123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This is the generic implementation of LoopInfo used for both Loops and
- // MachineLoops.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
- #define LLVM_ANALYSIS_LOOPINFOIMPL_H
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetOperations.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/IR/Dominators.h"
- namespace llvm {
- //===----------------------------------------------------------------------===//
- // APIs for simple analysis of the loop. See header notes.
- /// getExitingBlocks - Return all blocks inside the loop that have successors
- /// outside of the loop. These are the blocks _inside of the current loop_
- /// which branch out. The returned list is always unique.
- ///
- template <class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::getExitingBlocks(
- SmallVectorImpl<BlockT *> &ExitingBlocks) const {
- assert(!isInvalid() && "Loop not in a valid state!");
- for (const auto BB : blocks())
- for (auto *Succ : children<BlockT *>(BB))
- if (!contains(Succ)) {
- // Not in current loop? It must be an exit block.
- ExitingBlocks.push_back(BB);
- break;
- }
- }
- /// getExitingBlock - If getExitingBlocks would return exactly one block,
- /// return that block. Otherwise return null.
- template <class BlockT, class LoopT>
- BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- auto notInLoop = [&](BlockT *BB) { return !contains(BB); };
- auto isExitBlock = [&](BlockT *BB, bool AllowRepeats) -> BlockT * {
- assert(!AllowRepeats && "Unexpected parameter value.");
- // Child not in current loop? It must be an exit block.
- return any_of(children<BlockT *>(BB), notInLoop) ? BB : nullptr;
- };
- return find_singleton<BlockT>(blocks(), isExitBlock);
- }
- /// getExitBlocks - Return all of the successor blocks of this loop. These
- /// are the blocks _outside of the current loop_ which are branched to.
- ///
- template <class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::getExitBlocks(
- SmallVectorImpl<BlockT *> &ExitBlocks) const {
- assert(!isInvalid() && "Loop not in a valid state!");
- for (const auto BB : blocks())
- for (auto *Succ : children<BlockT *>(BB))
- if (!contains(Succ))
- // Not in current loop? It must be an exit block.
- ExitBlocks.push_back(Succ);
- }
- /// getExitBlock - If getExitBlocks would return exactly one block,
- /// return that block. Otherwise return null.
- template <class BlockT, class LoopT>
- std::pair<BlockT *, bool> getExitBlockHelper(const LoopBase<BlockT, LoopT> *L,
- bool Unique) {
- assert(!L->isInvalid() && "Loop not in a valid state!");
- auto notInLoop = [&](BlockT *BB,
- bool AllowRepeats) -> std::pair<BlockT *, bool> {
- assert(AllowRepeats == Unique && "Unexpected parameter value.");
- return {!L->contains(BB) ? BB : nullptr, false};
- };
- auto singleExitBlock = [&](BlockT *BB,
- bool AllowRepeats) -> std::pair<BlockT *, bool> {
- assert(AllowRepeats == Unique && "Unexpected parameter value.");
- return find_singleton_nested<BlockT>(children<BlockT *>(BB), notInLoop,
- AllowRepeats);
- };
- return find_singleton_nested<BlockT>(L->blocks(), singleExitBlock, Unique);
- }
- template <class BlockT, class LoopT>
- bool LoopBase<BlockT, LoopT>::hasNoExitBlocks() const {
- auto RC = getExitBlockHelper(this, false);
- if (RC.second)
- // found multiple exit blocks
- return false;
- // return true if there is no exit block
- return !RC.first;
- }
- /// getExitBlock - If getExitBlocks would return exactly one block,
- /// return that block. Otherwise return null.
- template <class BlockT, class LoopT>
- BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
- return getExitBlockHelper(this, false).first;
- }
- template <class BlockT, class LoopT>
- bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
- // Each predecessor of each exit block of a normal loop is contained
- // within the loop.
- SmallVector<BlockT *, 4> UniqueExitBlocks;
- getUniqueExitBlocks(UniqueExitBlocks);
- for (BlockT *EB : UniqueExitBlocks)
- for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
- if (!contains(Predecessor))
- return false;
- // All the requirements are met.
- return true;
- }
- // Helper function to get unique loop exits. Pred is a predicate pointing to
- // BasicBlocks in a loop which should be considered to find loop exits.
