12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922 |
- //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the primary stateless implementation of the
- // Alias Analysis interface that implements identities (two different
- // globals cannot alias, etc), but does no stateful analysis.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ScopeExit.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/PhiValues.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/KnownBits.h"
- #include <cassert>
- #include <cstdint>
- #include <cstdlib>
- #include <utility>
- #define DEBUG_TYPE "basicaa"
- using namespace llvm;
- /// Enable analysis of recursive PHI nodes.
- static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
- cl::init(true));
- /// SearchLimitReached / SearchTimes shows how often the limit of
- /// to decompose GEPs is reached. It will affect the precision
- /// of basic alias analysis.
- STATISTIC(SearchLimitReached, "Number of times the limit to "
- "decompose GEPs is reached");
- STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
- /// Cutoff after which to stop analysing a set of phi nodes potentially involved
- /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
- /// careful with value equivalence. We use reachability to make sure a value
- /// cannot be involved in a cycle.
- const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
- // The max limit of the search depth in DecomposeGEPExpression() and
- // getUnderlyingObject().
- static const unsigned MaxLookupSearchDepth = 6;
- bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &Inv) {
- // We don't care if this analysis itself is preserved, it has no state. But
- // we need to check that the analyses it depends on have been. Note that we
- // may be created without handles to some analyses and in that case don't
- // depend on them.
- if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
- (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
- (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
- return true;
- // Otherwise this analysis result remains valid.
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Useful predicates
- //===----------------------------------------------------------------------===//
- /// Returns true if the pointer is one which would have been considered an
- /// escape by isNonEscapingLocalObject.
- static bool isEscapeSource(const Value *V) {
- if (isa<CallBase>(V))
- return true;
- // The load case works because isNonEscapingLocalObject considers all
- // stores to be escapes (it passes true for the StoreCaptures argument
- // to PointerMayBeCaptured).
- if (isa<LoadInst>(V))
- return true;
- // The inttoptr case works because isNonEscapingLocalObject considers all
- // means of converting or equating a pointer to an int (ptrtoint, ptr store
- // which could be followed by an integer load, ptr<->int compare) as
- // escaping, and objects located at well-known addresses via platform-specific
- // means cannot be considered non-escaping local objects.
- if (isa<IntToPtrInst>(V))
- return true;
- return false;
- }
- /// Returns the size of the object specified by V or UnknownSize if unknown.
- static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
- const TargetLibraryInfo &TLI,
- bool NullIsValidLoc,
- bool RoundToAlign = false) {
- uint64_t Size;
- ObjectSizeOpts Opts;
- Opts.RoundToAlign = RoundToAlign;
- Opts.NullIsUnknownSize = NullIsValidLoc;
- if (getObjectSize(V, Size, DL, &TLI, Opts))
- return Size;
- return MemoryLocation::UnknownSize;
- }
- /// Returns true if we can prove that the object specified by V is smaller than
- /// Size.
- static bool isObjectSmallerThan(const Value *V, uint64_t Size,
- const DataLayout &DL,
- const TargetLibraryInfo &TLI,
- bool NullIsValidLoc) {
- // Note that the meanings of the "object" are slightly different in the
- // following contexts:
- // c1: llvm::getObjectSize()
- // c2: llvm.objectsize() intrinsic
- // c3: isObjectSmallerThan()
- // c1 and c2 share the same meaning; however, the meaning of "object" in c3
- // refers to the "entire object".
- //
- // Consider this example:
- // char *p = (char*)malloc(100)
- // char *q = p+80;
- //
- // In the context of c1 and c2, the "object" pointed by q refers to the
- // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
- //
- // However, in the context of c3, the "object" refers to the chunk of memory
- // being allocated. So, the "object" has 100 bytes, and q points to the middle
- // the "object". In case q is passed to isObjectSmallerThan() as the 1st
- // parameter, before the llvm::getObjectSize() is called to get the size of
- // entire object, we should:
- // - either rewind the pointer q to the base-address of the object in
- // question (in this case rewind to p), or
- // - just give up. It is up to caller to make sure the pointer is pointing
- // to the base address the object.
- //
- // We go for 2nd option for simplicity.
- if (!isIdentifiedObject(V))
- return false;
- // This function needs to use the aligned object size because we allow
- // reads a bit past the end given sufficient alignment.
- uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
- /*RoundToAlign*/ true);
- return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
- }
- /// Return the minimal extent from \p V to the end of the underlying object,
- /// assuming the result is used in an aliasing query. E.g., we do use the query
- /// location size and the fact that null pointers cannot alias here.
- static uint64_t getMinimalExtentFrom(const Value &V,
- const LocationSize &LocSize,
- const DataLayout &DL,
- bool NullIsValidLoc) {
- // If we have dereferenceability information we know a lower bound for the
- // extent as accesses for a lower offset would be valid. We need to exclude
- // the "or null" part if null is a valid pointer. We can ignore frees, as an
- // access after free would be undefined behavior.
