- // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
- // because %tid is not on its use-def chains, %a is sync dependent on %tid
- // because the branch "br i1 %cond" depends on %tid and affects which value %a
- // is assigned to.
- //
- // The current implementation has the following limitations:
- // 1. intra-procedural. It conservatively considers the arguments of a
- // non-kernel-entry function and the return value of a function call as
- // divergent.
- // 2. memory as black box. It conservatively considers values loaded from
- // generic or local address as divergent. This can be improved by leveraging
- // pointer analysis.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/DivergenceAnalysis.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/Passes.h"
- #include "llvm/Analysis/PostDominators.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "divergence"
- // transparently use the GPUDivergenceAnalysis
- static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false),
- cl::Hidden,
- cl::desc("turn the LegacyDivergenceAnalysis into "
- "a wrapper for GPUDivergenceAnalysis"));
- namespace {
- class DivergencePropagator {
- public:
- DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
- PostDominatorTree &PDT, DenseSet<const Value *> &DV,
- DenseSet<const Use *> &DU)
- : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV), DU(DU) {}
- void populateWithSourcesOfDivergence();
- void propagate();
- private:
- // A helper function that explores data dependents of V.
- void exploreDataDependency(Value *V);
- // A helper function that explores sync dependents of TI.
- void exploreSyncDependency(Instruction *TI);
- // Computes the influence region from Start to End. This region includes all
- // basic blocks on any simple path from Start to End.
- void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
- DenseSet<BasicBlock *> &InfluenceRegion);
- // Finds all users of I that are outside the influence region, and add these
- // users to Worklist.
- void findUsersOutsideInfluenceRegion(
- Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
- Function &F;
- TargetTransformInfo &TTI;
- DominatorTree &DT;
- PostDominatorTree &PDT;
- std::vector<Value *> Worklist; // Stack for DFS.
- DenseSet<const Value *> &DV; // Stores all divergent values.
- DenseSet<const Use *> &DU; // Stores divergent uses of possibly uniform
- // values.
- };
- void DivergencePropagator::populateWithSourcesOfDivergence() {
- Worklist.clear();
- DV.clear();
- DU.clear();
- for (auto &I : instructions(F)) {
- if (TTI.isSourceOfDivergence(&I)) {
- Worklist.push_back(&I);
- DV.insert(&I);
- }
- }
- for (auto &Arg : F.args()) {
- if (TTI.isSourceOfDivergence(&Arg)) {
- Worklist.push_back(&Arg);
- DV.insert(&Arg);
- }
- }
- }
- void DivergencePropagator::exploreSyncDependency(Instruction *TI) {
- // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
- // immediate post dominator are divergent. This rule handles if-then-else
- // patterns. For example,
- //
- // if (tid < 5)
- // a1 = 1;
- // else
- // a2 = 2;
- // a = phi(a1, a2); // sync dependent on (tid < 5)
- BasicBlock *ThisBB = TI->getParent();
- // Unreachable blocks may not be in the dominator tree.
- if (!DT.isReachableFromEntry(ThisBB))
- return;
- // If the function has no exit blocks or doesn't reach any exit blocks, the
- // post dominator may be null.
- DomTreeNode *ThisNode = PDT.getNode(ThisBB);
- if (!ThisNode)
- return;
- BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
- if (IPostDom == nullptr)
- return;
- for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
- // A PHINode is uniform if it returns the same value no matter which path is
- // taken.
- if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
- Worklist.push_back(&*I);
- }
- // Propagation rule 2: if a value defined in a loop is used outside, the user
- // is sync dependent on the condition of the loop exits that dominate the
- // user. For example,
- //
- // int i = 0;
- // do {
- // i++;
- // if (foo(i)) ... // uniform
- // } while (i < tid);
- // if (bar(i)) ... // divergent
- //
- // A program may contain unstructured loops. Therefore, we cannot leverage
- // LoopInfo, which only recognizes natural loops.
- //
- // The algorithm used here handles both natural and unstructured loops. Given
- // a branch TI, we first compute its influence region, the union of all simple
- // paths from TI to its immediate post dominator (IPostDom). Then, we search
- // for all the values defined in the influence region but used outside. All
- // these users are sync dependent on TI.