- template <class BlockT, class LoopT, typename PredicateT>
- void getUniqueExitBlocksHelper(const LoopT *L,
- SmallVectorImpl<BlockT *> &ExitBlocks,
- PredicateT Pred) {
- assert(!L->isInvalid() && "Loop not in a valid state!");
- SmallPtrSet<BlockT *, 32> Visited;
- auto Filtered = make_filter_range(L->blocks(), Pred);
- for (BlockT *BB : Filtered)
- for (BlockT *Successor : children<BlockT *>(BB))
- if (!L->contains(Successor))
- if (Visited.insert(Successor).second)
- ExitBlocks.push_back(Successor);
- }
- template <class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
- SmallVectorImpl<BlockT *> &ExitBlocks) const {
- getUniqueExitBlocksHelper(this, ExitBlocks,
- [](const BlockT *BB) { return true; });
- }
- template <class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
- SmallVectorImpl<BlockT *> &ExitBlocks) const {
- const BlockT *Latch = getLoopLatch();
- assert(Latch && "Latch block must exists");
- getUniqueExitBlocksHelper(this, ExitBlocks,
- [Latch](const BlockT *BB) { return BB != Latch; });
- }
- template <class BlockT, class LoopT>
- BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
- return getExitBlockHelper(this, true).first;
- }
- /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
- template <class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::getExitEdges(
- SmallVectorImpl<Edge> &ExitEdges) const {
- assert(!isInvalid() && "Loop not in a valid state!");
- for (const auto BB : blocks())
- for (auto *Succ : children<BlockT *>(BB))
- if (!contains(Succ))
- // Not in current loop? It must be an exit block.
- ExitEdges.emplace_back(BB, Succ);
- }
- /// getLoopPreheader - If there is a preheader for this loop, return it. A
- /// loop has a preheader if there is only one edge to the header of the loop
- /// from outside of the loop and it is legal to hoist instructions into the
- /// predecessor. If this is the case, the block branching to the header of the
- /// loop is the preheader node.
- ///
- /// This method returns null if there is no preheader for the loop.
- ///
- template <class BlockT, class LoopT>
- BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- // Keep track of nodes outside the loop branching to the header...
- BlockT *Out = getLoopPredecessor();
- if (!Out)
- return nullptr;
- // Make sure we are allowed to hoist instructions into the predecessor.
- if (!Out->isLegalToHoistInto())
- return nullptr;
- // Make sure there is only one exit out of the preheader.
- typedef GraphTraits<BlockT *> BlockTraits;
- typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
- ++SI;
- if (SI != BlockTraits::child_end(Out))
- return nullptr; // Multiple exits from the block, must not be a preheader.
- // The predecessor has exactly one successor, so it is a preheader.
- return Out;
- }
- /// getLoopPredecessor - If the given loop's header has exactly one unique
- /// predecessor outside the loop, return it. Otherwise return null.
- /// This is less strict that the loop "preheader" concept, which requires
- /// the predecessor to have exactly one successor.
- ///
- template <class BlockT, class LoopT>
- BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- // Keep track of nodes outside the loop branching to the header...
- BlockT *Out = nullptr;
- // Loop over the predecessors of the header node...
- BlockT *Header = getHeader();
- for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
- if (!contains(Pred)) { // If the block is not in the loop...
- if (Out && Out != Pred)
- return nullptr; // Multiple predecessors outside the loop
- Out = Pred;
- }
- }
- return Out;
- }
- /// getLoopLatch - If there is a single latch block for this loop, return it.
- /// A latch block is a block that contains a branch back to the header.
- template <class BlockT, class LoopT>
- BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- BlockT *Header = getHeader();
- BlockT *Latch = nullptr;
- for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
- if (contains(Pred)) {
- if (Latch)
- return nullptr;
- Latch = Pred;
- }
- }
- return Latch;
- }
- //===----------------------------------------------------------------------===//
- // APIs for updating loop information after changing the CFG
- //
- /// addBasicBlockToLoop - This method is used by other analyses to update loop
- /// information. NewBB is set to be a new member of the current loop.
- /// Because of this, it is added as a member of all parent loops, and is added
- /// to the specified LoopInfo object as being in the current basic block. It
- /// is not valid to replace the loop header with this method.
