//===- LoopVectorizationLegality.cpp --------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file provides loop vectorization legality analysis. Original code // resided in LoopVectorize.cpp for a long time. // // At this point, it is implemented as a utility class, not as an analysis // pass. It should be easy to create an analysis pass around it if there // is a need (but D45420 needs to happen first). // #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Transforms/Utils/SizeOpts.h" #include "llvm/Transforms/Vectorize/LoopVectorize.h" using namespace llvm; using namespace PatternMatch; #define LV_NAME "loop-vectorize" #define DEBUG_TYPE LV_NAME static cl::opt EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, cl::desc("Enable if-conversion during vectorization.")); namespace llvm { cl::opt HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, cl::desc("Allow enabling loop hints to reorder " "FP operations during vectorization.")); } // TODO: Move size-based thresholds out of legality checking, make cost based // decisions instead of hard thresholds. static cl::opt VectorizeSCEVCheckThreshold( "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, cl::desc("The maximum number of SCEV checks allowed.")); static cl::opt PragmaVectorizeSCEVCheckThreshold( "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum number of SCEV checks allowed with a " "vectorize(enable) pragma")); static cl::opt ForceScalableVectorization( "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), cl::Hidden, cl::desc("Control whether the compiler can use scalable vectors to " "vectorize a loop"), cl::values( clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", "Scalable vectorization is disabled."), clEnumValN( LoopVectorizeHints::SK_PreferScalable, "preferred", "Scalable vectorization is available and favored when the " "cost is inconclusive."), clEnumValN( LoopVectorizeHints::SK_PreferScalable, "on", "Scalable vectorization is available and favored when the " "cost is inconclusive."))); /// Maximum vectorization interleave count. static const unsigned MaxInterleaveFactor = 16; namespace llvm { bool LoopVectorizeHints::Hint::validate(unsigned Val) { switch (Kind) { case HK_WIDTH: return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; case HK_INTERLEAVE: return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; case HK_FORCE: return (Val <= 1); case HK_ISVECTORIZED: case HK_PREDICATE: case HK_SCALABLE: return (Val == 0 || Val == 1); } return false; } LoopVectorizeHints::LoopVectorizeHints(const Loop *L, bool InterleaveOnlyWhenForced, OptimizationRemarkEmitter &ORE, const TargetTransformInfo *TTI) : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), Force("vectorize.enable", FK_Undefined, HK_FORCE), IsVectorized("isvectorized", 0, HK_ISVECTORIZED), Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), TheLoop(L), ORE(ORE) { // Populate values with existing loop metadata. getHintsFromMetadata(); // force-vector-interleave overrides DisableInterleaving. if (VectorizerParams::isInterleaveForced()) Interleave.Value = VectorizerParams::VectorizationInterleave; // If the metadata doesn't explicitly specify whether to enable scalable // vectorization, then decide based on the following criteria (increasing // level of priority): // - Target default // - Metadata width // - Force option (always overrides) if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { if (TTI) Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable : SK_FixedWidthOnly; if (Width.Value) // If the width is set, but the metadata says nothing about the scalable // property, then assume it concerns only a fixed-width UserVF. // If width is not set, the flag takes precedence. Scalable.Value = SK_FixedWidthOnly; } // If the flag is set to force any use of scalable vectors, override the loop // hints. if (ForceScalableVectorization.getValue() != LoopVectorizeHints::SK_Unspecified) Scalable.Value = ForceScalableVectorization.getValue(); // Scalable vectorization is disabled if no preference is specified. if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) Scalable.Value = SK_FixedWidthOnly; if (IsVectorized.Value != 1) // If the vectorization width and interleaving count are both 1 then // consider the loop to have been already vectorized because there's // nothing more that we can do. IsVectorized.Value = getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() << "LV: Interleaving disabled by the pass manager\n"); } void LoopVectorizeHints::setAlreadyVectorized() { LLVMContext &Context = TheLoop->getHeader()->getContext(); MDNode *IsVectorizedMD = MDNode::get( Context, {MDString::get(Context, "llvm.loop.isvectorized"), ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); MDNode *LoopID = TheLoop->getLoopID(); MDNode *NewLoopID = makePostTransformationMetadata(Context, LoopID, {Twine(Prefix(), "vectorize.").str(), Twine(Prefix(), "interleave.").str()}, {IsVectorizedMD}); TheLoop->setLoopID(NewLoopID); // Update internal cache. IsVectorized.Value = 1; } bool LoopVectorizeHints::allowVectorization( Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { if (getForce() == LoopVectorizeHints::FK_Disabled) { LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); emitRemarkWithHints(); return false; } if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); emitRemarkWithHints(); return false; } if (getIsVectorized() == 1) { LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); // FIXME: Add interleave.disable metadata. This will allow // vectorize.disable to be used without disabling the pass and errors // to differentiate