1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435 |
- //===- LoopVectorizationLegality.cpp --------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file provides loop vectorization legality analysis. Original code
- // resided in LoopVectorize.cpp for a long time.
- //
- // At this point, it is implemented as a utility class, not as an analysis
- // pass. It should be easy to create an analysis pass around it if there
- // is a need (but D45420 needs to happen first).
- //
- #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Transforms/Utils/SizeOpts.h"
- #include "llvm/Transforms/Vectorize/LoopVectorize.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define LV_NAME "loop-vectorize"
- #define DEBUG_TYPE LV_NAME
- static cl::opt<bool>
- EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
- cl::desc("Enable if-conversion during vectorization."));
- namespace llvm {
- cl::opt<bool>
- HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
- cl::desc("Allow enabling loop hints to reorder "
- "FP operations during vectorization."));
- }
- // TODO: Move size-based thresholds out of legality checking, make cost based
- // decisions instead of hard thresholds.
- static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
- "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
- cl::desc("The maximum number of SCEV checks allowed."));
- static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
- "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
- cl::desc("The maximum number of SCEV checks allowed with a "
- "vectorize(enable) pragma"));
- static cl::opt<LoopVectorizeHints::ScalableForceKind>
- ForceScalableVectorization(
- "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
- cl::Hidden,
- cl::desc("Control whether the compiler can use scalable vectors to "
- "vectorize a loop"),
- cl::values(
- clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
- "Scalable vectorization is disabled."),
- clEnumValN(
- LoopVectorizeHints::SK_PreferScalable, "preferred",
- "Scalable vectorization is available and favored when the "
- "cost is inconclusive."),
- clEnumValN(
- LoopVectorizeHints::SK_PreferScalable, "on",
- "Scalable vectorization is available and favored when the "
- "cost is inconclusive.")));
- /// Maximum vectorization interleave count.
- static const unsigned MaxInterleaveFactor = 16;
- namespace llvm {
- bool LoopVectorizeHints::Hint::validate(unsigned Val) {
- switch (Kind) {
- case HK_WIDTH:
- return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
- case HK_INTERLEAVE:
- return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
- case HK_FORCE:
- return (Val <= 1);
- case HK_ISVECTORIZED:
- case HK_PREDICATE:
- case HK_SCALABLE:
- return (Val == 0 || Val == 1);
- }
- return false;
- }
- LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
- bool InterleaveOnlyWhenForced,
- OptimizationRemarkEmitter &ORE,
- const TargetTransformInfo *TTI)
- : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
- Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
- Force("vectorize.enable", FK_Undefined, HK_FORCE),
- IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
- Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
- Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
- TheLoop(L), ORE(ORE) {
- // Populate values with existing loop metadata.
- getHintsFromMetadata();
- // force-vector-interleave overrides DisableInterleaving.
- if (VectorizerParams::isInterleaveForced())
- Interleave.Value = VectorizerParams::VectorizationInterleave;
- // If the metadata doesn't explicitly specify whether to enable scalable
- // vectorization, then decide based on the following criteria (increasing
- // level of priority):
- // - Target default
- // - Metadata width
- // - Force option (always overrides)
- if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
- if (TTI)
- Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
- : SK_FixedWidthOnly;
- if (Width.Value)
- // If the width is set, but the metadata says nothing about the scalable
- // property, then assume it concerns only a fixed-width UserVF.
- // If width is not set, the flag takes precedence.
- Scalable.Value = SK_FixedWidthOnly;
- }
- // If the flag is set to force any use of scalable vectors, override the loop
- // hints.
- if (ForceScalableVectorization.getValue() !=
- LoopVectorizeHints::SK_Unspecified)
- Scalable.Value = ForceScalableVectorization.getValue();
- // Scalable vectorization is disabled if no preference is specified.
- if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
- Scalable.Value = SK_FixedWidthOnly;
- if (IsVectorized.Value != 1)
- // If the vectorization width and interleaving count are both 1 then
- // consider the loop to have been already vectorized because there's
- // nothing more that we can do.
- IsVectorized.Value =
- getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
- LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
- << "LV: Interleaving disabled by the pass manager\n");
- }
- void LoopVectorizeHints::setAlreadyVectorized() {
- LLVMContext &Context = TheLoop->getHeader()->getContext();
- MDNode *IsVectorizedMD = MDNode::get(
- Context,
- {MDString::get(Context, "llvm.loop.isvectorized"),
- ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
- MDNode *LoopID = TheLoop->getLoopID();
- MDNode *NewLoopID =
- makePostTransformationMetadata(Context, LoopID,
- {Twine(Prefix(), "vectorize.").str(),
- Twine(Prefix(), "interleave.").str()},
- {IsVectorizedMD});
- TheLoop->setLoopID(NewLoopID);
- // Update internal cache.
- IsVectorized.Value = 1;
- }
- bool LoopVectorizeHints::allowVectorization(
- Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
- if (getForce() == LoopVectorizeHints::FK_Disabled) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
- emitRemarkWithHints();
- return false;
- }
- if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
- emitRemarkWithHints();
- return false;
- }
- if (getIsVectorized() == 1) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
- // FIXME: Add interleave.disable metadata. This will allow
- // vectorize.disable to be used without disabling the pass and errors
- // to differentiate between disabled vectorization and a width of 1.
