#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This is the generic implementation of LoopInfo used for both Loops and // MachineLoops. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H #define LLVM_ANALYSIS_LOOPINFOIMPL_H #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetOperations.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Dominators.h" namespace llvm { //===----------------------------------------------------------------------===// // APIs for simple analysis of the loop. See header notes. /// getExitingBlocks - Return all blocks inside the loop that have successors /// outside of the loop. These are the blocks _inside of the current loop_ /// which branch out. The returned list is always unique. /// template void LoopBase::getExitingBlocks( SmallVectorImpl &ExitingBlocks) const { assert(!isInvalid() && "Loop not in a valid state!"); for (const auto BB : blocks()) for (auto *Succ : children(BB)) if (!contains(Succ)) { // Not in current loop? It must be an exit block. ExitingBlocks.push_back(BB); break; } } /// getExitingBlock - If getExitingBlocks would return exactly one block, /// return that block. Otherwise return null. template BlockT *LoopBase::getExitingBlock() const { assert(!isInvalid() && "Loop not in a valid state!"); auto notInLoop = [&](BlockT *BB) { return !contains(BB); }; auto isExitBlock = [&](BlockT *BB, bool AllowRepeats) -> BlockT * { assert(!AllowRepeats && "Unexpected parameter value."); // Child not in current loop? It must be an exit block. return any_of(children(BB), notInLoop) ? BB : nullptr; }; return find_singleton(blocks(), isExitBlock); } /// getExitBlocks - Return all of the successor blocks of this loop. These /// are the blocks _outside of the current loop_ which are branched to. /// template void LoopBase::getExitBlocks( SmallVectorImpl &ExitBlocks) const { assert(!isInvalid() && "Loop not in a valid state!"); for (const auto BB : blocks()) for (auto *Succ : children(BB)) if (!contains(Succ)) // Not in current loop? It must be an exit block. ExitBlocks.push_back(Succ); } /// getExitBlock - If getExitBlocks would return exactly one block, /// return that block. Otherwise return null. template std::pair getExitBlockHelper(const LoopBase *L, bool Unique) { assert(!L->isInvalid() && "Loop not in a valid state!"); auto notInLoop = [&](BlockT *BB, bool AllowRepeats) -> std::pair { assert(AllowRepeats == Unique && "Unexpected parameter value."); return {!L->contains(BB) ? BB : nullptr, false}; }; auto singleExitBlock = [&](BlockT *BB, bool AllowRepeats) -> std::pair { assert(AllowRepeats == Unique && "Unexpected parameter value."); return find_singleton_nested(children(BB), notInLoop, AllowRepeats); }; return find_singleton_nested(L->blocks(), singleExitBlock, Unique); } template bool LoopBase::hasNoExitBlocks() const { auto RC = getExitBlockHelper(this, false); if (RC.second) // found multiple exit blocks return false; // return true if there is no exit block return !RC.first; } /// getExitBlock - If getExitBlocks would return exactly one block, /// return that block. Otherwise return null. template BlockT *LoopBase::getExitBlock() const { return getExitBlockHelper(this, false).first; } template bool LoopBase::hasDedicatedExits() const { // Each predecessor of each exit block of a normal loop is contained // within the loop. SmallVector UniqueExitBlocks; getUniqueExitBlocks(UniqueExitBlocks); for (BlockT *EB : UniqueExitBlocks) for (BlockT *Predecessor : children>(EB)) if (!contains(Predecessor)) return false; // All the requirements are met. return true; } // Helper function to get unique loop exits. Pred is a predicate pointing to // BasicBlocks in a loop which should be considered to find loop exits. template void getUniqueExitBlocksHelper(const LoopT *L, SmallVectorImpl &ExitBlocks, PredicateT Pred) { assert(!L->isInvalid() && "Loop not in a valid state!"); SmallPtrSet Visited; auto