between disabled vectorization and a width of 1. ORE.emit([&]() { return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), "AllDisabled", L->getStartLoc(), L->getHeader()) << "loop not vectorized: vectorization and interleaving are " "explicitly disabled, or the loop has already been " "vectorized"; }); return false; } return true; } void LoopVectorizeHints::emitRemarkWithHints() const { using namespace ore; ORE.emit([&]() { if (Force.Value == LoopVectorizeHints::FK_Disabled) return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", TheLoop->getStartLoc(), TheLoop->getHeader()) << "loop not vectorized: vectorization is explicitly disabled"; else { OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(), TheLoop->getHeader()); R << "loop not vectorized"; if (Force.Value == LoopVectorizeHints::FK_Enabled) { R << " (Force=" << NV("Force", true); if (Width.Value != 0) R << ", Vector Width=" << NV("VectorWidth", getWidth()); if (getInterleave() != 0) R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); R << ")"; } return R; } }); } const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { if (getWidth() == ElementCount::getFixed(1)) return LV_NAME; if (getForce() == LoopVectorizeHints::FK_Disabled) return LV_NAME; if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) return LV_NAME; return OptimizationRemarkAnalysis::AlwaysPrint; } bool LoopVectorizeHints::allowReordering() const { // Allow the vectorizer to change the order of operations if enabling // loop hints are provided ElementCount EC = getWidth(); return HintsAllowReordering && (getForce() == LoopVectorizeHints::FK_Enabled || EC.getKnownMinValue() > 1); } void LoopVectorizeHints::getHintsFromMetadata() { MDNode *LoopID = TheLoop->getLoopID(); if (!LoopID) return; // First operand should refer to the loop id itself. assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { const MDString *S = nullptr; SmallVector Args; // The expected hint is either a MDString or a MDNode with the first // operand a MDString. if (const MDNode *MD = dyn_cast(LoopID->getOperand(i))) { if (!MD || MD->getNumOperands() == 0) continue; S = dyn_cast(MD->getOperand(0)); for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) Args.push_back(MD->getOperand(i)); } else { S = dyn_cast(LoopID->getOperand(i)); assert(Args.size() == 0 && "too many arguments for MDString"); } if (!S) continue; // Check if the hint starts with the loop metadata prefix. StringRef Name = S->getString(); if (Args.size() == 1) setHint(Name, Args[0]); } } void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { if (!Name.startswith(Prefix())) return; Name = Name.substr(Prefix().size(), StringRef::npos); const ConstantInt *C = mdconst::dyn_extract(Arg); if (!C) return; unsigned Val = C->getZExtValue(); Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized, &Predicate, &Scalable}; for (auto *H : Hints) { if (Name == H->Name) { if (H->validate(Val)) H->Value = Val; else LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); break; } } } // Return true if the inner loop \p Lp is uniform with regard to the outer loop // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes // executing the inner loop will execute the same iterations). This check is // very constrained for now but it will be relaxed in the future. \p Lp is // considered uniform if it meets all the following conditions: // 1) it has a canonical IV (starting from 0 and with stride 1), // 2) its latch terminator is a conditional branch and, // 3) its latch condition is a compare instruction whose operands are the // canonical IV and an OuterLp invariant. // This check doesn't take into account the uniformity of other conditions not // related to the loop latch because they don't affect the loop uniformity. // // NOTE: We decided to keep all these checks and its associated documentation // together so that we can easily have a picture of the current supported loop // nests. However, some of the current checks don't depend on \p OuterLp and // would be redundantly executed for each \p Lp if we invoked this function for // different candidate outer loops. This is not the case for now because we // don't currently have the infrastructure to evaluate multiple candidate outer // loops and \p OuterLp will be a fixed parameter while we only support explicit // outer loop vectorization. It's also very likely that these checks go away // before introducing the aforementioned infrastructure. However, if this is not // the case, we should move the \p OuterLp independent checks to a separate // function that is only executed once for each \p Lp. static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { assert(Lp->getLoopLatch() && "Expected loop with a single latch."); // If Lp is the outer loop, it's uniform by definition. if (Lp == OuterLp) return true; assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); // 1. PHINode *IV = Lp->getCanonicalInductionVariable(); if (!IV) { LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); return false; } // 2. BasicBlock *Latch = Lp->getLoopLatch(); auto *LatchBr = dyn_cast(Latch->getTerminator()); if (!LatchBr || LatchBr->isUnconditional()) { LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); return false; } // 3. auto *LatchCmp = dyn_cast(LatchBr->getCondition()); if (!LatchCmp) { LLVM_DEBUG( dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); return false; } Value *CondOp0 = LatchCmp->getOperand(0); Value *CondOp1 = LatchCmp->getOperand(1); Value *IVUpdate = IV->getIncomingValueForBlock(Latch); if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); return false; } return