- ORE.emit([&]() {
- return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
- "AllDisabled", L->getStartLoc(),
- L->getHeader())
- << "loop not vectorized: vectorization and interleaving are "
- "explicitly disabled, or the loop has already been "
- "vectorized";
- });
- return false;
- }
- return true;
- }
- void LoopVectorizeHints::emitRemarkWithHints() const {
- using namespace ore;
- ORE.emit([&]() {
- if (Force.Value == LoopVectorizeHints::FK_Disabled)
- return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
- TheLoop->getStartLoc(),
- TheLoop->getHeader())
- << "loop not vectorized: vectorization is explicitly disabled";
- else {
- OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
- TheLoop->getStartLoc(), TheLoop->getHeader());
- R << "loop not vectorized";
- if (Force.Value == LoopVectorizeHints::FK_Enabled) {
- R << " (Force=" << NV("Force", true);
- if (Width.Value != 0)
- R << ", Vector Width=" << NV("VectorWidth", getWidth());
- if (getInterleave() != 0)
- R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
- R << ")";
- }
- return R;
- }
- });
- }
- const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
- if (getWidth() == ElementCount::getFixed(1))
- return LV_NAME;
- if (getForce() == LoopVectorizeHints::FK_Disabled)
- return LV_NAME;
- if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
- return LV_NAME;
- return OptimizationRemarkAnalysis::AlwaysPrint;
- }
- bool LoopVectorizeHints::allowReordering() const {
- // Allow the vectorizer to change the order of operations if enabling
- // loop hints are provided
- ElementCount EC = getWidth();
- return HintsAllowReordering &&
- (getForce() == LoopVectorizeHints::FK_Enabled ||
- EC.getKnownMinValue() > 1);
- }
- void LoopVectorizeHints::getHintsFromMetadata() {
- MDNode *LoopID = TheLoop->getLoopID();
- if (!LoopID)
- return;
- // First operand should refer to the loop id itself.
- assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- const MDString *S = nullptr;
- SmallVector<Metadata *, 4> Args;
- // The expected hint is either a MDString or a MDNode with the first
- // operand a MDString.
- if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
- if (!MD || MD->getNumOperands() == 0)
- continue;
- S = dyn_cast<MDString>(MD->getOperand(0));
- for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
- Args.push_back(MD->getOperand(i));
- } else {
- S = dyn_cast<MDString>(LoopID->getOperand(i));
- assert(Args.size() == 0 && "too many arguments for MDString");
- }
- if (!S)
- continue;
- // Check if the hint starts with the loop metadata prefix.
- StringRef Name = S->getString();
- if (Args.size() == 1)
- setHint(Name, Args[0]);
- }
- }
- void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
- if (!Name.startswith(Prefix()))
- return;
- Name = Name.substr(Prefix().size(), StringRef::npos);
- const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
- if (!C)
- return;
- unsigned Val = C->getZExtValue();
- Hint *Hints[] = {&Width, &Interleave, &Force,
- &IsVectorized, &Predicate, &Scalable};
- for (auto *H : Hints) {
- if (Name == H->Name) {
- if (H->validate(Val))
- H->Value = Val;
- else
- LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
- break;
- }
- }
- }
- // Return true if the inner loop \p Lp is uniform with regard to the outer loop
- // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
- // executing the inner loop will execute the same iterations). This check is
- // very constrained for now but it will be relaxed in the future. \p Lp is
- // considered uniform if it meets all the following conditions:
- // 1) it has a canonical IV (starting from 0 and with stride 1),
- // 2) its latch terminator is a conditional branch and,
- // 3) its latch condition is a compare instruction whose operands are the
- // canonical IV and an OuterLp invariant.
- // This check doesn't take into account the uniformity of other conditions not
- // related to the loop latch because they don't affect the loop uniformity.
- //
- // NOTE: We decided to keep all these checks and its associated documentation
- // together so that we can easily have a picture of the current supported loop
- // nests. However, some of the current checks don't depend on \p OuterLp and
- // would be redundantly executed for each \p Lp if we invoked this function for
- // different candidate outer loops. This is not the case for now because we
- // don't currently have the infrastructure to evaluate multiple candidate outer
- // loops and \p OuterLp will be a fixed parameter while we only support explicit
- // outer loop vectorization. It's also very likely that these checks go away
- // before introducing the aforementioned infrastructure. However, if this is not
- // the case, we should move the \p OuterLp independent checks to a separate
- // function that is only executed once for each \p Lp.
- static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
- assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
- // If Lp is the outer loop, it's uniform by definition.
- if (Lp == OuterLp)
- return true;
- assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
- // 1.
- PHINode *IV = Lp->getCanonicalInductionVariable();
- if (!IV) {
- LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
- return false;
- }
- // 2.
- BasicBlock *Latch = Lp->getLoopLatch();
- auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
- if (!LatchBr || LatchBr->isUnconditional()) {
- LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
- return false;
- }
- // 3.
- auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
- if (!LatchCmp) {
- LLVM_DEBUG(
- dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
- return false;
- }
- Value *CondOp0 = LatchCmp->getOperand(0);
- Value *CondOp1 = LatchCmp->getOperand(1);
- Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
- if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
- !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
- LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
- return false;
- }
- return true;
- }
- // Return true if \p Lp and all its nested loops are uniform with regard to \p
- // OuterLp.
- static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
- if (!isUniformLoop(Lp, OuterLp))
- return false;
- // Check if nested loops are uniform.
- for (Loop *SubLp : *Lp)
- if (!isUniformLoopNest(SubLp, OuterLp))
- return false;
- return true;
- }
- static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
- if (Ty->isPointerTy())
- return DL.getIntPtrType(Ty);
- // It is possible that char's or short's overflow when we ask for the loop's
- // trip count, work around this by changing the type size.
- if (Ty->getScalarSizeInBits() < 32)
- return Type::getInt32Ty(Ty->getContext());
- return Ty;
- }
- static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
- Ty0 = convertPointerToIntegerType(DL, Ty0);
- Ty1 = convertPointerToIntegerType(DL, Ty1);
- if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
- return Ty0;
- return Ty1;
- }
- /// Check that the instruction has outside loop users and is not an
- /// identified reduction variable.
- static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
- SmallPtrSetImpl<Value *> &AllowedExit) {
- // Reductions, Inductions and non-header phis are allowed to have exit users. All
- // other instructions must not have external users.
- if (!AllowedExit.count(Inst))
- // Check that all of the users of the loop are inside the BB.
- for (User *U : Inst->users()) {
- Instruction *UI = cast<Instruction>(U);
- // This user may be a reduction exit value.
- if (!TheLoop->contains(UI)) {
- LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
- return true;
- }
- }
- return false;
- }
- /// Returns true if A and B have same pointer operands or same SCEVs addresses
- static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
- StoreInst *B) {
- // Compare store
- if (A == B)
- return true;
- // Otherwise Compare pointers
- Value *APtr = A->getPointerOperand();
- Value *BPtr = B->getPointerOperand();
- if (APtr == BPtr)
- return true;
- // Otherwise compare address SCEVs
- if (SE->getSCEV(APtr) == SE->getSCEV(BPtr))
- return true;
- return false;
- }
- int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
- Value *Ptr) const {
- const ValueToValueMap &Strides =
- getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
- Function *F = TheLoop->getHeader()->getParent();
- bool OptForSize = F->hasOptSize() ||
- llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
- PGSOQueryType::IRPass);
- bool CanAddPredicate = !OptForSize;
- int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
- CanAddPredicate, false).value_or(0);
- if (Stride == 1 || Stride == -1)
- return Stride;
- return 0;
- }
- bool LoopVectorizationLegality::isUniform(Value *V) const {
- return LAI->isUniform(V);
- }
- bool LoopVectorizationLegality::isUniformMemOp(Instruction &I) const {
- Value *Ptr = getLoadStorePointerOperand(&I);
- if (!Ptr)
- return false;
- // Note: There's nothing inherent which prevents predicated loads and
- // stores from being uniform. The current lowering simply doesn't handle
- // it; in particular, the cost model distinguishes scatter/gather from
- // scalar w/predication, and we currently rely on the scalar path.
- return isUniform(Ptr) && !blockNeedsPredication(I.getParent());
- }
- bool LoopVectorizationLegality::canVectorizeOuterLoop() {
- assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
- for (BasicBlock *BB : TheLoop->blocks()) {
- // Check whether the BB terminator is a BranchInst. Any other terminator is
- // not supported yet.
- auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
- if (!Br) {
- reportVectorizationFailure("Unsupported basic block terminator",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood", ORE, TheLoop);
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Check whether the BranchInst is a supported one. Only unconditional
- // branches, conditional branches with an outer loop invariant condition or
- // backedges are supported.
- // FIXME: We skip these checks when VPlan predication is enabled as we
- // want to allow divergent branches. This whole check will be removed
- // once VPlan predication is on by default.
- if (Br && Br->isConditional() &&
- !TheLoop->isLoopInvariant(Br->getCondition()) &&
- !LI->isLoopHeader(Br->getSuccessor(0)) &&
- !LI->isLoopHeader(Br->getSuccessor(1))) {
- reportVectorizationFailure("Unsupported conditional branch",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood", ORE, TheLoop);
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- }
- // Check whether inner loops are uniform. At this point, we only support
- // simple outer loops scenarios with uniform nested loops.
- if (!isUniformLoopNest(TheLoop /*loop nest*/,
- TheLoop /*context outer loop*/)) {
- reportVectorizationFailure("Outer loop contains divergent loops",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood", ORE, TheLoop);
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Check whether we are able to set up outer loop induction.