Filtered = make_filter_range(L->blocks(), Pred); for (BlockT *BB : Filtered) for (BlockT *Successor : children(BB)) if (!L->contains(Successor)) if (Visited.insert(Successor).second) ExitBlocks.push_back(Successor); } template void LoopBase::getUniqueExitBlocks( SmallVectorImpl &ExitBlocks) const { getUniqueExitBlocksHelper(this, ExitBlocks, [](const BlockT *BB) { return true; }); } template void LoopBase::getUniqueNonLatchExitBlocks( SmallVectorImpl &ExitBlocks) const { const BlockT *Latch = getLoopLatch(); assert(Latch && "Latch block must exists"); getUniqueExitBlocksHelper(this, ExitBlocks, [Latch](const BlockT *BB) { return BB != Latch; }); } template BlockT *LoopBase::getUniqueExitBlock() const { return getExitBlockHelper(this, true).first; } /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_). template void LoopBase::getExitEdges( SmallVectorImpl &ExitEdges) const { assert(!isInvalid() && "Loop not in a valid state!"); for (const auto BB : blocks()) for (auto *Succ : children(BB)) if (!contains(Succ)) // Not in current loop? It must be an exit block. ExitEdges.emplace_back(BB, Succ); } /// getLoopPreheader - If there is a preheader for this loop, return it. A /// loop has a preheader if there is only one edge to the header of the loop /// from outside of the loop and it is legal to hoist instructions into the /// predecessor. If this is the case, the block branching to the header of the /// loop is the preheader node. /// /// This method returns null if there is no preheader for the loop. /// template BlockT *LoopBase::getLoopPreheader() const { assert(!isInvalid() && "Loop not in a valid state!"); // Keep track of nodes outside the loop branching to the header... BlockT *Out = getLoopPredecessor(); if (!Out) return nullptr; // Make sure we are allowed to hoist instructions into the predecessor. if (!Out->isLegalToHoistInto()) return nullptr; // Make sure there is only one exit out of the preheader. typedef GraphTraits BlockTraits; typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out); ++SI; if (SI != BlockTraits::child_end(Out)) return nullptr; // Multiple exits from the block, must not be a preheader. // The predecessor has exactly one successor, so it is a preheader. return Out; } /// getLoopPredecessor - If the given loop's header has exactly one unique /// predecessor outside the loop, return it. Otherwise return null. /// This is less strict that the loop "preheader" concept, which requires /// the predecessor to have exactly one successor. /// template BlockT *LoopBase::getLoopPredecessor() const { assert(!isInvalid() && "Loop not in a valid state!"); // Keep track of nodes outside the loop branching to the header... BlockT *Out = nullptr; // Loop over the predecessors of the header node... BlockT *Header = getHeader(); for (const auto Pred : children>(Header)) { if (!contains(Pred)) { // If the block is not in the loop... if (Out && Out != Pred) return nullptr; // Multiple predecessors outside the loop Out = Pred; } } return Out; } /// getLoopLatch - If there is a single latch block for this loop, return it. /// A latch block is a block that contains a branch back to the header. template BlockT *LoopBase::getLoopLatch() const { assert(!isInvalid() && "Loop not in a valid state!"); BlockT *Header = getHeader(); BlockT *Latch = nullptr; for (const auto Pred : children>(Header)) { if (contains(Pred)) { if (Latch) return nullptr; Latch = Pred; } } return Latch; } //===----------------------------------------------------------------------===// // APIs for updating loop information after changing the CFG // /// addBasicBlockToLoop - This method is used by other analyses to update loop /// information. NewBB is set to be a new member of the current loop. /// Because of this, it is added as a member of all parent loops, and is added /// to the specified LoopInfo object as being in the current basic block. It /// is not valid