- ///
- template <class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
- BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
- assert(!isInvalid() && "Loop not in a valid state!");
- #ifndef NDEBUG
- if (!Blocks.empty()) {
- auto SameHeader = LIB[getHeader()];
- assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
- "Incorrect LI specified for this loop!");
- }
- #endif
- assert(NewBB && "Cannot add a null basic block to the loop!");
- assert(!LIB[NewBB] && "BasicBlock already in the loop!");
- LoopT *L = static_cast<LoopT *>(this);
- // Add the loop mapping to the LoopInfo object...
- LIB.BBMap[NewBB] = L;
- // Add the basic block to this loop and all parent loops...
- while (L) {
- L->addBlockEntry(NewBB);
- L = L->getParentLoop();
- }
- }
- /// replaceChildLoopWith - This is used when splitting loops up. It replaces
- /// the OldChild entry in our children list with NewChild, and updates the
- /// parent pointer of OldChild to be null and the NewChild to be this loop.
- /// This updates the loop depth of the new child.
- template <class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
- LoopT *NewChild) {
- assert(!isInvalid() && "Loop not in a valid state!");
- assert(OldChild->ParentLoop == this && "This loop is already broken!");
- assert(!NewChild->ParentLoop && "NewChild already has a parent!");
- typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
- assert(I != SubLoops.end() && "OldChild not in loop!");
- *I = NewChild;
- OldChild->ParentLoop = nullptr;
- NewChild->ParentLoop = static_cast<LoopT *>(this);
- }
- /// verifyLoop - Verify loop structure
- template <class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::verifyLoop() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- #ifndef NDEBUG
- assert(!Blocks.empty() && "Loop header is missing");
- // Setup for using a depth-first iterator to visit every block in the loop.
- SmallVector<BlockT *, 8> ExitBBs;
- getExitBlocks(ExitBBs);
- df_iterator_default_set<BlockT *> VisitSet;
- VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
- // Keep track of the BBs visited.
- SmallPtrSet<BlockT *, 8> VisitedBBs;
- // Check the individual blocks.
- for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) {
- assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
- GraphTraits<BlockT *>::child_end(BB),
- [&](BlockT *B) { return contains(B); }) &&
- "Loop block has no in-loop successors!");
- assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
- GraphTraits<Inverse<BlockT *>>::child_end(BB),
- [&](BlockT *B) { return contains(B); }) &&
- "Loop block has no in-loop predecessors!");
- SmallVector<BlockT *, 2> OutsideLoopPreds;
- for (BlockT *B :
- llvm::make_range(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
- GraphTraits<Inverse<BlockT *>>::child_end(BB)))
- if (!contains(B))
- OutsideLoopPreds.push_back(B);
- if (BB == getHeader()) {
- assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
- } else if (!OutsideLoopPreds.empty()) {
- // A non-header loop shouldn't be reachable from outside the loop,
- // though it is permitted if the predecessor is not itself actually
- // reachable.
- BlockT *EntryBB = &BB->getParent()->front();
- for (BlockT *CB : depth_first(EntryBB))
- for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
- assert(CB != OutsideLoopPreds[i] &&
- "Loop has multiple entry points!");
- }
- assert(BB != &getHeader()->getParent()->front() &&
- "Loop contains function entry block!");
- VisitedBBs.insert(BB);
- }
- if (VisitedBBs.size() != getNumBlocks()) {
- dbgs() << "The following blocks are unreachable in the loop: ";
- for (auto *BB : Blocks) {
- if (!VisitedBBs.count(BB)) {
- dbgs() << *BB << "\n";
- }
- }
- assert(false && "Unreachable block in loop");
- }
- // Check the subloops.
- for (iterator I = begin(), E = end(); I != E; ++I)
- // Each block in each subloop should be contained within this loop.
- for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
- BI != BE; ++BI) {
- assert(contains(*BI) &&
- "Loop does not contain all the blocks of a subloop!");
- }
- // Check the parent loop pointer.
- if (ParentLoop) {
- assert(is_contained(*ParentLoop, this) &&
- "Loop is not a subloop of its parent!");
- }
- #endif
- }
- /// verifyLoop - Verify loop structure of this loop and all nested loops.