- if (!setupOuterLoopInductions()) {
- reportVectorizationFailure("Unsupported outer loop Phi(s)",
- "Unsupported outer loop Phi(s)",
- "UnsupportedPhi", ORE, TheLoop);
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- return Result;
- }
- void LoopVectorizationLegality::addInductionPhi(
- PHINode *Phi, const InductionDescriptor &ID,
- SmallPtrSetImpl<Value *> &AllowedExit) {
- Inductions[Phi] = ID;
- // In case this induction also comes with casts that we know we can ignore
- // in the vectorized loop body, record them here. All casts could be recorded
- // here for ignoring, but suffices to record only the first (as it is the
- // only one that may bw used outside the cast sequence).
- const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
- if (!Casts.empty())
- InductionCastsToIgnore.insert(*Casts.begin());
- Type *PhiTy = Phi->getType();
- const DataLayout &DL = Phi->getModule()->getDataLayout();
- // Get the widest type.
- if (!PhiTy->isFloatingPointTy()) {
- if (!WidestIndTy)
- WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
- else
- WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
- }
- // Int inductions are special because we only allow one IV.
- if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
- ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
- isa<Constant>(ID.getStartValue()) &&
- cast<Constant>(ID.getStartValue())->isNullValue()) {
- // Use the phi node with the widest type as induction. Use the last
- // one if there are multiple (no good reason for doing this other
- // than it is expedient). We've checked that it begins at zero and
- // steps by one, so this is a canonical induction variable.
- if (!PrimaryInduction || PhiTy == WidestIndTy)
- PrimaryInduction = Phi;
- }
- // Both the PHI node itself, and the "post-increment" value feeding
- // back into the PHI node may have external users.
- // We can allow those uses, except if the SCEVs we have for them rely
- // on predicates that only hold within the loop, since allowing the exit
- // currently means re-using this SCEV outside the loop (see PR33706 for more
- // details).
- if (PSE.getPredicate().isAlwaysTrue()) {
- AllowedExit.insert(Phi);
- AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
- }
- LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
- }
- bool LoopVectorizationLegality::setupOuterLoopInductions() {
- BasicBlock *Header = TheLoop->getHeader();
- // Returns true if a given Phi is a supported induction.
- auto isSupportedPhi = [&](PHINode &Phi) -> bool {
- InductionDescriptor ID;
- if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
- ID.getKind() == InductionDescriptor::IK_IntInduction) {
- addInductionPhi(&Phi, ID, AllowedExit);
- return true;
- } else {
- // Bail out for any Phi in the outer loop header that is not a supported
- // induction.
- LLVM_DEBUG(
- dbgs()
- << "LV: Found unsupported PHI for outer loop vectorization.\n");
- return false;
- }
- };
- if (llvm::all_of(Header->phis(), isSupportedPhi))
- return true;
- else
- return false;
- }
- /// Checks if a function is scalarizable according to the TLI, in
- /// the sense that it should be vectorized and then expanded in
- /// multiple scalar calls. This is represented in the
- /// TLI via mappings that do not specify a vector name, as in the
- /// following example:
- ///
- /// const VecDesc VecIntrinsics[] = {
- /// {"llvm.phx.abs.i32", "", 4}
- /// };
- static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
- const StringRef ScalarName = CI.getCalledFunction()->getName();
- bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
- // Check that all known VFs are not associated to a vector
- // function, i.e. the vector name is emty.
- if (Scalarize) {
- ElementCount WidestFixedVF, WidestScalableVF;
- TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
- for (ElementCount VF = ElementCount::getFixed(2);
- ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
- Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
- for (ElementCount VF = ElementCount::getScalable(1);
- ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
- Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
- assert((WidestScalableVF.isZero() || !Scalarize) &&
- "Caller may decide to scalarize a variant using a scalable VF");
- }
- return Scalarize;
- }
- bool LoopVectorizationLegality::canVectorizeInstrs() {
- BasicBlock *Header = TheLoop->getHeader();
- // For each block in the loop.
- for (BasicBlock *BB : TheLoop->blocks()) {
- // Scan the instructions in the block and look for hazards.
- for (Instruction &I : *BB) {
- if (auto *Phi = dyn_cast<PHINode>(&I)) {
- Type *PhiTy = Phi->getType();
- // Check that this PHI type is allowed.
- if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
- !PhiTy->isPointerTy()) {
- reportVectorizationFailure("Found a non-int non-pointer PHI",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood", ORE, TheLoop);
- return false;
- }
- // If this PHINode is not in the header block, then we know that we
- // can convert it to select during if-conversion. No need to check if
- // the PHIs in this block are induction or reduction variables.
- if (BB != Header) {
- // Non-header phi nodes that have outside uses can be vectorized. Add
- // them to the list of allowed exits.
- // Unsafe cyclic dependencies with header phis are identified during
- // legalization for reduction, induction and fixed order
- // recurrences.
- AllowedExit.insert(&I);
- continue;
- }
- // We only allow if-converted PHIs with exactly two incoming values.