to replace the loop header with this method. /// template void LoopBase::addBasicBlockToLoop( BlockT *NewBB, LoopInfoBase &LIB) { assert(!isInvalid() && "Loop not in a valid state!"); #ifndef NDEBUG if (!Blocks.empty()) { auto SameHeader = LIB[getHeader()]; assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() && "Incorrect LI specified for this loop!"); } #endif assert(NewBB && "Cannot add a null basic block to the loop!"); assert(!LIB[NewBB] && "BasicBlock already in the loop!"); LoopT *L = static_cast(this); // Add the loop mapping to the LoopInfo object... LIB.BBMap[NewBB] = L; // Add the basic block to this loop and all parent loops... while (L) { L->addBlockEntry(NewBB); L = L->getParentLoop(); } } /// replaceChildLoopWith - This is used when splitting loops up. It replaces /// the OldChild entry in our children list with NewChild, and updates the /// parent pointer of OldChild to be null and the NewChild to be this loop. /// This updates the loop depth of the new child. template void LoopBase::replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) { assert(!isInvalid() && "Loop not in a valid state!"); assert(OldChild->ParentLoop == this && "This loop is already broken!"); assert(!NewChild->ParentLoop && "NewChild already has a parent!"); typename std::vector::iterator I = find(SubLoops, OldChild); assert(I != SubLoops.end() && "OldChild not in loop!"); *I = NewChild; OldChild->ParentLoop = nullptr; NewChild->ParentLoop = static_cast(this); } /// verifyLoop - Verify loop structure template void LoopBase::verifyLoop() const { assert(!isInvalid() && "Loop not in a valid state!"); #ifndef NDEBUG assert(!Blocks.empty() && "Loop header is missing"); // Setup for using a depth-first iterator to visit every block in the loop. SmallVector ExitBBs; getExitBlocks(ExitBBs); df_iterator_default_set VisitSet; VisitSet.insert(ExitBBs.begin(), ExitBBs.end()); // Keep track of the BBs visited. SmallPtrSet VisitedBBs; // Check the individual blocks. for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) { assert(std::any_of(GraphTraits::child_begin(BB), GraphTraits::child_end(BB), [&](BlockT *B) { return contains(B); }) && "Loop block has no in-loop successors!"); assert(std::any_of(GraphTraits>::child_begin(BB), GraphTraits>::child_end(BB), [&](BlockT *B) { return contains(B); }) && "Loop block has no in-loop predecessors!"); SmallVector OutsideLoopPreds; for (BlockT *B : llvm::make_range(GraphTraits>::child_begin(BB), GraphTraits>::child_end(BB))) if (!contains(B)) OutsideLoopPreds.push_back(B); if (BB == getHeader()) { assert(!OutsideLoopPreds.empty() && "Loop is unreachable!"); } else if (!OutsideLoopPreds.empty()) { // A non-header loop shouldn't be reachable from outside the loop, // though it is permitted if the predecessor is not itself actually // reachable. BlockT *EntryBB = &BB->getParent()->front(); for (BlockT *CB : depth_first(EntryBB)) for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i) assert(CB != OutsideLoopPreds[i] && "Loop has multiple entry points!"); } assert(BB != &getHeader()->getParent()->front() && "Loop contains function entry block!"); VisitedBBs.insert(BB); } if (VisitedBBs.size() != getNumBlocks()) { dbgs() << "The following blocks are unreachable in the loop: "; for (auto *BB : Blocks) { if (!VisitedBBs.count(BB)) { dbgs() << *BB << "\n"; } } assert(false && "Unreachable block in loop"); } // Check the subloops. for (iterator I = begin(), E = end(); I != E; ++I) // Each block in each subloop should be contained within this loop. for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end(); BI != BE; ++BI) { assert(contains(*BI) && "Loop does not contain all the blocks of a subloop!"); } // Check the parent loop pointer. if (ParentLoop) { assert(is_contained(*ParentLoop, this) && "Loop is not a subloop of its parent!"); } #endif } /// verifyLoop - Verify loop structure of this loop and all nested