- bool CanBeNull, CanBeFreed;
- uint64_t DerefBytes =
- V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
- DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
- // If queried with a precise location size, we assume that location size to be
- // accessed, thus valid.
- if (LocSize.isPrecise())
- DerefBytes = std::max(DerefBytes, LocSize.getValue());
- return DerefBytes;
- }
- /// Returns true if we can prove that the object specified by V has size Size.
- static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
- const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
- uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
- return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
- }
- //===----------------------------------------------------------------------===//
- // CaptureInfo implementations
- //===----------------------------------------------------------------------===//
- CaptureInfo::~CaptureInfo() = default;
- bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object,
- const Instruction *I) {
- return isNonEscapingLocalObject(Object, &IsCapturedCache);
- }
- bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object,
- const Instruction *I) {
- if (!isIdentifiedFunctionLocal(Object))
- return false;
- auto Iter = EarliestEscapes.insert({Object, nullptr});
- if (Iter.second) {
- Instruction *EarliestCapture = FindEarliestCapture(
- Object, *const_cast<Function *>(I->getFunction()),
- /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT);
- if (EarliestCapture) {
- auto Ins = Inst2Obj.insert({EarliestCapture, {}});
- Ins.first->second.push_back(Object);
- }
- Iter.first->second = EarliestCapture;
- }
- // No capturing instruction.
- if (!Iter.first->second)
- return true;
- return I != Iter.first->second &&
- !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI);
- }
- void EarliestEscapeInfo::removeInstruction(Instruction *I) {
- auto Iter = Inst2Obj.find(I);
- if (Iter != Inst2Obj.end()) {
- for (const Value *Obj : Iter->second)
- EarliestEscapes.erase(Obj);
- Inst2Obj.erase(I);
- }
- }
- //===----------------------------------------------------------------------===//
- // GetElementPtr Instruction Decomposition and Analysis
- //===----------------------------------------------------------------------===//
- namespace {
- /// Represents zext(sext(trunc(V))).
- struct CastedValue {
- const Value *V;
- unsigned ZExtBits = 0;
- unsigned SExtBits = 0;
- unsigned TruncBits = 0;
- explicit CastedValue(const Value *V) : V(V) {}
- explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits,
- unsigned TruncBits)
- : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits) {}
- unsigned getBitWidth() const {
- return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits +
- SExtBits;
- }
- CastedValue withValue(const Value *NewV) const {
- return CastedValue(NewV, ZExtBits, SExtBits, TruncBits);
- }
- /// Replace V with zext(NewV)
- CastedValue withZExtOfValue(const Value *NewV) const {
- unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
- NewV->getType()->getPrimitiveSizeInBits();
- if (ExtendBy <= TruncBits)
- return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy);
- // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
- ExtendBy -= TruncBits;
- return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0);
- }
- /// Replace V with sext(NewV)
- CastedValue withSExtOfValue(const Value *NewV) const {
- unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
- NewV->getType()->getPrimitiveSizeInBits();
- if (ExtendBy <= TruncBits)
- return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy);
- // zext(sext(sext(NewV)))
- ExtendBy -= TruncBits;
- return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0);
- }
- APInt evaluateWith(APInt N) const {
- assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
- "Incompatible bit width");
- if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits);
- if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
- if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
- return N;
- }
- ConstantRange evaluateWith(ConstantRange N) const {
- assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
- "Incompatible bit width");
- if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits);
- if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits);
- if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits);
- return N;
- }
- bool canDistributeOver(bool NUW, bool NSW) const {
- // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
- // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
- // trunc(x op y) == trunc(x) op trunc(y)
- return (!ZExtBits || NUW) && (!SExtBits || NSW);
- }
- bool hasSameCastsAs(const CastedValue &Other) const {
- return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits &&
- TruncBits == Other.TruncBits;
- }
- };
- /// Represents zext(sext(trunc(V))) * Scale + Offset.
- struct LinearExpression {
- CastedValue Val;
- APInt Scale;
- APInt Offset;
- /// True if all operations in this expression are NSW.
- bool IsNSW;
- LinearExpression(const CastedValue &Val, const APInt &Scale,
- const APInt &Offset, bool IsNSW)
- : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
- LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) {
- unsigned BitWidth = Val.getBitWidth();
- Scale = APInt(BitWidth, 1);
- Offset = APInt(BitWidth, 0);
- }
- LinearExpression mul(const APInt &Other, bool MulIsNSW) const {
- // The check for zero offset is necessary, because generally
- // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z).
- bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero()));
- return LinearExpression(Val, Scale * Other, Offset * Other, NSW);
- }
- };
- }
- /// Analyzes the specified value as a linear expression: "A*V + B", where A and
- /// B are constant integers.