- template <class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::verifyLoopNest(
- DenseSet<const LoopT *> *Loops) const {
- assert(!isInvalid() && "Loop not in a valid state!");
- Loops->insert(static_cast<const LoopT *>(this));
- // Verify this loop.
- verifyLoop();
- // Verify the subloops.
- for (iterator I = begin(), E = end(); I != E; ++I)
- (*I)->verifyLoopNest(Loops);
- }
- template <class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, bool Verbose,
- bool PrintNested, unsigned Depth) const {
- OS.indent(Depth * 2);
- if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
- OS << "Parallel ";
- OS << "Loop at depth " << getLoopDepth() << " containing: ";
- BlockT *H = getHeader();
- for (unsigned i = 0; i < getBlocks().size(); ++i) {
- BlockT *BB = getBlocks()[i];
- if (!Verbose) {
- if (i)
- OS << ",";
- BB->printAsOperand(OS, false);
- } else
- OS << "\n";
- if (BB == H)
- OS << "<header>";
- if (isLoopLatch(BB))
- OS << "<latch>";
- if (isLoopExiting(BB))
- OS << "<exiting>";
- if (Verbose)
- BB->print(OS);
- }
- if (PrintNested) {
- OS << "\n";
- for (iterator I = begin(), E = end(); I != E; ++I)
- (*I)->print(OS, /*Verbose*/ false, PrintNested, Depth + 2);
- }
- }
- //===----------------------------------------------------------------------===//
- /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
- /// result does / not depend on use list (block predecessor) order.
- ///
- /// Discover a subloop with the specified backedges such that: All blocks within
- /// this loop are mapped to this loop or a subloop. And all subloops within this
- /// loop have their parent loop set to this loop or a subloop.
- template <class BlockT, class LoopT>
- static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
- LoopInfoBase<BlockT, LoopT> *LI,
- const DomTreeBase<BlockT> &DomTree) {
- typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
- unsigned NumBlocks = 0;
- unsigned NumSubloops = 0;
- // Perform a backward CFG traversal using a worklist.
- std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
- while (!ReverseCFGWorklist.empty()) {
- BlockT *PredBB = ReverseCFGWorklist.back();
- ReverseCFGWorklist.pop_back();
- LoopT *Subloop = LI->getLoopFor(PredBB);
- if (!Subloop) {
- if (!DomTree.isReachableFromEntry(PredBB))
- continue;
- // This is an undiscovered block. Map it to the current loop.
- LI->changeLoopFor(PredBB, L);
- ++NumBlocks;
- if (PredBB == L->getHeader())
- continue;
- // Push all block predecessors on the worklist.
- ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
- InvBlockTraits::child_begin(PredBB),
- InvBlockTraits::child_end(PredBB));
- } else {
- // This is a discovered block. Find its outermost discovered loop.
- Subloop = Subloop->getOutermostLoop();
- // If it is already discovered to be a subloop of this loop, continue.
- if (Subloop == L)
- continue;
- // Discover a subloop of this loop.
- Subloop->setParentLoop(L);
- ++NumSubloops;
- NumBlocks += Subloop->getBlocksVector().capacity();
- PredBB = Subloop->getHeader();
- // Continue traversal along predecessors that are not loop-back edges from
- // within this subloop tree itself. Note that a predecessor may directly
- // reach another subloop that is not yet discovered to be a subloop of
- // this loop, which we must traverse.
- for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
- if (LI->getLoopFor(Pred) != Subloop)
- ReverseCFGWorklist.push_back(Pred);
- }
- }
- }
- L->getSubLoopsVector().reserve(NumSubloops);
- L->reserveBlocks(NumBlocks);
- }
- /// Populate all loop data in a stable order during a single forward DFS.
- template <class BlockT, class LoopT> class PopulateLoopsDFS {
- typedef GraphTraits<BlockT *> BlockTraits;
- typedef typename BlockTraits::ChildIteratorType SuccIterTy;
- LoopInfoBase<BlockT, LoopT> *LI;
- public:
- PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
- void traverse(BlockT *EntryBlock);
- protected:
- void insertIntoLoop(BlockT *Block);
- };
- /// Top-level driver for the forward DFS within the loop.
