// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Produce stack trace #ifndef Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ #define Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__)) #include // for ucontext_t #endif #if !defined(_WIN32) #include #endif #include #include #include #include "y_absl/base/attributes.h" #include "y_absl/base/macros.h" #include "y_absl/base/port.h" #include "y_absl/debugging/internal/address_is_readable.h" #include "y_absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems #include "y_absl/debugging/stacktrace.h" using y_absl::debugging_internal::AddressIsReadable; #if defined(__linux__) && defined(__i386__) // Count "push %reg" instructions in VDSO __kernel_vsyscall(), // preceding "syscall" or "sysenter". // If __kernel_vsyscall uses frame pointer, answer 0. // // kMaxBytes tells how many instruction bytes of __kernel_vsyscall // to analyze before giving up. Up to kMaxBytes+1 bytes of // instructions could be accessed. // // Here are known __kernel_vsyscall instruction sequences: // // SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S). // Used on Intel. // 0xffffe400 <__kernel_vsyscall+0>: push %ecx // 0xffffe401 <__kernel_vsyscall+1>: push %edx // 0xffffe402 <__kernel_vsyscall+2>: push %ebp // 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp // 0xffffe405 <__kernel_vsyscall+5>: sysenter // // SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S). // Used on AMD. // 0xffffe400 <__kernel_vsyscall+0>: push %ebp // 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp // 0xffffe403 <__kernel_vsyscall+3>: syscall // // The sequence below isn't actually expected in Google fleet, // here only for completeness. Remove this comment from OSS release. // i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S) // 0xffffe400 <__kernel_vsyscall+0>: int $0x80 // 0xffffe401 <__kernel_vsyscall+1>: ret // static const int kMaxBytes = 10; // We use assert()s instead of DCHECK()s -- this is too low level // for DCHECK(). static int CountPushInstructions(const unsigned char *const addr) { int result = 0; for (int i = 0; i < kMaxBytes; ++i) { if (addr[i] == 0x89) { // "mov reg,reg" if (addr[i + 1] == 0xE5) { // Found "mov %esp,%ebp". return 0; } ++i; // Skip register encoding byte. } else if (addr[i] == 0x0F && (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) { // Found "sysenter" or "syscall". return result; } else if ((addr[i] & 0xF0) == 0x50) { // Found "push %reg". ++result; } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) { // Found "int $0x80" assert(result == 0); return 0; } else { // Unexpected instruction. assert(false && "unexpected instruction in __kernel_vsyscall"); return 0; } } // Unexpected: didn't find SYSENTER or SYSCALL in // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval. assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall"); return 0; } #endif // Assume stack frames larger than 100,000 bytes are bogus. static const int kMaxFrameBytes = 100000; // Stack end to use when we don't know the actual stack end // (effectively just the end of address space). constexpr uintptr_t kUnknownStackEnd = std::numeric_limits::max() - sizeof(void *); // Returns the stack frame pointer from signal context, 0 if unknown. // vuc is a ucontext_t *. We use void* to avoid the use // of ucontext_t on non-POSIX systems. static uintptr_t GetFP(const void *vuc) { #if !defined(__linux__) static_cast(vuc); // Avoid an unused argument compiler warning. #else if (vuc != nullptr) { auto *uc = reinterpret_cast(vuc); #if defined(__i386__) const auto bp = uc->uc_mcontext.gregs[REG_EBP]; const auto sp = uc->uc_mcontext.gregs[REG_ESP]; #elif defined(__x86_64__) const auto bp = uc->uc_mcontext.gregs[REG_RBP]; const auto sp = uc->uc_mcontext.gregs[REG_RSP]; #else const uintptr_t bp = 0; const uintptr_t sp = 0; #endif // Sanity-check that the base pointer is valid. It's possible that some // code in the process is compiled with --copt=-fomit-frame-pointer or // --copt=-momit-leaf-frame-pointer. // // TODO(bcmills): -momit-leaf-frame-pointer is currently the default // behavior when building with clang. Talk to the C++ toolchain team about // fixing that. if (bp >= sp && bp - sp <= kMaxFrameBytes) return static_cast(bp); // If bp isn't a plausible frame pointer, return the stack pointer instead. // If we're lucky, it points to the start of a stack frame; otherwise, we'll // get one frame of garbage in the stack trace and fail the sanity check on // the next iteration. return static_cast(sp); } #endif return 0; } // Given a pointer to a stack frame, locate and return the calling // stackframe, or return null if no stackframe can be found. Perform sanity // checks (the strictness of which is controlled by the boolean parameter // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. template Y_ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. Y_ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. static void **NextStackFrame(void **old_fp, const void *uc, size_t stack_low, size_t stack_high) { void **new_fp = (void **)*old_fp; #if defined(__linux__) && defined(__i386__) if (WITH_CONTEXT && uc != nullptr) { // How many "push %reg" instructions are there at __kernel_vsyscall? // This is constant for a given kernel and processor, so compute // it only once. static int num_push_instructions = -1; // Sentinel: not computed yet. // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly // be there. static const unsigned char *kernel_rt_sigreturn_address = nullptr; static const unsigned char *kernel_vsyscall_address = nullptr; if (num_push_instructions == -1) { #ifdef Y_ABSL_HAVE_VDSO_SUPPORT y_absl::debugging_internal::VDSOSupport vdso; if (vdso.IsPresent()) { y_absl::debugging_internal::VDSOSupport::SymbolInfo rt_sigreturn_symbol_info; y_absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info; if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC, &rt_sigreturn_symbol_info) || !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC, &vsyscall_symbol_info) || rt_sigreturn_symbol_info.address == nullptr || vsyscall_symbol_info.address == nullptr) { // Unexpected: 32-bit VDSO is present, yet one of the expected // symbols is missing or null. assert(false && "VDSO is present, but doesn't have expected symbols"); num_push_instructions = 0; } else { kernel_rt_sigreturn_address = reinterpret_cast( rt_sigreturn_symbol_info.address); kernel_vsyscall_address = reinterpret_cast( vsyscall_symbol_info.address); num_push_instructions = CountPushInstructions(kernel_vsyscall_address); } } else { num_push_instructions = 0; } #else // Y_ABSL_HAVE_VDSO_SUPPORT num_push_instructions = 0; #endif // Y_ABSL_HAVE_VDSO_SUPPORT } if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr && old_fp[1] == kernel_rt_sigreturn_address) { const ucontext_t *ucv = static_cast(uc); // This kernel does not use frame pointer in its VDSO code, // and so %ebp is not suitable for unwinding. void **const reg_ebp = reinterpret_cast(ucv->uc_mcontext.gregs[REG_EBP]); const unsigned char *const reg_eip = reinterpret_cast(ucv->uc_mcontext.gregs[REG_EIP]); if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip && reg_eip - kernel_vsyscall_address < kMaxBytes) { // We "stepped up" to __kernel_vsyscall, but %ebp is not usable. // Restore from 'ucv' instead. void **const reg_esp = reinterpret_cast(ucv->uc_mcontext.gregs[REG_ESP]); // Check that alleged %esp is not null and is reasonably aligned. if (reg_esp && ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) { // Check that alleged %esp is actually readable. This is to prevent // "double fault" in case we hit the first fault due to e.g. stack // corruption. void *const reg_esp2 = reg_esp[num_push_instructions - 1]; if (AddressIsReadable(reg_esp2)) { // Alleged %esp is readable, use it for further unwinding. new_fp = reinterpret_cast(reg_esp2); } } } } } #endif const uintptr_t old_fp_u = reinterpret_cast(old_fp); const uintptr_t new_fp_u = reinterpret_cast(new_fp); // Check that the transition from frame pointer old_fp to frame // pointer new_fp isn't clearly bogus. Skip the checks if new_fp // matches the signal context, so that we don't skip out early when // using an alternate signal stack. // // TODO(bcmills): The GetFP call should be completely unnecessary when // ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's // stack by this point), but it