//===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis //Implementation -==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements divergence analysis which determines whether a branch // in a GPU program is divergent.It can help branch optimizations such as jump // threading and loop unswitching to make better decisions. // // GPU programs typically use the SIMD execution model, where multiple threads // in the same execution group have to execute in lock-step. Therefore, if the // code contains divergent branches (i.e., threads in a group do not agree on // which path of the branch to take), the group of threads has to execute all // the paths from that branch with different subsets of threads enabled until // they converge at the immediately post-dominating BB of the paths. // // Due to this execution model, some optimizations such as jump // threading and loop unswitching can be unfortunately harmful when performed on // divergent branches. Therefore, an analysis that computes which branches in a // GPU program are divergent can help the compiler to selectively run these // optimizations. // // This file defines divergence analysis which computes a conservative but // non-trivial approximation of all divergent branches in a GPU program. It // partially implements the approach described in // // Divergence Analysis // Sampaio, Souza, Collange, Pereira // TOPLAS '13 // // The divergence analysis identifies the sources of divergence (e.g., special // variables that hold the thread ID), and recursively marks variables that are // data or sync dependent on a source of divergence as divergent. // // While data dependency is a well-known concept, the notion of sync dependency // is worth more explanation. Sync dependence characterizes the control flow // aspect of the propagation of branch divergence. For example, // // %cond = icmp slt i32 %tid, 10 // br i1 %cond, label %then, label %else // then: // br label %merge // else: // br label %merge // merge: // %a = phi i32 [ 0, %then ], [ 1, %else ] // // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid // because %tid is not on its use-def chains, %a is sync dependent on %tid // because the branch "br i1 %cond" depends on %tid and affects which value %a // is assigned to. // // The current implementation has the following limitations: // 1. intra-procedural. It conservatively considers the arguments of a // non-kernel-entry function and the return value of a function call as // divergent. // 2. memory as black box. It conservatively considers values loaded from // generic or local address as divergent. This can be improved by leveraging // pointer analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LegacyDivergenceAnalysis.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/DivergenceAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; #define DEBUG_TYPE "divergence" // transparently use the GPUDivergenceAnalysis static cl::opt UseGPUDA("use-gpu-divergence-analysis", cl::init(false), cl::Hidden, cl::desc("turn the LegacyDivergenceAnalysis into " "a wrapper for GPUDivergenceAnalysis")); namespace { class DivergencePropagator { public: DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT, PostDominatorTree &PDT, DenseSet &DV, DenseSet &DU) : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV), DU(DU) {} void populateWithSourcesOfDivergence(); void propagate(); private: // A helper function that explores data dependents of V. void exploreDataDependency(Value *V); // A helper function that explores sync dependents of TI. void exploreSyncDependency(Instruction *TI); // Computes the influence region from Start to End. This region includes all // basic blocks on any simple path from Start to End. void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End, DenseSet &InfluenceRegion); // Finds all users of I that are outside the influence region, and add these // users to Worklist. void findUsersOutsideInfluenceRegion( Instruction &I, const DenseSet &InfluenceRegion); Function &F; TargetTransformInfo &TTI; DominatorTree &DT; PostDominatorTree &PDT; std::vector Worklist; // Stack for DFS. DenseSet &DV; // Stores all divergent values. DenseSet &DU; // Stores divergent uses of possibly uniform // values. }; void DivergencePropagator::populateWithSourcesOfDivergence() { Worklist.clear(); DV.clear(); DU.clear(); for (auto &I : instructions(F)) { if (TTI.isSourceOfDivergence(&I)) { Worklist.push_back(&I); DV.insert(&I); } } for (auto &Arg : F.args()) { if (TTI.isSourceOfDivergence(&Arg)) { Worklist.push_back(&Arg); DV.insert(&Arg); } } } void DivergencePropagator::exploreSyncDependency(Instruction *TI) { // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's // immediate post dominator are divergent. This rule handles if-then-else // patterns. For example, // // if (tid < 5) // a1 = 1; // else // a2 = 2; // a = phi(a1, a2); // sync dependent on (tid < 5) BasicBlock *ThisBB = TI->getParent(); // Unreachable blocks may not be in the dominator tree. if (!DT.isReachableFromEntry(ThisBB)) return; // If the function has no exit blocks or doesn't reach any exit blocks, the // post dominator may be null. DomTreeNode *ThisNode = PDT.getNode(ThisBB); if (!ThisNode) return; BasicBlock *IPostDom = ThisNode->getIDom()->getBlock(); if (IPostDom == nullptr) return; for (auto I = IPostDom->begin(); isa(I); ++I) { // A PHINode is uniform if it returns the same value no matter which path is // taken. if (!cast(I)->hasConstantOrUndefValue() && DV.insert(&*I).second) Worklist.push_back(&*I); } // Propagation rule 2: if a value defined in a loop is used outside, the user // is sync dependent on the condition of the loop exits that dominate the // user. For example, // // int i = 0; // do { // i++; // if (foo(i)) ... // uniform // } while (i < tid); // if (bar(i)) ... // divergent // // A program may contain unstructured loops. Therefore, we cannot leverage // LoopInfo, which only recognizes natural loops. // // The algorithm used here handles both natural and unstructured loops. Given // a branch TI, we first compute its influence region, the union of all simple // paths from TI to its immediate post dominator (IPostDom). Then, we search // for all the values defined in the influence region but used outside. All // these users are sync dependent on TI. DenseSet InfluenceRegion; computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion); // An insight that can speed up the search process is that all the in-region // values that are used outside must dominate TI. Therefore, instead of // searching every basic blocks in the influence region, we search all the // dominators of TI until it is outside the influence region. BasicBlock *InfluencedBB = ThisBB; while (InfluenceRegion.count(InfluencedBB)) { for (auto &I : *InfluencedBB) { if (!DV.count(&I)) findUsersOutsideInfluenceRegion(I, InfluenceRegion); } DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom(); if (IDomNode == nullptr) break; InfluencedBB = IDomNode->getBlock(); } } void DivergencePropagator::findUsersOutsideInfluenceRegion( Instruction &I, const DenseSet &InfluenceRegion) { for (Use &Use : I.uses()) { Instruction *UserInst = cast(Use.getUser()); if (!InfluenceRegion.count(UserInst->getParent())) { DU.insert(&Use); if (DV.insert(UserInst).second) Worklist.push_back(UserInst); } } } // A helper function for computeInfluenceRegion that adds successors of "ThisBB" // to the influence region. static void addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End, DenseSet &InfluenceRegion, std::vector &InfluenceStack) { for (BasicBlock *Succ : successors(ThisBB)) { if (Succ != End && InfluenceRegion.insert(Succ).second) InfluenceStack.push_back(Succ); } } void DivergencePropagator::computeInfluenceRegion( BasicBlock *Start, BasicBlock *End, DenseSet &InfluenceRegion) { assert(PDT.properlyDominates(End, Start) && "End does not properly dominate Start"); // The influence region starts from the end of "Start" to the beginning of // "End". Therefore, "Start" should not be in the region unless "Start" is in // a loop that doesn't contain "End". std::vector InfluenceStack; addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack); while (!InfluenceStack.empty()) { BasicBlock *BB = InfluenceStack.back(); InfluenceStack.pop_back(); addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack); } } void DivergencePropagator::exploreDataDependency(Value *V) { // Follow def-use chains of V. for (User *U : V->users()) { if (!TTI.isAlwaysUniform(U) && DV.insert(U).second) Worklist.push_back(U); } } void DivergencePropagator::propagate() { // Traverse the dependency graph using DFS. while (!Worklist.empty()) { Value *V = Worklist.back(); Worklist.pop_back(); if (Instruction *I = dyn_cast(V)) { // Terminators with less than two successors won't introduce