123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // Produce stack trace
- #ifndef Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
- #define Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
- #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
- #include <ucontext.h> // for ucontext_t
- #endif
- #if !defined(_WIN32)
- #include <unistd.h>
- #endif
- #include <cassert>
- #include <cstdint>
- #include <limits>
- #include "y_absl/base/attributes.h"
- #include "y_absl/base/macros.h"
- #include "y_absl/base/port.h"
- #include "y_absl/debugging/internal/address_is_readable.h"
- #include "y_absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems
- #include "y_absl/debugging/stacktrace.h"
- using y_absl::debugging_internal::AddressIsReadable;
- #if defined(__linux__) && defined(__i386__)
- // Count "push %reg" instructions in VDSO __kernel_vsyscall(),
- // preceding "syscall" or "sysenter".
- // If __kernel_vsyscall uses frame pointer, answer 0.
- //
- // kMaxBytes tells how many instruction bytes of __kernel_vsyscall
- // to analyze before giving up. Up to kMaxBytes+1 bytes of
- // instructions could be accessed.
- //
- // Here are known __kernel_vsyscall instruction sequences:
- //
- // SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).
- // Used on Intel.
- // 0xffffe400 <__kernel_vsyscall+0>: push %ecx
- // 0xffffe401 <__kernel_vsyscall+1>: push %edx
- // 0xffffe402 <__kernel_vsyscall+2>: push %ebp
- // 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp
- // 0xffffe405 <__kernel_vsyscall+5>: sysenter
- //
- // SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).
- // Used on AMD.
- // 0xffffe400 <__kernel_vsyscall+0>: push %ebp
- // 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp
- // 0xffffe403 <__kernel_vsyscall+3>: syscall
- //
- // The sequence below isn't actually expected in Google fleet,
- // here only for completeness. Remove this comment from OSS release.
- // i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)
- // 0xffffe400 <__kernel_vsyscall+0>: int $0x80
- // 0xffffe401 <__kernel_vsyscall+1>: ret
- //
- static const int kMaxBytes = 10;
- // We use assert()s instead of DCHECK()s -- this is too low level
- // for DCHECK().
- static int CountPushInstructions(const unsigned char *const addr) {
- int result = 0;
- for (int i = 0; i < kMaxBytes; ++i) {
- if (addr[i] == 0x89) {
- // "mov reg,reg"
- if (addr[i + 1] == 0xE5) {
- // Found "mov %esp,%ebp".
- return 0;
- }
- ++i; // Skip register encoding byte.
- } else if (addr[i] == 0x0F &&
- (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {
- // Found "sysenter" or "syscall".
- return result;
- } else if ((addr[i] & 0xF0) == 0x50) {
- // Found "push %reg".
- ++result;
- } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {
- // Found "int $0x80"
- assert(result == 0);
- return 0;
- } else {
- // Unexpected instruction.
- assert(false && "unexpected instruction in __kernel_vsyscall");
- return 0;
- }
- }
- // Unexpected: didn't find SYSENTER or SYSCALL in
- // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.
- assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall");
- return 0;
- }
- #endif
- // Assume stack frames larger than 100,000 bytes are bogus.
- static const int kMaxFrameBytes = 100000;
- // Stack end to use when we don't know the actual stack end
- // (effectively just the end of address space).
- constexpr uintptr_t kUnknownStackEnd =
- std::numeric_limits<size_t>::max() - sizeof(void *);
- // Returns the stack frame pointer from signal context, 0 if unknown.
- // vuc is a ucontext_t *. We use void* to avoid the use
- // of ucontext_t on non-POSIX systems.
- static uintptr_t GetFP(const void *vuc) {
- #if !defined(__linux__)
- static_cast<void>(vuc); // Avoid an unused argument compiler warning.
- #else
- if (vuc != nullptr) {
- auto *uc = reinterpret_cast<const ucontext_t *>(vuc);
- #if defined(__i386__)
- const auto bp = uc->uc_mcontext.gregs[REG_EBP];
- const auto sp = uc->uc_mcontext.gregs[REG_ESP];
- #elif defined(__x86_64__)
- const auto bp = uc->uc_mcontext.gregs[REG_RBP];
- const auto sp = uc->uc_mcontext.gregs[REG_RSP];
- #else
- const uintptr_t bp = 0;
- const uintptr_t sp = 0;
- #endif
- // Sanity-check that the base pointer is valid. It's possible that some
- // code in the process is compiled with --copt=-fomit-frame-pointer or
- // --copt=-momit-leaf-frame-pointer.