- if (Phi->getNumIncomingValues() != 2) {
- reportVectorizationFailure("Found an invalid PHI",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood", ORE, TheLoop, Phi);
- return false;
- }
- RecurrenceDescriptor RedDes;
- if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
- DT, PSE.getSE())) {
- Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
- AllowedExit.insert(RedDes.getLoopExitInstr());
- Reductions[Phi] = RedDes;
- continue;
- }
- // TODO: Instead of recording the AllowedExit, it would be good to
- // record the complementary set: NotAllowedExit. These include (but may
- // not be limited to):
- // 1. Reduction phis as they represent the one-before-last value, which
- // is not available when vectorized
- // 2. Induction phis and increment when SCEV predicates cannot be used
- // outside the loop - see addInductionPhi
- // 3. Non-Phis with outside uses when SCEV predicates cannot be used
- // outside the loop - see call to hasOutsideLoopUser in the non-phi
- // handling below
- // 4. FixedOrderRecurrence phis that can possibly be handled by
- // extraction.
- // By recording these, we can then reason about ways to vectorize each
- // of these NotAllowedExit.
- InductionDescriptor ID;
- if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
- addInductionPhi(Phi, ID, AllowedExit);
- Requirements->addExactFPMathInst(ID.getExactFPMathInst());
- continue;
- }
- if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop,
- SinkAfter, DT)) {
- AllowedExit.insert(Phi);
- FixedOrderRecurrences.insert(Phi);
- continue;
- }
- // As a last resort, coerce the PHI to a AddRec expression
- // and re-try classifying it a an induction PHI.
- if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
- addInductionPhi(Phi, ID, AllowedExit);
- continue;
- }
- reportVectorizationFailure("Found an unidentified PHI",
- "value that could not be identified as "
- "reduction is used outside the loop",
- "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
- return false;
- } // end of PHI handling
- // We handle calls that:
- // * Are debug info intrinsics.
- // * Have a mapping to an IR intrinsic.
- // * Have a vector version available.
- auto *CI = dyn_cast<CallInst>(&I);
- if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
- !isa<DbgInfoIntrinsic>(CI) &&
- !(CI->getCalledFunction() && TLI &&
- (!VFDatabase::getMappings(*CI).empty() ||
- isTLIScalarize(*TLI, *CI)))) {
- // If the call is a recognized math libary call, it is likely that
- // we can vectorize it given loosened floating-point constraints.
- LibFunc Func;
- bool IsMathLibCall =
- TLI && CI->getCalledFunction() &&
- CI->getType()->isFloatingPointTy() &&
- TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
- TLI->hasOptimizedCodeGen(Func);
- if (IsMathLibCall) {
- // TODO: Ideally, we should not use clang-specific language here,
- // but it's hard to provide meaningful yet generic advice.
- // Also, should this be guarded by allowExtraAnalysis() and/or be part
- // of the returned info from isFunctionVectorizable()?
- reportVectorizationFailure(
- "Found a non-intrinsic callsite",
- "library call cannot be vectorized. "
- "Try compiling with -fno-math-errno, -ffast-math, "
- "or similar flags",
- "CantVectorizeLibcall", ORE, TheLoop, CI);
- } else {
- reportVectorizationFailure("Found a non-intrinsic callsite",
- "call instruction cannot be vectorized",
- "CantVectorizeLibcall", ORE, TheLoop, CI);
- }
- return false;
- }
- // Some intrinsics have scalar arguments and should be same in order for
- // them to be vectorized (i.e. loop invariant).
- if (CI) {
- auto *SE = PSE.getSE();
- Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
- for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
- if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) {
- if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
- reportVectorizationFailure("Found unvectorizable intrinsic",
- "intrinsic instruction cannot be vectorized",
- "CantVectorizeIntrinsic", ORE, TheLoop, CI);
- return false;
- }
- }
- }
- // Check that the instruction return type is vectorizable.
- // Also, we can't vectorize extractelement instructions.
- if ((!VectorType::isValidElementType(I.getType()) &&
- !I.getType()->isVoidTy()) ||
- isa<ExtractElementInst>(I)) {
- reportVectorizationFailure("Found unvectorizable type",
- "instruction return type cannot be vectorized",
- "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
- return false;
- }
- // Check that the stored type is vectorizable.
- if (auto *ST = dyn_cast<StoreInst>(&I)) {
- Type *T = ST->getValueOperand()->getType();
- if (!VectorType::isValidElementType(T)) {
- reportVectorizationFailure("Store instruction cannot be vectorized",
- "store instruction cannot be vectorized",
- "CantVectorizeStore", ORE, TheLoop, ST);
- return false;
- }
- // For nontemporal stores, check that a nontemporal vector version is
- // supported on the target.
- if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
- // Arbitrarily try a vector of 2 elements.
- auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
- assert(VecTy && "did not find vectorized version of stored type");
- if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
- reportVectorizationFailure(
- "nontemporal store instruction cannot be vectorized",
- "nontemporal store instruction cannot be vectorized",
- "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
- return false;
- }
- }
- } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
- if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
- // For nontemporal loads, check that a nontemporal vector version is
- // supported on the target (arbitrarily try a vector of 2 elements).
- auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
- assert(VecTy && "did not find vectorized version of load type");
- if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
- reportVectorizationFailure(
- "nontemporal load instruction cannot be vectorized",
- "nontemporal load instruction cannot be vectorized",
- "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
- return false;
- }
- }
- // FP instructions can allow unsafe algebra, thus vectorizable by
- // non-IEEE-754 compliant SIMD units.