loops. template void LoopBase::verifyLoopNest( DenseSet *Loops) const { assert(!isInvalid() && "Loop not in a valid state!"); Loops->insert(static_cast(this)); // Verify this loop. verifyLoop(); // Verify the subloops. for (iterator I = begin(), E = end(); I != E; ++I) (*I)->verifyLoopNest(Loops); } template void LoopBase::print(raw_ostream &OS, bool Verbose, bool PrintNested, unsigned Depth) const { OS.indent(Depth * 2); if (static_cast(this)->isAnnotatedParallel()) OS << "Parallel "; OS << "Loop at depth " << getLoopDepth() << " containing: "; BlockT *H = getHeader(); for (unsigned i = 0; i < getBlocks().size(); ++i) { BlockT *BB = getBlocks()[i]; if (!Verbose) { if (i) OS << ","; BB->printAsOperand(OS, false); } else OS << "\n"; if (BB == H) OS << "
"; if (isLoopLatch(BB)) OS << ""; if (isLoopExiting(BB)) OS << ""; if (Verbose) BB->print(OS); } if (PrintNested) { OS << "\n"; for (iterator I = begin(), E = end(); I != E; ++I) (*I)->print(OS, /*Verbose*/ false, PrintNested, Depth + 2); } } //===----------------------------------------------------------------------===// /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the /// result does / not depend on use list (block predecessor) order. /// /// Discover a subloop with the specified backedges such that: All blocks within /// this loop are mapped to this loop or a subloop. And all subloops within this /// loop have their parent loop set to this loop or a subloop. template static void discoverAndMapSubloop(LoopT *L, ArrayRef Backedges, LoopInfoBase *LI, const DomTreeBase &DomTree) { typedef GraphTraits> InvBlockTraits; unsigned NumBlocks = 0; unsigned NumSubloops = 0; // Perform a backward CFG traversal using a worklist. std::vector ReverseCFGWorklist(Backedges.begin(), Backedges.end()); while (!ReverseCFGWorklist.empty()) { BlockT *PredBB = ReverseCFGWorklist.back(); ReverseCFGWorklist.pop_back(); LoopT *Subloop = LI->getLoopFor(PredBB); if (!Subloop) { if (!DomTree.isReachableFromEntry(PredBB)) continue; // This is an undiscovered block. Map it to the current loop. LI->changeLoopFor(PredBB, L); ++NumBlocks; if (PredBB == L->getHeader()) continue; // Push all block predecessors on the worklist. ReverseCFGWorklist.insert(ReverseCFGWorklist.end(), InvBlockTraits::child_begin(PredBB), InvBlockTraits::child_end(PredBB)); } else { // This is a discovered block. Find its outermost discovered loop. Subloop = Subloop->getOutermostLoop(); // If it is already discovered to be a subloop of this loop, continue. if (Subloop == L) continue; // Discover a subloop of this loop. Subloop->setParentLoop(L); ++NumSubloops; NumBlocks += Subloop->getBlocksVector().capacity(); PredBB = Subloop->getHeader(); // Continue traversal along predecessors that are not loop-back edges from // within this subloop tree itself. Note that a predecessor may directly // reach another subloop that is not yet discovered to be a subloop of // this loop, which we must traverse. for (const auto Pred : children>(PredBB)) { if (LI->getLoopFor(Pred) != Subloop) ReverseCFGWorklist.push_back(Pred); } } } L->getSubLoopsVector().reserve(NumSubloops); L->reserveBlocks(NumBlocks); } /// Populate all loop data in a stable order during a single forward DFS. template class PopulateLoopsDFS { typedef GraphTraits BlockTraits; typedef typename BlockTraits::ChildIteratorType SuccIterTy; LoopInfoBase *LI; public: PopulateLoopsDFS(LoopInfoBase *li) : LI(li) {} void traverse(BlockT *EntryBlock); protected: void insertIntoLoop(BlockT *Block); }; /// Top-level driver for the forward DFS within the loop. template void PopulateLoopsDFS::traverse(BlockT *EntryBlock) { for (BlockT *BB : post_order(EntryBlock)) insertIntoLoop(BB); } /// Add a single Block to its ancestor loops in PostOrder. If the block is a /// subloop header, add the subloop to its parent in PostOrder, then reverse the /// Block and Subloop vectors of the now complete subloop to achieve