true; } // Return true if \p Lp and all its nested loops are uniform with regard to \p // OuterLp. static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { if (!isUniformLoop(Lp, OuterLp)) return false; // Check if nested loops are uniform. for (Loop *SubLp : *Lp) if (!isUniformLoopNest(SubLp, OuterLp)) return false; return true; } static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { if (Ty->isPointerTy()) return DL.getIntPtrType(Ty); // It is possible that char's or short's overflow when we ask for the loop's // trip count, work around this by changing the type size. if (Ty->getScalarSizeInBits() < 32) return Type::getInt32Ty(Ty->getContext()); return Ty; } static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { Ty0 = convertPointerToIntegerType(DL, Ty0); Ty1 = convertPointerToIntegerType(DL, Ty1); if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) return Ty0; return Ty1; } /// Check that the instruction has outside loop users and is not an /// identified reduction variable. static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, SmallPtrSetImpl &AllowedExit) { // Reductions, Inductions and non-header phis are allowed to have exit users. All // other instructions must not have external users. if (!AllowedExit.count(Inst)) // Check that all of the users of the loop are inside the BB. for (User *U : Inst->users()) { Instruction *UI = cast(U); // This user may be a reduction exit value. if (!TheLoop->contains(UI)) { LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); return true; } } return false; } /// Returns true if A and B have same pointer operands or same SCEVs addresses static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, StoreInst *B) { // Compare store if (A == B) return true; // Otherwise Compare pointers Value *APtr = A->getPointerOperand(); Value *BPtr = B->getPointerOperand(); if (APtr == BPtr) return true; // Otherwise compare address SCEVs if (SE->getSCEV(APtr) == SE->getSCEV(BPtr)) return true; return false; } int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, Value *Ptr) const { const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); Function *F = TheLoop->getHeader()->getParent(); bool OptForSize = F->hasOptSize() || llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); bool CanAddPredicate = !OptForSize; int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides, CanAddPredicate, false).value_or(0); if (Stride == 1 || Stride == -1) return Stride; return 0; } bool LoopVectorizationLegality::isUniform(Value *V) const { return LAI->isUniform(V); } bool LoopVectorizationLegality::isUniformMemOp(Instruction &I) const { Value *Ptr = getLoadStorePointerOperand(&I); if (!Ptr) return false; // Note: There's nothing inherent which prevents predicated loads and // stores from being uniform. The current lowering simply doesn't handle // it; in particular, the cost model distinguishes scatter/gather from // scalar w/predication, and we currently rely on the scalar path. return isUniform(Ptr) && !blockNeedsPredication(I.getParent()); } bool LoopVectorizationLegality::canVectorizeOuterLoop() { assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); // Store the result and return it at the end instead of exiting early, in case // allowExtraAnalysis is used to report multiple reasons for not vectorizing. bool Result = true; bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); for (BasicBlock *BB : TheLoop->blocks()) { // Check whether the BB terminator is a BranchInst. Any other terminator is // not supported yet. auto *Br = dyn_cast(BB->getTerminator()); if (!Br) { reportVectorizationFailure("Unsupported basic block terminator", "loop control flow is not understood by vectorizer", "CFGNotUnderstood", ORE, TheLoop); if (DoExtraAnalysis) Result = false; else return false; } // Check whether the BranchInst is a supported one. Only unconditional // branches, conditional branches with an outer loop invariant condition or // backedges are supported. // FIXME: We skip these checks when VPlan predication is enabled as we // want to allow divergent branches. This whole check will be removed // once VPlan predication is on by default. if (Br && Br->isConditional() && !TheLoop->isLoopInvariant(Br->getCondition()) && !LI->isLoopHeader(Br->getSuccessor(0)) && !LI->isLoopHeader(Br->getSuccessor(1))) { reportVectorizationFailure("Unsupported conditional branch", "loop control flow is not understood by vectorizer", "CFGNotUnderstood", ORE, TheLoop); if (DoExtraAnalysis) Result = false; else return false; } } // Check whether inner loops are uniform. At this point, we only support // simple outer loops scenarios with uniform nested loops. if (!isUniformLoopNest(TheLoop /*loop nest*/, TheLoop /*context outer loop*/)) { reportVectorizationFailure("Outer loop contains divergent loops", "loop control flow is not understood by vectorizer", "CFGNotUnderstood", ORE, TheLoop); if (DoExtraAnalysis) Result = false; else return false; } // Check whether we are able to set up outer loop induction. if (!setupOuterLoopInductions()) { reportVectorizationFailure("Unsupported outer loop Phi(s)", "Unsupported outer loop Phi(s)", "UnsupportedPhi", ORE, TheLoop); if (DoExtraAnalysis) Result = false; else return false; } return Result; } void LoopVectorizationLegality::addInductionPhi( PHINode *Phi, const InductionDescriptor &ID, SmallPtrSetImpl &AllowedExit) { Inductions[Phi] = ID; // In case this induction also comes with casts that we know we can ignore // in the vectorized loop body, record them here. All casts could be recorded // here for ignoring, but suffices to record