- template <class BlockT, class LoopT>
- void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
- for (BlockT *BB : post_order(EntryBlock))
- insertIntoLoop(BB);
- }
- /// Add a single Block to its ancestor loops in PostOrder. If the block is a
- /// subloop header, add the subloop to its parent in PostOrder, then reverse the
- /// Block and Subloop vectors of the now complete subloop to achieve RPO.
- template <class BlockT, class LoopT>
- void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
- LoopT *Subloop = LI->getLoopFor(Block);
- if (Subloop && Block == Subloop->getHeader()) {
- // We reach this point once per subloop after processing all the blocks in
- // the subloop.
- if (!Subloop->isOutermost())
- Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
- else
- LI->addTopLevelLoop(Subloop);
- // For convenience, Blocks and Subloops are inserted in postorder. Reverse
- // the lists, except for the loop header, which is always at the beginning.
- Subloop->reverseBlock(1);
- std::reverse(Subloop->getSubLoopsVector().begin(),
- Subloop->getSubLoopsVector().end());
- Subloop = Subloop->getParentLoop();
- }
- for (; Subloop; Subloop = Subloop->getParentLoop())
- Subloop->addBlockEntry(Block);
- }
- /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
- /// interleaved with backward CFG traversals within each subloop
- /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
- /// this part of the algorithm is linear in the number of CFG edges. Subloop and
- /// Block vectors are then populated during a single forward CFG traversal
- /// (PopulateLoopDFS).
- ///
- /// During the two CFG traversals each block is seen three times:
- /// 1) Discovered and mapped by a reverse CFG traversal.
- /// 2) Visited during a forward DFS CFG traversal.
- /// 3) Reverse-inserted in the loop in postorder following forward DFS.
- ///
- /// The Block vectors are inclusive, so step 3 requires loop-depth number of
- /// insertions per block.
- template <class BlockT, class LoopT>
- void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
- // Postorder traversal of the dominator tree.
- const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
- for (auto DomNode : post_order(DomRoot)) {
- BlockT *Header = DomNode->getBlock();
- SmallVector<BlockT *, 4> Backedges;
- // Check each predecessor of the potential loop header.
- for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
- // If Header dominates predBB, this is a new loop. Collect the backedges.
- if (DomTree.dominates(Header, Backedge) &&
- DomTree.isReachableFromEntry(Backedge)) {
- Backedges.push_back(Backedge);
- }
- }
- // Perform a backward CFG traversal to discover and map blocks in this loop.
- if (!Backedges.empty()) {
- LoopT *L = AllocateLoop(Header);
- discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
- }
- }
- // Perform a single forward CFG traversal to populate block and subloop
- // vectors for all loops.
- PopulateLoopsDFS<BlockT, LoopT> DFS(this);
- DFS.traverse(DomRoot->getBlock());
- }
- template <class BlockT, class LoopT>
- SmallVector<LoopT *, 4>
- LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() const {
- SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
- // The outer-most loop actually goes into the result in the same relative
- // order as we walk it. But LoopInfo stores the top level loops in reverse
- // program order so for here we reverse it to get forward program order.
- // FIXME: If we change the order of LoopInfo we will want to remove the
- // reverse here.
- for (LoopT *RootL : reverse(*this)) {
- auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
- PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
- PreOrderLoopsInRootL.end());
- }
- return PreOrderLoops;
- }
- template <class BlockT, class LoopT>
- SmallVector<LoopT *, 4>
- LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() const {
- SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
- // The outer-most loop actually goes into the result in the same relative
- // order as we walk it. LoopInfo stores the top level loops in reverse
- // program order so we walk in order here.
- // FIXME: If we change the order of LoopInfo we will want to add a reverse
- // here.
- for (LoopT *RootL : *this) {
- assert(PreOrderWorklist.empty() &&
- "Must start with an empty preorder walk worklist.");
- PreOrderWorklist.push_back(RootL);
- do {
- LoopT *L = PreOrderWorklist.pop_back_val();
- // Sub-loops are stored in forward program order, but will process the
- // worklist backwards so we can just append them in order.