- DenseSet<BasicBlock *> InfluenceRegion;
- computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
- // An insight that can speed up the search process is that all the in-region
- // values that are used outside must dominate TI. Therefore, instead of
- // searching every basic blocks in the influence region, we search all the
- // dominators of TI until it is outside the influence region.
- BasicBlock *InfluencedBB = ThisBB;
- while (InfluenceRegion.count(InfluencedBB)) {
- for (auto &I : *InfluencedBB) {
- if (!DV.count(&I))
- findUsersOutsideInfluenceRegion(I, InfluenceRegion);
- }
- DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
- if (IDomNode == nullptr)
- break;
- InfluencedBB = IDomNode->getBlock();
- }
- }
- void DivergencePropagator::findUsersOutsideInfluenceRegion(
- Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
- for (Use &Use : I.uses()) {
- Instruction *UserInst = cast<Instruction>(Use.getUser());
- if (!InfluenceRegion.count(UserInst->getParent())) {
- DU.insert(&Use);
- if (DV.insert(UserInst).second)
- Worklist.push_back(UserInst);
- }
- }
- }
- // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
- // to the influence region.
- static void
- addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
- DenseSet<BasicBlock *> &InfluenceRegion,
- std::vector<BasicBlock *> &InfluenceStack) {
- for (BasicBlock *Succ : successors(ThisBB)) {
- if (Succ != End && InfluenceRegion.insert(Succ).second)
- InfluenceStack.push_back(Succ);
- }
- }
- void DivergencePropagator::computeInfluenceRegion(
- BasicBlock *Start, BasicBlock *End,
- DenseSet<BasicBlock *> &InfluenceRegion) {
- assert(PDT.properlyDominates(End, Start) &&
- "End does not properly dominate Start");
- // The influence region starts from the end of "Start" to the beginning of
- // "End". Therefore, "Start" should not be in the region unless "Start" is in
- // a loop that doesn't contain "End".
- std::vector<BasicBlock *> InfluenceStack;
- addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
- while (!InfluenceStack.empty()) {
- BasicBlock *BB = InfluenceStack.back();
- InfluenceStack.pop_back();
- addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
- }
- }
- void DivergencePropagator::exploreDataDependency(Value *V) {
- // Follow def-use chains of V.
- for (User *U : V->users()) {
- if (!TTI.isAlwaysUniform(U) && DV.insert(U).second)
- Worklist.push_back(U);
- }
- }
- void DivergencePropagator::propagate() {
- // Traverse the dependency graph using DFS.
- while (!Worklist.empty()) {
- Value *V = Worklist.back();
- Worklist.pop_back();
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- // Terminators with less than two successors won't introduce sync
- // dependency. Ignore them.
- if (I->isTerminator() && I->getNumSuccessors() > 1)
- exploreSyncDependency(I);
- }
- exploreDataDependency(V);
- }
- }
- } // namespace
- // Register this pass.
- char LegacyDivergenceAnalysis::ID = 0;
- LegacyDivergenceAnalysis::LegacyDivergenceAnalysis() : FunctionPass(ID) {
- initializeLegacyDivergenceAnalysisPass(*PassRegistry::getPassRegistry());
- }
- INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence",
- "Legacy Divergence Analysis", false, true)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence",
- "Legacy Divergence Analysis", false, true)
- FunctionPass *llvm::createLegacyDivergenceAnalysisPass() {
- return new LegacyDivergenceAnalysis();
- }
- bool LegacyDivergenceAnalysisImpl::shouldUseGPUDivergenceAnalysis(
- const Function &F, const TargetTransformInfo &TTI, const LoopInfo &LI) {
- if (!(UseGPUDA || TTI.useGPUDivergenceAnalysis()))
- return false;
- // GPUDivergenceAnalysis requires a reducible CFG.