only the first (as it is the // only one that may bw used outside the cast sequence). const SmallVectorImpl &Casts = ID.getCastInsts(); if (!Casts.empty()) InductionCastsToIgnore.insert(*Casts.begin()); Type *PhiTy = Phi->getType(); const DataLayout &DL = Phi->getModule()->getDataLayout(); // Get the widest type. if (!PhiTy->isFloatingPointTy()) { if (!WidestIndTy) WidestIndTy = convertPointerToIntegerType(DL, PhiTy); else WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); } // Int inductions are special because we only allow one IV. if (ID.getKind() == InductionDescriptor::IK_IntInduction && ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && isa(ID.getStartValue()) && cast(ID.getStartValue())->isNullValue()) { // Use the phi node with the widest type as induction. Use the last // one if there are multiple (no good reason for doing this other // than it is expedient). We've checked that it begins at zero and // steps by one, so this is a canonical induction variable. if (!PrimaryInduction || PhiTy == WidestIndTy) PrimaryInduction = Phi; } // Both the PHI node itself, and the "post-increment" value feeding // back into the PHI node may have external users. // We can allow those uses, except if the SCEVs we have for them rely // on predicates that only hold within the loop, since allowing the exit // currently means re-using this SCEV outside the loop (see PR33706 for more // details). if (PSE.getPredicate().isAlwaysTrue()) { AllowedExit.insert(Phi); AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); } LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); } bool LoopVectorizationLegality::setupOuterLoopInductions() { BasicBlock *Header = TheLoop->getHeader(); // Returns true if a given Phi is a supported induction. auto isSupportedPhi = [&](PHINode &Phi) -> bool { InductionDescriptor ID; if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && ID.getKind() == InductionDescriptor::IK_IntInduction) { addInductionPhi(&Phi, ID, AllowedExit); return true; } else { // Bail out for any Phi in the outer loop header that is not a supported // induction. LLVM_DEBUG( dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n"); return false; } }; if (llvm::all_of(Header->phis(), isSupportedPhi)) return true; else return false; } /// Checks if a function is scalarizable according to the TLI, in /// the sense that it should be vectorized and then expanded in /// multiple scalar calls. This is represented in the /// TLI via mappings that do not specify a vector name, as in the /// following example: /// /// const VecDesc VecIntrinsics[] = { /// {"llvm.phx.abs.i32", "", 4} /// }; static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { const StringRef ScalarName = CI.getCalledFunction()->getName(); bool Scalarize = TLI.isFunctionVectorizable(ScalarName); // Check that all known VFs are not associated to a vector // function, i.e. the vector name is emty. if (Scalarize) { ElementCount WidestFixedVF, WidestScalableVF; TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); for (ElementCount VF = ElementCount::getFixed(2); ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); for (ElementCount VF = ElementCount::getScalable(1); ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); assert((WidestScalableVF.isZero() || !Scalarize) && "Caller may decide to scalarize a variant using a scalable VF"); } return Scalarize; } bool LoopVectorizationLegality::canVectorizeInstrs() { BasicBlock *Header = TheLoop->getHeader(); // For each block in the loop. for (BasicBlock *BB : TheLoop->blocks()) { // Scan the instructions in the block and look for hazards. for (Instruction &I : *BB) { if (auto *Phi = dyn_cast(&I)) { Type *PhiTy = Phi->getType(); // Check that this PHI type is allowed. if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && !PhiTy->isPointerTy()) { reportVectorizationFailure("Found a non-int non-pointer PHI", "loop control flow is not understood by vectorizer", "CFGNotUnderstood", ORE, TheLoop); return false; } // If this PHINode is not in the header block, then we know that we // can convert it to select during if-conversion. No need to check if // the PHIs in this block are induction or reduction variables. if (BB != Header) { // Non-header phi nodes that have outside uses can be vectorized. Add // them to the list of allowed exits. // Unsafe cyclic dependencies with header phis are identified during // legalization for reduction, induction and fixed order // recurrences. AllowedExit.insert(&I); continue; } // We only allow if-converted PHIs with exactly two incoming values. if (Phi->getNumIncomingValues() != 2) { reportVectorizationFailure("Found an invalid PHI", "loop control flow is not understood by vectorizer", "CFGNotUnderstood", ORE, TheLoop, Phi); return false; } RecurrenceDescriptor RedDes; if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, DT, PSE.getSE())) { Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); AllowedExit.insert(RedDes.getLoopExitInstr()); Reductions[Phi] = RedDes; continue; } // TODO: Instead of recording the AllowedExit, it would be good to // record the complementary set: NotAllowedExit. These include (but may // not be limited to): // 1. Reduction phis as they represent the one-before-last value, which // is not available when vectorized // 2. Induction phis and increment when SCEV predicates cannot be used // outside the loop - see addInductionPhi // 3. Non-Phis with outside uses when SCEV predicates cannot be used // outside the loop - see call to hasOutsideLoopUser in the non-phi // handling below // 4. FixedOrderRecurrence phis that can possibly be