- // This applies to floating-point math operations and calls, not memory
- // operations, shuffles, or casts, as they don't change precision or
- // semantics.
- } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
- !I.isFast()) {
- LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
- Hints->setPotentiallyUnsafe();
- }
- // Reduction instructions are allowed to have exit users.
- // All other instructions must not have external users.
- if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
- // We can safely vectorize loops where instructions within the loop are
- // used outside the loop only if the SCEV predicates within the loop is
- // same as outside the loop. Allowing the exit means reusing the SCEV
- // outside the loop.
- if (PSE.getPredicate().isAlwaysTrue()) {
- AllowedExit.insert(&I);
- continue;
- }
- reportVectorizationFailure("Value cannot be used outside the loop",
- "value cannot be used outside the loop",
- "ValueUsedOutsideLoop", ORE, TheLoop, &I);
- return false;
- }
- } // next instr.
- }
- if (!PrimaryInduction) {
- if (Inductions.empty()) {
- reportVectorizationFailure("Did not find one integer induction var",
- "loop induction variable could not be identified",
- "NoInductionVariable", ORE, TheLoop);
- return false;
- } else if (!WidestIndTy) {
- reportVectorizationFailure("Did not find one integer induction var",
- "integer loop induction variable could not be identified",
- "NoIntegerInductionVariable", ORE, TheLoop);
- return false;
- } else {
- LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
- }
- }
- // For fixed order recurrences, we use the previous value (incoming value from
- // the latch) to check if it dominates all users of the recurrence. Bail out
- // if we have to sink such an instruction for another recurrence, as the
- // dominance requirement may not hold after sinking.
- BasicBlock *LoopLatch = TheLoop->getLoopLatch();
- if (any_of(FixedOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
- Instruction *V =
- cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
- return SinkAfter.find(V) != SinkAfter.end();
- }))
- return false;
- // Now we know the widest induction type, check if our found induction
- // is the same size. If it's not, unset it here and InnerLoopVectorizer
- // will create another.
- if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
- PrimaryInduction = nullptr;
- return true;
- }
- bool LoopVectorizationLegality::canVectorizeMemory() {
- LAI = &LAIs.getInfo(*TheLoop);
- const OptimizationRemarkAnalysis *LAR = LAI->getReport();
- if (LAR) {
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
- "loop not vectorized: ", *LAR);
- });
- }
- if (!LAI->canVectorizeMemory())
- return false;
- // We can vectorize stores to invariant address when final reduction value is
- // guaranteed to be stored at the end of the loop. Also, if decision to
- // vectorize loop is made, runtime checks are added so as to make sure that
- // invariant address won't alias with any other objects.
- if (!LAI->getStoresToInvariantAddresses().empty()) {
- // For each invariant address, check if last stored value is unconditional
- // and the address is not calculated inside the loop.
- for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
- if (!isInvariantStoreOfReduction(SI))
- continue;
- if (blockNeedsPredication(SI->getParent())) {
- reportVectorizationFailure(
- "We don't allow storing to uniform addresses",
- "write of conditional recurring variant value to a loop "
- "invariant address could not be vectorized",
- "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
- return false;
- }
- // Invariant address should be defined outside of loop. LICM pass usually
- // makes sure it happens, but in rare cases it does not, we do not want
- // to overcomplicate vectorization to support this case.
- if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
- if (TheLoop->contains(Ptr)) {
- reportVectorizationFailure(
- "Invariant address is calculated inside the loop",
- "write to a loop invariant address could not "
- "be vectorized",
- "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
- return false;
- }
- }
- }
- if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
- // For each invariant address, check its last stored value is the result
- // of one of our reductions.
- //
- // We do not check if dependence with loads exists because they are
- // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this
- // behaviour changes we have to modify this code.
- ScalarEvolution *SE = PSE.getSE();
- SmallVector<StoreInst *, 4> UnhandledStores;
- for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
- if (isInvariantStoreOfReduction(SI)) {
- // Earlier stores to this address are effectively deadcode.
- // With opaque pointers it is possible for one pointer to be used with
- // different sizes of stored values:
- // store i32 0, ptr %x
- // store i8 0, ptr %x
- // The latest store doesn't complitely overwrite the first one in the
- // example. That is why we have to make sure that types of stored
- // values are same.
- // TODO: Check that bitwidth of unhandled store is smaller then the
- // one that overwrites it and add a test.
- erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
- return storeToSameAddress(SE, SI, I) &&
- I->getValueOperand()->getType() ==
- SI->getValueOperand()->getType();
- });
- continue;
- }
- UnhandledStores.push_back(SI);
- }
- bool IsOK = UnhandledStores.empty();
- // TODO: we should also validate against InvariantMemSets.