- //
- // TODO(bcmills): -momit-leaf-frame-pointer is currently the default
- // behavior when building with clang. Talk to the C++ toolchain team about
- // fixing that.
- if (bp >= sp && bp - sp <= kMaxFrameBytes)
- return static_cast<uintptr_t>(bp);
- // If bp isn't a plausible frame pointer, return the stack pointer instead.
- // If we're lucky, it points to the start of a stack frame; otherwise, we'll
- // get one frame of garbage in the stack trace and fail the sanity check on
- // the next iteration.
- return static_cast<uintptr_t>(sp);
- }
- #endif
- return 0;
- }
- // Given a pointer to a stack frame, locate and return the calling
- // stackframe, or return null if no stackframe can be found. Perform sanity
- // checks (the strictness of which is controlled by the boolean parameter
- // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
- template <bool STRICT_UNWINDING, bool WITH_CONTEXT>
- Y_ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
- Y_ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
- static void **NextStackFrame(void **old_fp, const void *uc,
- size_t stack_low, size_t stack_high) {
- void **new_fp = (void **)*old_fp;
- #if defined(__linux__) && defined(__i386__)
- if (WITH_CONTEXT && uc != nullptr) {
- // How many "push %reg" instructions are there at __kernel_vsyscall?
- // This is constant for a given kernel and processor, so compute
- // it only once.
- static int num_push_instructions = -1; // Sentinel: not computed yet.
- // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
- // be there.
- static const unsigned char *kernel_rt_sigreturn_address = nullptr;
- static const unsigned char *kernel_vsyscall_address = nullptr;
- if (num_push_instructions == -1) {
- #ifdef Y_ABSL_HAVE_VDSO_SUPPORT
- y_absl::debugging_internal::VDSOSupport vdso;
- if (vdso.IsPresent()) {
- y_absl::debugging_internal::VDSOSupport::SymbolInfo
- rt_sigreturn_symbol_info;
- y_absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info;
- if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC,
- &rt_sigreturn_symbol_info) ||
- !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC,
- &vsyscall_symbol_info) ||
- rt_sigreturn_symbol_info.address == nullptr ||
- vsyscall_symbol_info.address == nullptr) {
- // Unexpected: 32-bit VDSO is present, yet one of the expected
- // symbols is missing or null.
- assert(false && "VDSO is present, but doesn't have expected symbols");
- num_push_instructions = 0;
- } else {
- kernel_rt_sigreturn_address =
- reinterpret_cast<const unsigned char *>(
- rt_sigreturn_symbol_info.address);
- kernel_vsyscall_address =
- reinterpret_cast<const unsigned char *>(
- vsyscall_symbol_info.address);
- num_push_instructions =
- CountPushInstructions(kernel_vsyscall_address);
- }
- } else {
- num_push_instructions = 0;
- }
- #else // Y_ABSL_HAVE_VDSO_SUPPORT
- num_push_instructions = 0;
- #endif // Y_ABSL_HAVE_VDSO_SUPPORT
- }
- if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr &&
- old_fp[1] == kernel_rt_sigreturn_address) {
- const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
- // This kernel does not use frame pointer in its VDSO code,
- // and so %ebp is not suitable for unwinding.
- void **const reg_ebp =
- reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
- const unsigned char *const reg_eip =
- reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
- if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip &&
- reg_eip - kernel_vsyscall_address < kMaxBytes) {
- // We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
- // Restore from 'ucv' instead.
- void **const reg_esp =
- reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
- // Check that alleged %esp is not null and is reasonably aligned.
- if (reg_esp &&
- ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
- // Check that alleged %esp is actually readable. This is to prevent
- // "double fault" in case we hit the first fault due to e.g. stack
- // corruption.
- void *const reg_esp2 = reg_esp[num_push_instructions - 1];
- if (AddressIsReadable(reg_esp2)) {
- // Alleged %esp is readable, use it for further unwinding.
- new_fp = reinterpret_cast<void **>(reg_esp2);
- }
- }
- }
- }
- }
- #endif
- const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp);
- const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp);
- // Check that the transition from frame pointer old_fp to frame
- // pointer new_fp isn't clearly bogus. Skip the checks if new_fp
- // matches the signal context, so that we don't skip out early when
- // using an alternate signal stack.