handled by // extraction. // By recording these, we can then reason about ways to vectorize each // of these NotAllowedExit. InductionDescriptor ID; if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { addInductionPhi(Phi, ID, AllowedExit); Requirements->addExactFPMathInst(ID.getExactFPMathInst()); continue; } if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, SinkAfter, DT)) { AllowedExit.insert(Phi); FixedOrderRecurrences.insert(Phi); continue; } // As a last resort, coerce the PHI to a AddRec expression // and re-try classifying it a an induction PHI. if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { addInductionPhi(Phi, ID, AllowedExit); continue; } reportVectorizationFailure("Found an unidentified PHI", "value that could not be identified as " "reduction is used outside the loop", "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); return false; } // end of PHI handling // We handle calls that: // * Are debug info intrinsics. // * Have a mapping to an IR intrinsic. // * Have a vector version available. auto *CI = dyn_cast(&I); if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && !isa(CI) && !(CI->getCalledFunction() && TLI && (!VFDatabase::getMappings(*CI).empty() || isTLIScalarize(*TLI, *CI)))) { // If the call is a recognized math libary call, it is likely that // we can vectorize it given loosened floating-point constraints. LibFunc Func; bool IsMathLibCall = TLI && CI->getCalledFunction() && CI->getType()->isFloatingPointTy() && TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && TLI->hasOptimizedCodeGen(Func); if (IsMathLibCall) { // TODO: Ideally, we should not use clang-specific language here, // but it's hard to provide meaningful yet generic advice. // Also, should this be guarded by allowExtraAnalysis() and/or be part // of the returned info from isFunctionVectorizable()? reportVectorizationFailure( "Found a non-intrinsic callsite", "library call cannot be vectorized. " "Try compiling with -fno-math-errno, -ffast-math, " "or similar flags", "CantVectorizeLibcall", ORE, TheLoop, CI); } else { reportVectorizationFailure("Found a non-intrinsic callsite", "call instruction cannot be vectorized", "CantVectorizeLibcall", ORE, TheLoop, CI); } return false; } // Some intrinsics have scalar arguments and should be same in order for // them to be vectorized (i.e. loop invariant). if (CI) { auto *SE = PSE.getSE(); Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) { if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { reportVectorizationFailure("Found unvectorizable intrinsic", "intrinsic instruction cannot be vectorized", "CantVectorizeIntrinsic", ORE, TheLoop, CI); return false; } } } // Check that the instruction return type is vectorizable. // Also, we can't vectorize extractelement instructions. if ((!VectorType::isValidElementType(I.getType()) && !I.getType()->isVoidTy()) || isa(I)) { reportVectorizationFailure("Found unvectorizable type", "instruction return type cannot be vectorized", "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); return false; } // Check that the stored type is vectorizable. if (auto *ST = dyn_cast(&I)) { Type *T = ST->getValueOperand()->getType(); if (!VectorType::isValidElementType(T)) { reportVectorizationFailure("Store instruction cannot be vectorized", "store instruction cannot be vectorized", "CantVectorizeStore", ORE, TheLoop, ST); return false; } // For nontemporal stores, check that a nontemporal vector version is // supported on the target. if (ST->getMetadata(LLVMContext::MD_nontemporal)) { // Arbitrarily try a vector of 2 elements. auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); assert(VecTy && "did not find vectorized version of stored type"); if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { reportVectorizationFailure( "nontemporal store instruction cannot be vectorized", "nontemporal store instruction cannot be vectorized", "CantVectorizeNontemporalStore", ORE, TheLoop, ST); return false; } } } else if (auto *LD = dyn_cast(&I)) { if (LD->getMetadata(LLVMContext::MD_nontemporal)) { // For nontemporal loads, check that a nontemporal vector version is // supported on the target (arbitrarily try a vector of 2 elements). auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); assert(VecTy && "did not find vectorized version of load type"); if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { reportVectorizationFailure( "nontemporal load instruction cannot be vectorized", "nontemporal load instruction cannot be vectorized", "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); return false; } } // FP instructions can allow unsafe algebra, thus vectorizable by // non-IEEE-754 compliant SIMD units. // This applies to floating-point math operations and calls, not memory // operations, shuffles, or casts, as they don't change precision or // semantics. } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && !I.isFast()) { LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); Hints->setPotentiallyUnsafe(); } // Reduction instructions are allowed to have exit users. // All other instructions must not have external users. if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { // We can safely vectorize loops where instructions within the loop are // used outside the loop only if the SCEV predicates within the loop is // same as outside the loop. Allowing the exit means reusing the SCEV // outside the loop. if (PSE.getPredicate().isAlwaysTrue()) { AllowedExit.insert(&I); continue; } reportVectorizationFailure("Value cannot be used outside the loop", "value cannot be used outside the