- static LinearExpression GetLinearExpression(
- const CastedValue &Val, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, DominatorTree *DT) {
- // Limit our recursion depth.
- if (Depth == 6)
- return Val;
- if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
- return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
- Val.evaluateWith(Const->getValue()), true);
- if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
- APInt RHS = Val.evaluateWith(RHSC->getValue());
- // The only non-OBO case we deal with is or, and only limited to the
- // case where it is both nuw and nsw.
- bool NUW = true, NSW = true;
- if (isa<OverflowingBinaryOperator>(BOp)) {
- NUW &= BOp->hasNoUnsignedWrap();
- NSW &= BOp->hasNoSignedWrap();
- }
- if (!Val.canDistributeOver(NUW, NSW))
- return Val;
- // While we can distribute over trunc, we cannot preserve nowrap flags
- // in that case.
- if (Val.TruncBits)
- NUW = NSW = false;
- LinearExpression E(Val);
- switch (BOp->getOpcode()) {
- default:
- // We don't understand this instruction, so we can't decompose it any
- // further.
- return Val;
- case Instruction::Or:
- // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
- // analyze it.
- if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
- BOp, DT))
- return Val;
- LLVM_FALLTHROUGH;
- case Instruction::Add: {
- E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
- Depth + 1, AC, DT);
- E.Offset += RHS;
- E.IsNSW &= NSW;
- break;
- }
- case Instruction::Sub: {
- E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
- Depth + 1, AC, DT);
- E.Offset -= RHS;
- E.IsNSW &= NSW;
- break;
- }
- case Instruction::Mul:
- E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
- Depth + 1, AC, DT)
- .mul(RHS, NSW);
- break;
- case Instruction::Shl:
- // We're trying to linearize an expression of the kind:
- // shl i8 -128, 36
- // where the shift count exceeds the bitwidth of the type.
- // We can't decompose this further (the expression would return
- // a poison value).
- if (RHS.getLimitedValue() > Val.getBitWidth())
- return Val;
- E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
- Depth + 1, AC, DT);
- E.Offset <<= RHS.getLimitedValue();
- E.Scale <<= RHS.getLimitedValue();
- E.IsNSW &= NSW;
- break;
- }
- return E;
- }
- }
- if (isa<ZExtInst>(Val.V))
- return GetLinearExpression(
- Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
- DL, Depth + 1, AC, DT);
- if (isa<SExtInst>(Val.V))
- return GetLinearExpression(
- Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
- DL, Depth + 1, AC, DT);
- return Val;
- }
- /// To ensure a pointer offset fits in an integer of size IndexSize
- /// (in bits) when that size is smaller than the maximum index size. This is
- /// an issue, for example, in particular for 32b pointers with negative indices
- /// that rely on two's complement wrap-arounds for precise alias information
- /// where the maximum index size is 64b.
- static APInt adjustToIndexSize(const APInt &Offset, unsigned IndexSize) {
- assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!");
- unsigned ShiftBits = Offset.getBitWidth() - IndexSize;
- return (Offset << ShiftBits).ashr(ShiftBits);
- }
- namespace {
- // A linear transformation of a Value; this class represents
- // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale.
- struct VariableGEPIndex {
- CastedValue Val;
- APInt Scale;
- // Context instruction to use when querying information about this index.
- const Instruction *CxtI;
- /// True if all operations in this expression are NSW.
- bool IsNSW;
- void dump() const {
- print(dbgs());
- dbgs() << "\n";
- }
- void print(raw_ostream &OS) const {
- OS << "(V=" << Val.V->getName()
- << ", zextbits=" << Val.ZExtBits
- << ", sextbits=" << Val.SExtBits
- << ", truncbits=" << Val.TruncBits
- << ", scale=" << Scale << ")";
- }
- };
- }
- // Represents the internal structure of a GEP, decomposed into a base pointer,
- // constant offsets, and variable scaled indices.
- struct BasicAAResult::DecomposedGEP {
- // Base pointer of the GEP
- const Value *Base;
- // Total constant offset from base.
- APInt Offset;
- // Scaled variable (non-constant) indices.
- SmallVector<VariableGEPIndex, 4> VarIndices;
- // Are all operations inbounds GEPs or non-indexing operations?
- // (None iff expression doesn't involve any geps)
- Optional<bool> InBounds;
- void dump() const {
- print(dbgs());
- dbgs() << "\n";
- }
- void print(raw_ostream &OS) const {
- OS << "(DecomposedGEP Base=" << Base->getName()
- << ", Offset=" << Offset
- << ", VarIndices=[";
- for (size_t i = 0; i < VarIndices.size(); i++) {
- if (i != 0)
- OS << ", ";
- VarIndices[i].print(OS);
- }
- OS << "])";
- }
- };
- /// If V is a symbolic pointer expression, decompose it into a base pointer
- /// with a constant offset and a number of scaled symbolic offsets.