- //
- // TODO(bcmills): The GetFP call should be completely unnecessary when
- // ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's
- // stack by this point), but it is empirically still needed (e.g. when the
- // stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some
- // frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what
- // it's supposed to.
- if (STRICT_UNWINDING &&
- (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) {
- // With the stack growing downwards, older stack frame must be
- // at a greater address that the current one.
- if (new_fp_u <= old_fp_u) return nullptr;
- // If we get a very large frame size, it may be an indication that we
- // guessed frame pointers incorrectly and now risk a paging fault
- // dereferencing a wrong frame pointer. Or maybe not because large frames
- // are possible as well. The main stack is assumed to be readable,
- // so we assume the large frame is legit if we know the real stack bounds
- // and are within the stack.
- if (new_fp_u - old_fp_u > kMaxFrameBytes) {
- if (stack_high < kUnknownStackEnd &&
- static_cast<size_t>(getpagesize()) < stack_low) {
- // Stack bounds are known.
- if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
- // new_fp_u is not within the known stack.
- return nullptr;
- }
- } else {
- // Stack bounds are unknown, prefer truncated stack to possible crash.
- return nullptr;
- }
- }
- if (stack_low < old_fp_u && old_fp_u <= stack_high) {
- // Old BP was in the expected stack region...
- if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
- // ... but new BP is outside of expected stack region.
- // It is most likely bogus.
- return nullptr;
- }
- } else {
- // We may be here if we are executing in a co-routine with a
- // separate stack. We can't do safety checks in this case.
- }
- } else {
- if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below
- // In the non-strict mode, allow discontiguous stack frames.
- // (alternate-signal-stacks for example).
- if (new_fp == old_fp) return nullptr;
- }
- if (new_fp_u & (sizeof(void *) - 1)) return nullptr;
- #ifdef __i386__
- // On 32-bit machines, the stack pointer can be very close to
- // 0xffffffff, so we explicitly check for a pointer into the
- // last two pages in the address space
- if (new_fp_u >= 0xffffe000) return nullptr;
- #endif
- #if !defined(_WIN32)
- if (!STRICT_UNWINDING) {
- // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test
- // on AMD-based machines with VDSO-enabled kernels.
- // Make an extra sanity check to insure new_fp is readable.
- // Note: NextStackFrame<false>() is only called while the program
- // is already on its last leg, so it's ok to be slow here.
- if (!AddressIsReadable(new_fp)) {
- return nullptr;
- }
- }
- #endif
- return new_fp;
- }
- template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
- Y_ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
- Y_ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
- Y_ABSL_ATTRIBUTE_NOINLINE
- static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count,
- const void *ucp, int *min_dropped_frames) {
- int n = 0;
- void **fp = reinterpret_cast<void **>(__builtin_frame_address(0));
- // Assume that the first page is not stack.
- size_t stack_low = static_cast<size_t>(getpagesize());
- size_t stack_high = kUnknownStackEnd;
- while (fp && n < max_depth) {
- if (*(fp + 1) == reinterpret_cast<void *>(0)) {
- // In 64-bit code, we often see a frame that
- // points to itself and has a return address of 0.
- break;
- }
- void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
- fp, ucp, stack_low, stack_high);
- if (skip_count > 0) {
- skip_count--;
- } else {
- result[n] = *(fp + 1);
- if (IS_STACK_FRAMES) {
- if (next_fp > fp) {
- sizes[n] = static_cast<int>(
- reinterpret_cast<uintptr_t>(next_fp) -
- reinterpret_cast<uintptr_t>(fp));
- } else {
- // A frame-size of 0 is used to indicate unknown frame size.
- sizes[n] = 0;
- }
- }
- n++;
- }
- fp = next_fp;
- }
- if (min_dropped_frames != nullptr) {
- // Implementation detail: we clamp the max of frames we are willing to
- // count, so as not to spend too much time in the loop below.
- const int kMaxUnwind = 1000;
- int num_dropped_frames = 0;
- for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) {
- if (skip_count > 0) {
- skip_count--;
- } else {
- num_dropped_frames++;
- }
- fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low,
- stack_high);
- }
- *min_dropped_frames = num_dropped_frames;
- }
- return n;
- }
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- namespace debugging_internal {
- bool StackTraceWorksForTest() {
- return true;
- }
- } // namespace debugging_internal
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
- #endif // Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
|