loop", "ValueUsedOutsideLoop", ORE, TheLoop, &I); return false; } } // next instr. } if (!PrimaryInduction) { if (Inductions.empty()) { reportVectorizationFailure("Did not find one integer induction var", "loop induction variable could not be identified", "NoInductionVariable", ORE, TheLoop); return false; } else if (!WidestIndTy) { reportVectorizationFailure("Did not find one integer induction var", "integer loop induction variable could not be identified", "NoIntegerInductionVariable", ORE, TheLoop); return false; } else { LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); } } // For fixed order recurrences, we use the previous value (incoming value from // the latch) to check if it dominates all users of the recurrence. Bail out // if we have to sink such an instruction for another recurrence, as the // dominance requirement may not hold after sinking. BasicBlock *LoopLatch = TheLoop->getLoopLatch(); if (any_of(FixedOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { Instruction *V = cast(Phi->getIncomingValueForBlock(LoopLatch)); return SinkAfter.find(V) != SinkAfter.end(); })) return false; // Now we know the widest induction type, check if our found induction // is the same size. If it's not, unset it here and InnerLoopVectorizer // will create another. if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) PrimaryInduction = nullptr; return true; } bool LoopVectorizationLegality::canVectorizeMemory() { LAI = &LAIs.getInfo(*TheLoop); const OptimizationRemarkAnalysis *LAR = LAI->getReport(); if (LAR) { ORE->emit([&]() { return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), "loop not vectorized: ", *LAR); }); } if (!LAI->canVectorizeMemory()) return false; // We can vectorize stores to invariant address when final reduction value is // guaranteed to be stored at the end of the loop. Also, if decision to // vectorize loop is made, runtime checks are added so as to make sure that // invariant address won't alias with any other objects. if (!LAI->getStoresToInvariantAddresses().empty()) { // For each invariant address, check if last stored value is unconditional // and the address is not calculated inside the loop. for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { if (!isInvariantStoreOfReduction(SI)) continue; if (blockNeedsPredication(SI->getParent())) { reportVectorizationFailure( "We don't allow storing to uniform addresses", "write of conditional recurring variant value to a loop " "invariant address could not be vectorized", "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); return false; } // Invariant address should be defined outside of loop. LICM pass usually // makes sure it happens, but in rare cases it does not, we do not want // to overcomplicate vectorization to support this case. if (Instruction *Ptr = dyn_cast(SI->getPointerOperand())) { if (TheLoop->contains(Ptr)) { reportVectorizationFailure( "Invariant address is calculated inside the loop", "write to a loop invariant address could not " "be vectorized", "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); return false; } } } if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { // For each invariant address, check its last stored value is the result // of one of our reductions. // // We do not check if dependence with loads exists because they are // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this // behaviour changes we have to modify this code. ScalarEvolution *SE = PSE.getSE(); SmallVector UnhandledStores; for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { if (isInvariantStoreOfReduction(SI)) { // Earlier stores to this address are effectively deadcode. // With opaque pointers it is possible for one pointer to be used with // different sizes of stored values: // store i32 0, ptr %x // store i8 0, ptr %x // The latest store doesn't complitely overwrite the first one in the // example. That is why we have to make sure that types of stored // values are same. // TODO: Check that bitwidth of unhandled store is smaller then the // one that overwrites it and add a test. erase_if(UnhandledStores, [SE, SI](StoreInst *I) { return storeToSameAddress(SE, SI, I) && I->getValueOperand()->getType() == SI->getValueOperand()->getType(); }); continue; } UnhandledStores.push_back(SI); } bool IsOK = UnhandledStores.empty(); // TODO: we should also validate against InvariantMemSets. if (!IsOK) { reportVectorizationFailure( "We don't allow storing to uniform addresses", "write to a loop invariant address could not " "be vectorized", "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); return false; } } } PSE.addPredicate(LAI->getPSE().getPredicate()); return true; } bool LoopVectorizationLegality::canVectorizeFPMath( bool EnableStrictReductions) { // First check if there is any ExactFP math or if we allow reassociations if (!Requirements->getExactFPInst() || Hints->allowReordering()) return true; // If the above is false, we have ExactFPMath & do not allow reordering. // If the EnableStrictReductions flag is set, first check if we have any // Exact FP induction vars, which we cannot vectorize. if (!EnableStrictReductions || any_of(getInductionVars(), [&](auto &Induction) -> bool { InductionDescriptor IndDesc = Induction.second; return IndDesc.getExactFPMathInst(); })) return false; // We can now only vectorize if all reductions with Exact FP math also // have the isOrdered flag set, which indicates that we can move the // reduction operations in-loop. return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { const RecurrenceDescriptor &RdxDesc = Reduction.second; return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered(); })); } bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) { return any_of(getReductionVars(), [&](auto &Reduction) -> bool { const RecurrenceDescriptor &RdxDesc = Reduction.second; return RdxDesc.IntermediateStore == SI; }); } bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) { return any_of(getReductionVars(), [&](auto &Reduction) -> bool { const RecurrenceDescriptor &RdxDesc = Reduction.second; if (!RdxDesc.IntermediateStore) return false; ScalarEvolution *SE = PSE.getSE(); Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand(); return V == InvariantAddress || SE->getSCEV(V) == SE->getSCEV(InvariantAddress); }); } bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { Value *In0 = const_cast(V); PHINode *PN = dyn_cast_or_null(In0); if (!PN) return false; return Inductions.count(PN); } const InductionDescriptor * LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { if (!isInductionPhi(Phi)) return nullptr; auto &ID = getInductionVars().find(Phi)->second; if (ID.getKind() == InductionDescriptor::IK_IntInduction || ID.getKind() == InductionDescriptor::IK_FpInduction) return &ID; return nullptr; } const InductionDescriptor * LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const { if (!isInductionPhi(Phi)) return nullptr; auto &ID = getInductionVars().find(Phi)->second; if (ID.getKind() == InductionDescriptor::IK_PtrInduction) return &ID; return nullptr; } bool LoopVectorizationLegality::isCastedInductionVariable( const Value *V) const { auto *Inst = dyn_cast(V); return (Inst && InductionCastsToIgnore.count(Inst)); } bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { return isInductionPhi(V) || isCastedInductionVariable(V); } bool LoopVectorizationLegality::isFixedOrderRecurrence( const PHINode *Phi) const { return FixedOrderRecurrences.count(Phi); } bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); } bool LoopVectorizationLegality::blockCanBePredicated( BasicBlock *BB, SmallPtrSetImpl &SafePtrs, SmallPtrSetImpl &MaskedOp, SmallPtrSetImpl &ConditionalAssumes) const { for (Instruction &I : *BB) { // We can predicate blocks with calls to assume, as long as we drop them in // case we flatten the CFG via predication. if (match(&I, m_Intrinsic())) { ConditionalAssumes.insert(&I); continue; } // Do not let llvm.experimental.noalias.scope.decl block the vectorization. // TODO: there might be cases that it should block the vectorization. Let's // ignore those for now. if (isa(&I)) continue; // Loads are handled via masking (or speculated if safe to do so.) if (auto *LI = dyn_cast(&I)) { if (!SafePtrs.count(LI->getPointerOperand())) MaskedOp.insert(LI); continue; } // Predicated store requires some form of masking: // 1) masked store HW instruction, // 2) emulation via load-blend-store (only if safe and legal to do so, // be aware on the race conditions), or // 3) element-by-element predicate check and scalar store. if (auto *SI = dyn_cast(&I)) { MaskedOp.insert(SI); continue; } if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow()) return false; } return true; } bool LoopVectorizationLegality::canVectorizeWithIfConvert() { if (!EnableIfConversion) { reportVectorizationFailure("If-conversion is disabled", "if-conversion is disabled", "IfConversionDisabled", ORE, TheLoop); return false; } assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); // A list of pointers which are known to be dereferenceable within scope of // the loop body for each iteration of the loop which executes. That is, // the memory pointed to can be dereferenced (with the access size implied by // the value's type) unconditionally within the loop header without // introducing a new fault. SmallPtrSet SafePointers; // Collect safe addresses. for (BasicBlock *BB : TheLoop->blocks()) { if (!blockNeedsPredication(BB)) { for (Instruction &I : *BB) if (auto *Ptr = getLoadStorePointerOperand(&I)) SafePointers.insert(Ptr); continue; } // For a block which requires predication, a address may be safe to access // in the loop w/o predication if we can prove dereferenceability facts // sufficient to ensure it'll never fault within the loop. For the moment, // we restrict this to loads; stores are more complicated due to // concurrency restrictions. ScalarEvolution &SE = *PSE.getSE(); for (Instruction &I : *BB) { LoadInst *LI = dyn_cast(&I); if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC)) SafePointers.insert(LI->getPointerOperand()); } } // Collect the blocks that need predication. for (BasicBlock *BB : TheLoop->blocks()) { // We don't support switch statements inside loops. if (!isa(BB->getTerminator())) { reportVectorizationFailure("Loop contains a switch statement", "loop contains a switch statement", "LoopContainsSwitch", ORE, TheLoop, BB->getTerminator()); return false; } // We must be able to predicate all blocks that need to be predicated. if (blockNeedsPredication(BB)) { if (!blockCanBePredicated(BB, SafePointers, MaskedOp, ConditionalAssumes)) { reportVectorizationFailure( "Control flow cannot be substituted for a select", "control flow cannot be substituted for a select", "NoCFGForSelect", ORE, TheLoop, BB->getTerminator()); return false; } } } // We can if-convert this loop. return true; } // Helper function to canVectorizeLoopNestCFG. bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, bool UseVPlanNativePath) { assert((UseVPlanNativePath || Lp->isInnermost()) && "VPlan-native path is not enabled."); // TODO: ORE should be improved to show more accurate information when an // outer loop can't be vectorized because a nested loop is not understood or // legal. Something