- PreOrderWorklist.append(L->begin(), L->end());
- PreOrderLoops.push_back(L);
- } while (!PreOrderWorklist.empty());
- }
- return PreOrderLoops;
- }
- // Debugging
- template <class BlockT, class LoopT>
- void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
- for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
- TopLevelLoops[i]->print(OS);
- #if 0
- for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
- E = BBMap.end(); I != E; ++I)
- OS << "BB '" << I->first->getName() << "' level = "
- << I->second->getLoopDepth() << "\n";
- #endif
- }
- template <typename T>
- bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
- llvm::sort(BB1);
- llvm::sort(BB2);
- return BB1 == BB2;
- }
- template <class BlockT, class LoopT>
- void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
- const LoopInfoBase<BlockT, LoopT> &LI,
- const LoopT &L) {
- LoopHeaders[L.getHeader()] = &L;
- for (LoopT *SL : L)
- addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
- }
- #ifndef NDEBUG
- template <class BlockT, class LoopT>
- static void compareLoops(const LoopT *L, const LoopT *OtherL,
- DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
- BlockT *H = L->getHeader();
- BlockT *OtherH = OtherL->getHeader();
- assert(H == OtherH &&
- "Mismatched headers even though found in the same map entry!");
- assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
- "Mismatched loop depth!");
- const LoopT *ParentL = L, *OtherParentL = OtherL;
- do {
- assert(ParentL->getHeader() == OtherParentL->getHeader() &&
- "Mismatched parent loop headers!");
- ParentL = ParentL->getParentLoop();
- OtherParentL = OtherParentL->getParentLoop();
- } while (ParentL);
- for (const LoopT *SubL : *L) {
- BlockT *SubH = SubL->getHeader();
- const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
- assert(OtherSubL && "Inner loop is missing in computed loop info!");
- OtherLoopHeaders.erase(SubH);
- compareLoops(SubL, OtherSubL, OtherLoopHeaders);
- }
- std::vector<BlockT *> BBs = L->getBlocks();
- std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
- assert(compareVectors(BBs, OtherBBs) &&
- "Mismatched basic blocks in the loops!");
- const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
- const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet =
- OtherL->getBlocksSet();
- assert(BlocksSet.size() == OtherBlocksSet.size() &&
- llvm::set_is_subset(BlocksSet, OtherBlocksSet) &&
- "Mismatched basic blocks in BlocksSets!");
- }
- #endif
- template <class BlockT, class LoopT>
- void LoopInfoBase<BlockT, LoopT>::verify(
- const DomTreeBase<BlockT> &DomTree) const {
- DenseSet<const LoopT *> Loops;
- for (iterator I = begin(), E = end(); I != E; ++I) {
- assert((*I)->isOutermost() && "Top-level loop has a parent!");
- (*I)->verifyLoopNest(&Loops);
- }
- // Verify that blocks are mapped to valid loops.
- #ifndef NDEBUG
- for (auto &Entry : BBMap) {
- const BlockT *BB = Entry.first;
- LoopT *L = Entry.second;
- assert(Loops.count(L) && "orphaned loop");
- assert(L->contains(BB) && "orphaned block");
- for (LoopT *ChildLoop : *L)
- assert(!ChildLoop->contains(BB) &&
- "BBMap should point to the innermost loop containing BB");
- }
- // Recompute LoopInfo to verify loops structure.
- LoopInfoBase<BlockT, LoopT> OtherLI;
- OtherLI.analyze(DomTree);
- // Build a map we can use to move from our LI to the computed one. This
- // allows us to ignore the particular order in any layer of the loop forest
- // while still comparing the structure.
- DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
- for (LoopT *L : OtherLI)
- addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
- // Walk the top level loops and ensure there is a corresponding top-level
- // loop in the computed version and then recursively compare those loop
- // nests.
- for (LoopT *L : *this) {
- BlockT *Header = L->getHeader();
- const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
- assert(OtherL && "Top level loop is missing in computed loop info!");
- // Now that we've matched this loop, erase its header from the map.
- OtherLoopHeaders.erase(Header);
- // And recursively compare these loops.
- compareLoops(L, OtherL, OtherLoopHeaders);
- }
- // Any remaining entries in the map are loops which were found when computing
- // a fresh LoopInfo but not present in the current one.
- if (!OtherLoopHeaders.empty()) {
- for (const auto &HeaderAndLoop : OtherLoopHeaders)
- dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
- llvm_unreachable("Found new loops when recomputing LoopInfo!");
- }
- #endif
- }
- } // End llvm namespace
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|