sync // dependency. Ignore them. if (I->isTerminator() && I->getNumSuccessors() > 1) exploreSyncDependency(I); } exploreDataDependency(V); } } } // namespace // Register this pass. char LegacyDivergenceAnalysis::ID = 0; LegacyDivergenceAnalysis::LegacyDivergenceAnalysis() : FunctionPass(ID) { initializeLegacyDivergenceAnalysisPass(*PassRegistry::getPassRegistry()); } INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence", "Legacy Divergence Analysis", false, true) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence", "Legacy Divergence Analysis", false, true) FunctionPass *llvm::createLegacyDivergenceAnalysisPass() { return new LegacyDivergenceAnalysis(); } bool LegacyDivergenceAnalysisImpl::shouldUseGPUDivergenceAnalysis( const Function &F, const TargetTransformInfo &TTI, const LoopInfo &LI) { if (!(UseGPUDA || TTI.useGPUDivergenceAnalysis())) return false; // GPUDivergenceAnalysis requires a reducible CFG. using RPOTraversal = ReversePostOrderTraversal; RPOTraversal FuncRPOT(&F); return !containsIrreducibleCFG(FuncRPOT, LI); } void LegacyDivergenceAnalysisImpl::run(Function &F, llvm::TargetTransformInfo &TTI, llvm::DominatorTree &DT, llvm::PostDominatorTree &PDT, const llvm::LoopInfo &LI) { if (shouldUseGPUDivergenceAnalysis(F, TTI, LI)) { // run the new GPU divergence analysis gpuDA = std::make_unique(F, DT, PDT, LI, TTI, /* KnownReducible = */ true); } else { // run LLVM's existing DivergenceAnalysis DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues, DivergentUses); DP.populateWithSourcesOfDivergence(); DP.propagate(); } } bool LegacyDivergenceAnalysisImpl::isDivergent(const Value *V) const { if (gpuDA) { return gpuDA->isDivergent(*V); } return DivergentValues.count(V); } bool LegacyDivergenceAnalysisImpl::isDivergentUse(const Use *U) const { if (gpuDA) { return gpuDA->isDivergentUse(*U); } return DivergentValues.count(U->get()) || DivergentUses.count(U); } void LegacyDivergenceAnalysisImpl::print(raw_ostream &OS, const Module *) const { if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty()) return; const Function *F = nullptr; if (!DivergentValues.empty()) { const Value *FirstDivergentValue = *DivergentValues.begin(); if (const Argument *Arg = dyn_cast(FirstDivergentValue)) { F = Arg->getParent(); } else if (const Instruction *I = dyn_cast(FirstDivergentValue)) { F = I->getParent()->getParent(); } else { llvm_unreachable("Only arguments and instructions can be divergent"); } } else if (gpuDA) { F = &gpuDA->getFunction(); } if (!F) return; // Dumps all divergent values in F, arguments and then instructions. for (const auto &Arg : F->args()) { OS << (isDivergent(&Arg) ? "DIVERGENT: " : " "); OS << Arg << "\n"; } // Iterate instructions using instructions() to ensure a deterministic order. for (const BasicBlock &BB : *F) { OS << "\n " << BB.getName() << ":\n"; for (const auto &I : BB.instructionsWithoutDebug()) { OS << (isDivergent(&I) ? "DIVERGENT: " : " "); OS << I << "\n"; } } OS << "\n"; } void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredTransitive(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); AU.setPreservesAll(); } bool LegacyDivergenceAnalysis::runOnFunction(Function &F) { auto *TTIWP = getAnalysisIfAvailable(); if (TTIWP == nullptr) return false; TargetTransformInfo &TTI = TTIWP->getTTI(F); // Fast path: if the target does not have branch divergence, we do not mark // any branch as divergent. if (!TTI.hasBranchDivergence()) return false; DivergentValues.clear(); DivergentUses.clear(); gpuDA = nullptr; auto &DT = getAnalysis().getDomTree(); auto &PDT = getAnalysis().getPostDomTree(); auto &LI = getAnalysis().getLoopInfo(); LegacyDivergenceAnalysisImpl::run(F, TTI, DT, PDT, LI); LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName() << ":\n"; LegacyDivergenceAnalysisImpl::print(dbgs(), F.getParent())); return false; } PreservedAnalyses LegacyDivergenceAnalysisPass::run(Function &F, FunctionAnalysisManager &AM) { auto &TTI = AM.getResult(F); if (!TTI.hasBranchDivergence()) return PreservedAnalyses::all(); DivergentValues.clear(); DivergentUses.clear(); gpuDA = nullptr; auto &DT = AM.getResult(F); auto &PDT = AM.getResult(F); auto &LI = AM.getResult(F); LegacyDivergenceAnalysisImpl::run(F, TTI, DT, PDT, LI); LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName() << ":\n"; LegacyDivergenceAnalysisImpl::print(dbgs(), F.getParent())); return PreservedAnalyses::all(); }