like: "outer_loop_location: loop not vectorized: // (inner_loop_location) loop control flow is not understood by vectorizer". // Store the result and return it at the end instead of exiting early, in case // allowExtraAnalysis is used to report multiple reasons for not vectorizing. bool Result = true; bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); // We must have a loop in canonical form. Loops with indirectbr in them cannot // be canonicalized. if (!Lp->getLoopPreheader()) { reportVectorizationFailure("Loop doesn't have a legal pre-header", "loop control flow is not understood by vectorizer", "CFGNotUnderstood", ORE, TheLoop); if (DoExtraAnalysis) Result = false; else return false; } // We must have a single backedge. if (Lp->getNumBackEdges() != 1) { reportVectorizationFailure("The loop must have a single backedge", "loop control flow is not understood by vectorizer", "CFGNotUnderstood", ORE, TheLoop); if (DoExtraAnalysis) Result = false; else return false; } return Result; } bool LoopVectorizationLegality::canVectorizeLoopNestCFG( Loop *Lp, bool UseVPlanNativePath) { // Store the result and return it at the end instead of exiting early, in case // allowExtraAnalysis is used to report multiple reasons for not vectorizing. bool Result = true; bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { if (DoExtraAnalysis) Result = false; else return false; } // Recursively check whether the loop control flow of nested loops is // understood. for (Loop *SubLp : *Lp) if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { if (DoExtraAnalysis) Result = false; else return false; } return Result; } bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { // Store the result and return it at the end instead of exiting early, in case // allowExtraAnalysis is used to report multiple reasons for not vectorizing. bool Result = true; bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); // Check whether the loop-related control flow in the loop nest is expected by // vectorizer. if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { if (DoExtraAnalysis) Result = false; else return false; } // We need to have a loop header. LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() << '\n'); // Specific checks for outer loops. We skip the remaining legal checks at this // point because they don't support outer loops. if (!TheLoop->isInnermost()) { assert(UseVPlanNativePath && "VPlan-native path is not enabled."); if (!canVectorizeOuterLoop()) { reportVectorizationFailure("Unsupported outer loop", "unsupported outer loop", "UnsupportedOuterLoop", ORE, TheLoop); // TODO: Implement DoExtraAnalysis when subsequent legal checks support // outer loops. return false; } LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); return Result; } assert(TheLoop->isInnermost() && "Inner loop expected."); // Check if we can if-convert non-single-bb loops. unsigned NumBlocks = TheLoop->getNumBlocks(); if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); if (DoExtraAnalysis) Result = false; else return false; } // Check if we can vectorize the instructions and CFG in this loop. if (!canVectorizeInstrs()) { LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); if (DoExtraAnalysis) Result = false; else return false; } // Go over each instruction and look at memory deps. if (!canVectorizeMemory()) { LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); if (DoExtraAnalysis) Result = false; else return false; } LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" << (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)" : "") << "!\n"); unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; if (PSE.getPredicate().getComplexity() > SCEVThreshold) { reportVectorizationFailure("Too many SCEV checks needed", "Too many SCEV assumptions need to be made and checked at runtime", "TooManySCEVRunTimeChecks", ORE, TheLoop); if (DoExtraAnalysis) Result = false; else return false; } // Okay! We've done all the tests. If any have failed, return false. Otherwise // we can vectorize, and at this point we don't have any other mem analysis // which may limit our maximum vectorization factor, so just return true with // no restrictions. return Result; } bool LoopVectorizationLegality::prepareToFoldTailByMasking() { LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); SmallPtrSet ReductionLiveOuts; for (const auto &Reduction : getReductionVars()) ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); // TODO: handle non-reduction outside users when tail is folded by masking. for (auto *AE : AllowedExit) { // Check that all users of allowed exit values are inside the loop or // are the live-out of a reduction. if (ReductionLiveOuts.count(AE)) continue; for (User *U : AE->users()) { Instruction *UI = cast(U); if (TheLoop->contains(UI)) continue; LLVM_DEBUG( dbgs() << "LV: Cannot fold tail by masking, loop has an outside user for " << *UI << "\n"); return false; } } // The list of pointers that we can safely read and write to remains empty. SmallPtrSet SafePointers; SmallPtrSet TmpMaskedOp; SmallPtrSet TmpConditionalAssumes; // Check and mark all blocks for predication, including those that ordinarily // do not need predication such as the header block. for (BasicBlock *BB : TheLoop->blocks()) { if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, TmpConditionalAssumes)) { LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); return false; } } LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); ConditionalAssumes.insert(TmpConditionalAssumes.begin(), TmpConditionalAssumes.end()); return true; } } // namespace llvm