- if (!IsOK) {
- reportVectorizationFailure(
- "We don't allow storing to uniform addresses",
- "write to a loop invariant address could not "
- "be vectorized",
- "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
- return false;
- }
- }
- }
- PSE.addPredicate(LAI->getPSE().getPredicate());
- return true;
- }
- bool LoopVectorizationLegality::canVectorizeFPMath(
- bool EnableStrictReductions) {
- // First check if there is any ExactFP math or if we allow reassociations
- if (!Requirements->getExactFPInst() || Hints->allowReordering())
- return true;
- // If the above is false, we have ExactFPMath & do not allow reordering.
- // If the EnableStrictReductions flag is set, first check if we have any
- // Exact FP induction vars, which we cannot vectorize.
- if (!EnableStrictReductions ||
- any_of(getInductionVars(), [&](auto &Induction) -> bool {
- InductionDescriptor IndDesc = Induction.second;
- return IndDesc.getExactFPMathInst();
- }))
- return false;
- // We can now only vectorize if all reductions with Exact FP math also
- // have the isOrdered flag set, which indicates that we can move the
- // reduction operations in-loop.
- return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
- const RecurrenceDescriptor &RdxDesc = Reduction.second;
- return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
- }));
- }
- bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
- return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
- const RecurrenceDescriptor &RdxDesc = Reduction.second;
- return RdxDesc.IntermediateStore == SI;
- });
- }
- bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
- return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
- const RecurrenceDescriptor &RdxDesc = Reduction.second;
- if (!RdxDesc.IntermediateStore)
- return false;
- ScalarEvolution *SE = PSE.getSE();
- Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
- return V == InvariantAddress ||
- SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
- });
- }
- bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
- Value *In0 = const_cast<Value *>(V);
- PHINode *PN = dyn_cast_or_null<PHINode>(In0);
- if (!PN)
- return false;
- return Inductions.count(PN);
- }
- const InductionDescriptor *
- LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
- if (!isInductionPhi(Phi))
- return nullptr;
- auto &ID = getInductionVars().find(Phi)->second;
- if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
- ID.getKind() == InductionDescriptor::IK_FpInduction)
- return &ID;
- return nullptr;
- }
- const InductionDescriptor *
- LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
- if (!isInductionPhi(Phi))
- return nullptr;
- auto &ID = getInductionVars().find(Phi)->second;
- if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
- return &ID;
- return nullptr;
- }
- bool LoopVectorizationLegality::isCastedInductionVariable(
- const Value *V) const {
- auto *Inst = dyn_cast<Instruction>(V);
- return (Inst && InductionCastsToIgnore.count(Inst));
- }
- bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
- return isInductionPhi(V) || isCastedInductionVariable(V);
- }
- bool LoopVectorizationLegality::isFixedOrderRecurrence(
- const PHINode *Phi) const {
- return FixedOrderRecurrences.count(Phi);
- }
- bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
- return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
- }
- bool LoopVectorizationLegality::blockCanBePredicated(
- BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
- SmallPtrSetImpl<const Instruction *> &MaskedOp,
- SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const {
- for (Instruction &I : *BB) {
- // We can predicate blocks with calls to assume, as long as we drop them in
- // case we flatten the CFG via predication.
- if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
- ConditionalAssumes.insert(&I);
- continue;
- }
- // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
- // TODO: there might be cases that it should block the vectorization. Let's
- // ignore those for now.
- if (isa<NoAliasScopeDeclInst>(&I))
- continue;
- // Loads are handled via masking (or speculated if safe to do so.)
- if (auto *LI = dyn_cast<LoadInst>(&I)) {
- if (!SafePtrs.count(LI->getPointerOperand()))
- MaskedOp.insert(LI);
- continue;
- }
- // Predicated store requires some form of masking:
- // 1) masked store HW instruction,
- // 2) emulation via load-blend-store (only if safe and legal to do so,
- // be aware on the race conditions), or
- // 3) element-by-element predicate check and scalar store.
- if (auto *SI = dyn_cast<StoreInst>(&I)) {
- MaskedOp.insert(SI);
- continue;
- }
- if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
- return false;
- }
- return true;
- }
- bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
- if (!EnableIfConversion) {
- reportVectorizationFailure("If-conversion is disabled",
- "if-conversion is disabled",
- "IfConversionDisabled",
- ORE, TheLoop);
- return false;
- }
- assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
- // A list of pointers which are known to be dereferenceable within scope of
- // the loop body for each iteration of the loop which executes. That is,
- // the memory pointed to can be dereferenced (with the access size implied by
- // the value's type) unconditionally within the loop header without
- // introducing a new fault.
- SmallPtrSet<Value *, 8> SafePointers;
- // Collect safe addresses.
- for (BasicBlock *BB : TheLoop->blocks()) {
- if (!blockNeedsPredication(BB)) {
- for (Instruction &I : *BB)
- if (auto *Ptr = getLoadStorePointerOperand(&I))
- SafePointers.insert(Ptr);
- continue;
- }
- // For a block which requires predication, a address may be safe to access
- // in the loop w/o predication if we can prove dereferenceability facts
- // sufficient to ensure it'll never fault within the loop. For the moment,
- // we restrict this to loads; stores are more complicated due to
- // concurrency restrictions.