is empirically still needed (e.g. when the // stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some // frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what // it's supposed to. if (STRICT_UNWINDING && (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) { // With the stack growing downwards, older stack frame must be // at a greater address that the current one. if (new_fp_u <= old_fp_u) return nullptr; // If we get a very large frame size, it may be an indication that we // guessed frame pointers incorrectly and now risk a paging fault // dereferencing a wrong frame pointer. Or maybe not because large frames // are possible as well. The main stack is assumed to be readable, // so we assume the large frame is legit if we know the real stack bounds // and are within the stack. if (new_fp_u - old_fp_u > kMaxFrameBytes) { if (stack_high < kUnknownStackEnd && static_cast(getpagesize()) < stack_low) { // Stack bounds are known. if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { // new_fp_u is not within the known stack. return nullptr; } } else { // Stack bounds are unknown, prefer truncated stack to possible crash. return nullptr; } } if (stack_low < old_fp_u && old_fp_u <= stack_high) { // Old BP was in the expected stack region... if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { // ... but new BP is outside of expected stack region. // It is most likely bogus. return nullptr; } } else { // We may be here if we are executing in a co-routine with a // separate stack. We can't do safety checks in this case. } } else { if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below // In the non-strict mode, allow discontiguous stack frames. // (alternate-signal-stacks for example). if (new_fp == old_fp) return nullptr; } if (new_fp_u & (sizeof(void *) - 1)) return nullptr; #ifdef __i386__ // On 32-bit machines, the stack pointer can be very close to // 0xffffffff, so we explicitly check for a pointer into the // last two pages in the address space if (new_fp_u >= 0xffffe000) return nullptr; #endif #if !defined(_WIN32) if (!STRICT_UNWINDING) { // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test // on AMD-based machines with VDSO-enabled kernels. // Make an extra sanity check to insure new_fp is readable. // Note: NextStackFrame() is only called while the program // is already on its last leg, so it's ok to be slow here. if (!AddressIsReadable(new_fp)) { return nullptr; } } #endif return new_fp; } template Y_ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. Y_ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. Y_ABSL_ATTRIBUTE_NOINLINE static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count, const void *ucp, int *min_dropped_frames) { int n = 0; void **fp = reinterpret_cast(__builtin_frame_address(0)); // Assume that the first page is not stack. size_t stack_low = static_cast(getpagesize()); size_t stack_high = kUnknownStackEnd; while (fp && n < max_depth) { if (*(fp + 1) == reinterpret_cast(0)) { // In 64-bit code, we often see a frame that // points to itself and has a return address of 0. break; } void **next_fp = NextStackFrame( fp, ucp, stack_low, stack_high); if (skip_count > 0) { skip_count--; } else { result[n] = *(fp + 1); if (IS_STACK_FRAMES) { if (next_fp > fp) { sizes[n] = static_cast( reinterpret_cast(next_fp) - reinterpret_cast(fp)); } else { // A frame-size of 0 is used to indicate unknown frame size. sizes[n] = 0; } } n++; } fp = next_fp; } if (min_dropped_frames != nullptr) { // Implementation detail: we clamp the max of frames we are willing to // count, so as not to spend too much time in the loop below. const int kMaxUnwind = 1000; int num_dropped_frames = 0; for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) { if (skip_count > 0) { skip_count--; } else { num_dropped_frames++; } fp = NextStackFrame(fp, ucp, stack_low, stack_high); } *min_dropped_frames = num_dropped_frames; } return n; } namespace y_absl { Y_ABSL_NAMESPACE_BEGIN namespace debugging_internal { bool StackTraceWorksForTest() { return true; } } // namespace debugging_internal Y_ABSL_NAMESPACE_END } // namespace y_absl #endif // Y_ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_