- using RPOTraversal = ReversePostOrderTraversal<const Function *>;
- RPOTraversal FuncRPOT(&F);
- return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
- const LoopInfo>(FuncRPOT, LI);
- }
- void LegacyDivergenceAnalysisImpl::run(Function &F,
- llvm::TargetTransformInfo &TTI,
- llvm::DominatorTree &DT,
- llvm::PostDominatorTree &PDT,
- const llvm::LoopInfo &LI) {
- if (shouldUseGPUDivergenceAnalysis(F, TTI, LI)) {
- // run the new GPU divergence analysis
- gpuDA = std::make_unique<DivergenceInfo>(F, DT, PDT, LI, TTI,
- /* KnownReducible = */ true);
- } else {
- // run LLVM's existing DivergenceAnalysis
- DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues, DivergentUses);
- DP.populateWithSourcesOfDivergence();
- DP.propagate();
- }
- }
- bool LegacyDivergenceAnalysisImpl::isDivergent(const Value *V) const {
- if (gpuDA) {
- return gpuDA->isDivergent(*V);
- }
- return DivergentValues.count(V);
- }
- bool LegacyDivergenceAnalysisImpl::isDivergentUse(const Use *U) const {
- if (gpuDA) {
- return gpuDA->isDivergentUse(*U);
- }
- return DivergentValues.count(U->get()) || DivergentUses.count(U);
- }
- void LegacyDivergenceAnalysisImpl::print(raw_ostream &OS,
- const Module *) const {
- if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty())
- return;
- const Function *F = nullptr;
- if (!DivergentValues.empty()) {
- const Value *FirstDivergentValue = *DivergentValues.begin();
- if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
- F = Arg->getParent();
- } else if (const Instruction *I =
- dyn_cast<Instruction>(FirstDivergentValue)) {
- F = I->getParent()->getParent();
- } else {
- llvm_unreachable("Only arguments and instructions can be divergent");
- }
- } else if (gpuDA) {
- F = &gpuDA->getFunction();
- }
- if (!F)
- return;
- // Dumps all divergent values in F, arguments and then instructions.
- for (const auto &Arg : F->args()) {
- OS << (isDivergent(&Arg) ? "DIVERGENT: " : " ");
- OS << Arg << "\n";
- }
- // Iterate instructions using instructions() to ensure a deterministic order.
- for (const BasicBlock &BB : *F) {
- OS << "\n " << BB.getName() << ":\n";
- for (const auto &I : BB.instructionsWithoutDebug()) {
- OS << (isDivergent(&I) ? "DIVERGENT: " : " ");
- OS << I << "\n";
- }
- }
- OS << "\n";
- }
- void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequiredTransitive<DominatorTreeWrapperPass>();
- AU.addRequiredTransitive<PostDominatorTreeWrapperPass>();
- AU.addRequiredTransitive<LoopInfoWrapperPass>();
- AU.setPreservesAll();
- }
- bool LegacyDivergenceAnalysis::runOnFunction(Function &F) {
- auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
- if (TTIWP == nullptr)
- return false;
- TargetTransformInfo &TTI = TTIWP->getTTI(F);
- // Fast path: if the target does not have branch divergence, we do not mark
- // any branch as divergent.
- if (!TTI.hasBranchDivergence())
- return false;
- DivergentValues.clear();
- DivergentUses.clear();
- gpuDA = nullptr;
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- LegacyDivergenceAnalysisImpl::run(F, TTI, DT, PDT, LI);
- LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
- << ":\n";
- LegacyDivergenceAnalysisImpl::print(dbgs(), F.getParent()));
- return false;
- }
- PreservedAnalyses
- LegacyDivergenceAnalysisPass::run(Function &F, FunctionAnalysisManager &AM) {
- auto &TTI = AM.getResult<TargetIRAnalysis>(F);
- if (!TTI.hasBranchDivergence())
- return PreservedAnalyses::all();
- DivergentValues.clear();
- DivergentUses.clear();
- gpuDA = nullptr;
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
- auto &LI = AM.getResult<LoopAnalysis>(F);
- LegacyDivergenceAnalysisImpl::run(F, TTI, DT, PDT, LI);
- LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
- << ":\n";
- LegacyDivergenceAnalysisImpl::print(dbgs(), F.getParent()));
- return PreservedAnalyses::all();
- }
|