- ScalarEvolution &SE = *PSE.getSE();
- for (Instruction &I : *BB) {
- LoadInst *LI = dyn_cast<LoadInst>(&I);
- if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
- isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC))
- SafePointers.insert(LI->getPointerOperand());
- }
- }
- // Collect the blocks that need predication.
- for (BasicBlock *BB : TheLoop->blocks()) {
- // We don't support switch statements inside loops.
- if (!isa<BranchInst>(BB->getTerminator())) {
- reportVectorizationFailure("Loop contains a switch statement",
- "loop contains a switch statement",
- "LoopContainsSwitch", ORE, TheLoop,
- BB->getTerminator());
- return false;
- }
- // We must be able to predicate all blocks that need to be predicated.
- if (blockNeedsPredication(BB)) {
- if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
- ConditionalAssumes)) {
- reportVectorizationFailure(
- "Control flow cannot be substituted for a select",
- "control flow cannot be substituted for a select",
- "NoCFGForSelect", ORE, TheLoop,
- BB->getTerminator());
- return false;
- }
- }
- }
- // We can if-convert this loop.
- return true;
- }
- // Helper function to canVectorizeLoopNestCFG.
- bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
- bool UseVPlanNativePath) {
- assert((UseVPlanNativePath || Lp->isInnermost()) &&
- "VPlan-native path is not enabled.");
- // TODO: ORE should be improved to show more accurate information when an
- // outer loop can't be vectorized because a nested loop is not understood or
- // legal. Something like: "outer_loop_location: loop not vectorized:
- // (inner_loop_location) loop control flow is not understood by vectorizer".
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
- // We must have a loop in canonical form. Loops with indirectbr in them cannot
- // be canonicalized.
- if (!Lp->getLoopPreheader()) {
- reportVectorizationFailure("Loop doesn't have a legal pre-header",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood", ORE, TheLoop);
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // We must have a single backedge.
- if (Lp->getNumBackEdges() != 1) {
- reportVectorizationFailure("The loop must have a single backedge",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood", ORE, TheLoop);
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- return Result;
- }
- bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
- Loop *Lp, bool UseVPlanNativePath) {
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
- if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Recursively check whether the loop control flow of nested loops is
- // understood.
- for (Loop *SubLp : *Lp)
- if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- return Result;
- }
- bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
- // Check whether the loop-related control flow in the loop nest is expected by
- // vectorizer.
- if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // We need to have a loop header.
- LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
- << '\n');
- // Specific checks for outer loops. We skip the remaining legal checks at this
- // point because they don't support outer loops.
- if (!TheLoop->isInnermost()) {
- assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
- if (!canVectorizeOuterLoop()) {
- reportVectorizationFailure("Unsupported outer loop",
- "unsupported outer loop",
- "UnsupportedOuterLoop",
- ORE, TheLoop);
- // TODO: Implement DoExtraAnalysis when subsequent legal checks support
- // outer loops.
- return false;
- }
- LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
- return Result;
- }
- assert(TheLoop->isInnermost() && "Inner loop expected.");
- // Check if we can if-convert non-single-bb loops.
- unsigned NumBlocks = TheLoop->getNumBlocks();
- if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
- LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Check if we can vectorize the instructions and CFG in this loop.
- if (!canVectorizeInstrs()) {
- LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Go over each instruction and look at memory deps.
- if (!canVectorizeMemory()) {
- LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
- << (LAI->getRuntimePointerChecking()->Need
- ? " (with a runtime bound check)"
- : "")
- << "!\n");
- unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
- if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
- SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
- if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
- reportVectorizationFailure("Too many SCEV checks needed",
- "Too many SCEV assumptions need to be made and checked at runtime",
- "TooManySCEVRunTimeChecks", ORE, TheLoop);
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Okay! We've done all the tests. If any have failed, return false. Otherwise
- // we can vectorize, and at this point we don't have any other mem analysis
- // which may limit our maximum vectorization factor, so just return true with
- // no restrictions.
- return Result;
- }
- bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
- LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
- SmallPtrSet<const Value *, 8> ReductionLiveOuts;
- for (const auto &Reduction : getReductionVars())
- ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
- // TODO: handle non-reduction outside users when tail is folded by masking.
- for (auto *AE : AllowedExit) {
- // Check that all users of allowed exit values are inside the loop or
- // are the live-out of a reduction.
- if (ReductionLiveOuts.count(AE))
- continue;
- for (User *U : AE->users()) {
- Instruction *UI = cast<Instruction>(U);
- if (TheLoop->contains(UI))
- continue;
- LLVM_DEBUG(
- dbgs()
- << "LV: Cannot fold tail by masking, loop has an outside user for "
- << *UI << "\n");
- return false;
- }
- }
- // The list of pointers that we can safely read and write to remains empty.
- SmallPtrSet<Value *, 8> SafePointers;
- SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
- SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
- // Check and mark all blocks for predication, including those that ordinarily
- // do not need predication such as the header block.
- for (BasicBlock *BB : TheLoop->blocks()) {
- if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
- TmpConditionalAssumes)) {
- LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
- return false;
- }
- }
- LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
- MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
- ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
- TmpConditionalAssumes.end());
- return true;
- }
- } // namespace llvm
|