RPO. template void PopulateLoopsDFS::insertIntoLoop(BlockT *Block) { LoopT *Subloop = LI->getLoopFor(Block); if (Subloop && Block == Subloop->getHeader()) { // We reach this point once per subloop after processing all the blocks in // the subloop. if (!Subloop->isOutermost()) Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop); else LI->addTopLevelLoop(Subloop); // For convenience, Blocks and Subloops are inserted in postorder. Reverse // the lists, except for the loop header, which is always at the beginning. Subloop->reverseBlock(1); std::reverse(Subloop->getSubLoopsVector().begin(), Subloop->getSubLoopsVector().end()); Subloop = Subloop->getParentLoop(); } for (; Subloop; Subloop = Subloop->getParentLoop()) Subloop->addBlockEntry(Block); } /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal /// interleaved with backward CFG traversals within each subloop /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so /// this part of the algorithm is linear in the number of CFG edges. Subloop and /// Block vectors are then populated during a single forward CFG traversal /// (PopulateLoopDFS). /// /// During the two CFG traversals each block is seen three times: /// 1) Discovered and mapped by a reverse CFG traversal. /// 2) Visited during a forward DFS CFG traversal. /// 3) Reverse-inserted in the loop in postorder following forward DFS. /// /// The Block vectors are inclusive, so step 3 requires loop-depth number of /// insertions per block. template void LoopInfoBase::analyze(const DomTreeBase &DomTree) { // Postorder traversal of the dominator tree. const DomTreeNodeBase *DomRoot = DomTree.getRootNode(); for (auto DomNode : post_order(DomRoot)) { BlockT *Header = DomNode->getBlock(); SmallVector Backedges; // Check each predecessor of the potential loop header. for (const auto Backedge : children>(Header)) { // If Header dominates predBB, this is a new loop. Collect the backedges. if (DomTree.dominates(Header, Backedge) && DomTree.isReachableFromEntry(Backedge)) { Backedges.push_back(Backedge); } } // Perform a backward CFG traversal to discover and map blocks in this loop. if (!Backedges.empty()) { LoopT *L = AllocateLoop(Header); discoverAndMapSubloop(L, ArrayRef(Backedges), this, DomTree); } } // Perform a single forward CFG traversal to populate block and subloop // vectors for all loops. PopulateLoopsDFS DFS(this); DFS.traverse(DomRoot->getBlock()); } template SmallVector LoopInfoBase::getLoopsInPreorder() const { SmallVector PreOrderLoops, PreOrderWorklist; // The outer-most loop actually goes into the result in the same relative // order as we walk it. But LoopInfo stores the top level loops in reverse // program order so for here we reverse it to get forward program order. // FIXME: If we change the order of LoopInfo we will want to remove the // reverse here. for (LoopT *RootL : reverse(*this)) { auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder(); PreOrderLoops.append(PreOrderLoopsInRootL.begin(), PreOrderLoopsInRootL.end()); } return PreOrderLoops; } template SmallVector LoopInfoBase::getLoopsInReverseSiblingPreorder() const { SmallVector PreOrderLoops, PreOrderWorklist; // The outer-most loop actually goes into the result in the same relative // order as we walk it. LoopInfo stores the top level loops in reverse // program order so we walk in order here. // FIXME: If we change the order of LoopInfo we will want to add a reverse // here. for (LoopT *RootL : *this) { assert(PreOrderWorklist.empty() && "Must start with an empty preorder walk worklist."); PreOrderWorklist.push_back(RootL); do { LoopT *L = PreOrderWorklist.pop_back_val(); // Sub-loops are stored in forward program order, but will process the // worklist backwards so we can just append them in order. PreOrderWorklist.append(L->begin(), L->end()); PreOrderLoops.push_back(L); } while (!PreOrderWorklist.empty()); } return PreOrderLoops; } // Debugging template void LoopInfoBase::print(raw_ostream &OS) const { for (unsigned i = 0; i < TopLevelLoops.size(); ++i) TopLevelLoops[i]->print(OS); #if 0 for (DenseMap::const_iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) OS << "BB '" << I->first->getName() << "' level = " << I->second->getLoopDepth() << "\n"; #endif } template bool compareVectors(std::vector &BB1, std::vector &BB2) { llvm::sort(BB1); llvm::sort(BB2); return BB1 == BB2; } template void addInnerLoopsToHeadersMap(DenseMap &LoopHeaders, const LoopInfoBase &LI, const LoopT &L) { LoopHeaders[L.getHeader()] = &L; for (LoopT *SL : L) addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL); } #ifndef NDEBUG template static void compareLoops(const LoopT *L, const LoopT *OtherL, DenseMap &OtherLoopHeaders) { BlockT *H = L->getHeader(); BlockT *OtherH = OtherL->getHeader(); assert(H == OtherH && "Mismatched headers even though found in the same map entry!"); assert(L->getLoopDepth() == OtherL->getLoopDepth() && "Mismatched loop depth!"); const LoopT *ParentL = L, *OtherParentL = OtherL; do { assert(ParentL->getHeader() == OtherParentL->getHeader() && "Mismatched parent loop headers!"); ParentL = ParentL->getParentLoop(); OtherParentL = OtherParentL->getParentLoop(); } while (ParentL); for (const LoopT *SubL : *L) { BlockT *SubH = SubL->getHeader(); const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH); assert(OtherSubL && "Inner loop is missing in computed loop info!"); OtherLoopHeaders.erase(SubH); compareLoops(SubL, OtherSubL, OtherLoopHeaders); } std::vector BBs = L->getBlocks(); std::vector OtherBBs = OtherL->getBlocks(); assert(compareVectors(BBs, OtherBBs) && "Mismatched basic blocks in the loops!"); const SmallPtrSetImpl &BlocksSet = L->getBlocksSet(); const SmallPtrSetImpl &OtherBlocksSet = OtherL->getBlocksSet(); assert(BlocksSet.size() == OtherBlocksSet.size() && llvm::set_is_subset(BlocksSet, OtherBlocksSet) && "Mismatched basic blocks in BlocksSets!"); } #endif template void LoopInfoBase::verify( const DomTreeBase &DomTree) const { DenseSet Loops; for (iterator I = begin(), E = end(); I != E; ++I) { assert((*I)->isOutermost() && "Top-level loop has a parent!"); (*I)->verifyLoopNest(&Loops); } // Verify that blocks are mapped to valid loops. #ifndef NDEBUG for (auto &Entry : BBMap) { const BlockT *BB = Entry.first; LoopT *L = Entry.second; assert(Loops.count(L) && "orphaned loop"); assert(L->contains(BB) && "orphaned block"); for (LoopT *ChildLoop : *L) assert(!ChildLoop->contains(BB) && "BBMap should point to the innermost loop containing BB"); } // Recompute LoopInfo to verify loops structure. LoopInfoBase OtherLI; OtherLI.analyze(DomTree); // Build a map we can use to move from our LI to the computed one. This // allows us to ignore the particular order in any layer of the loop forest // while still comparing the structure. DenseMap OtherLoopHeaders; for (LoopT *L : OtherLI) addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L); // Walk the top level loops and ensure there is a corresponding top-level // loop in the computed version and then recursively compare those loop // nests. for (LoopT *L : *this) { BlockT *Header = L->getHeader(); const LoopT *OtherL = OtherLoopHeaders.lookup(Header); assert(OtherL && "Top level loop is missing in computed loop info!"); // Now that we've matched this loop, erase its header from the map. OtherLoopHeaders.erase(Header); // And recursively compare these loops. compareLoops(L, OtherL, OtherLoopHeaders); } // Any remaining entries in the map are loops which were found when computing // a fresh LoopInfo but not present in the current one. if (!OtherLoopHeaders.empty()) { for (const auto &HeaderAndLoop : OtherLoopHeaders) dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n"; llvm_unreachable("Found new loops when recomputing LoopInfo!"); } #endif } } // End llvm namespace #endif #ifdef __GNUC__ #pragma GCC diagnostic pop #endif