- ///
- /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
- /// in the VarIndices vector) are Value*'s that are known to be scaled by the
- /// specified amount, but which may have other unrepresented high bits. As
- /// such, the gep cannot necessarily be reconstructed from its decomposed form.
- BasicAAResult::DecomposedGEP
- BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
- AssumptionCache *AC, DominatorTree *DT) {
- // Limit recursion depth to limit compile time in crazy cases.
- unsigned MaxLookup = MaxLookupSearchDepth;
- SearchTimes++;
- const Instruction *CxtI = dyn_cast<Instruction>(V);
- unsigned MaxIndexSize = DL.getMaxIndexSizeInBits();
- DecomposedGEP Decomposed;
- Decomposed.Offset = APInt(MaxIndexSize, 0);
- do {
- // See if this is a bitcast or GEP.
- const Operator *Op = dyn_cast<Operator>(V);
- if (!Op) {
- // The only non-operator case we can handle are GlobalAliases.
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (!GA->isInterposable()) {
- V = GA->getAliasee();
- continue;
- }
- }
- Decomposed.Base = V;
- return Decomposed;
- }
- if (Op->getOpcode() == Instruction::BitCast ||
- Op->getOpcode() == Instruction::AddrSpaceCast) {
- V = Op->getOperand(0);
- continue;
- }
- const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
- if (!GEPOp) {
- if (const auto *PHI = dyn_cast<PHINode>(V)) {
- // Look through single-arg phi nodes created by LCSSA.
- if (PHI->getNumIncomingValues() == 1) {
- V = PHI->getIncomingValue(0);
- continue;
- }
- } else if (const auto *Call = dyn_cast<CallBase>(V)) {
- // CaptureTracking can know about special capturing properties of some
- // intrinsics like launder.invariant.group, that can't be expressed with
- // the attributes, but have properties like returning aliasing pointer.
- // Because some analysis may assume that nocaptured pointer is not
- // returned from some special intrinsic (because function would have to
- // be marked with returns attribute), it is crucial to use this function
- // because it should be in sync with CaptureTracking. Not using it may
- // cause weird miscompilations where 2 aliasing pointers are assumed to
- // noalias.
- if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
- V = RP;
- continue;
- }
- }
- Decomposed.Base = V;
- return Decomposed;
- }
- // Track whether we've seen at least one in bounds gep, and if so, whether
- // all geps parsed were in bounds.
- if (Decomposed.InBounds == None)
- Decomposed.InBounds = GEPOp->isInBounds();
- else if (!GEPOp->isInBounds())
- Decomposed.InBounds = false;
- assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
- // Don't attempt to analyze GEPs if index scale is not a compile-time
- // constant.
- if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
- Decomposed.Base = V;
- return Decomposed;
- }
- unsigned AS = GEPOp->getPointerAddressSpace();
- // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
- gep_type_iterator GTI = gep_type_begin(GEPOp);
- unsigned IndexSize = DL.getIndexSizeInBits(AS);
- // Assume all GEP operands are constants until proven otherwise.
- bool GepHasConstantOffset = true;
- for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
- I != E; ++I, ++GTI) {
- const Value *Index = *I;
- // Compute the (potentially symbolic) offset in bytes for this index.
- if (StructType *STy = GTI.getStructTypeOrNull()) {
- // For a struct, add the member offset.
- unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
- if (FieldNo == 0)
- continue;
- Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
- continue;
- }
- // For an array/pointer, add the element offset, explicitly scaled.
- if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
- if (CIdx->isZero())
- continue;
- Decomposed.Offset +=
- DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
- CIdx->getValue().sextOrTrunc(MaxIndexSize);
- continue;
- }
- GepHasConstantOffset = false;
- // If the integer type is smaller than the index size, it is implicitly
- // sign extended or truncated to index size.
- unsigned Width = Index->getType()->getIntegerBitWidth();
- unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0;
- unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0;
- LinearExpression LE = GetLinearExpression(
- CastedValue(Index, 0, SExtBits, TruncBits), DL, 0, AC, DT);
- // Scale by the type size.
- unsigned TypeSize =
- DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize();
- LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds());
- Decomposed.Offset += LE.Offset.sextOrSelf(MaxIndexSize);
- APInt Scale = LE.Scale.sextOrSelf(MaxIndexSize);
- // If we already had an occurrence of this index variable, merge this
- // scale into it. For example, we want to handle:
- // A[x][x] -> x*16 + x*4 -> x*20
- // This also ensures that 'x' only appears in the index list once.
- for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
- if (Decomposed.VarIndices[i].Val.V == LE.Val.V &&
- Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) {
- Scale += Decomposed.VarIndices[i].Scale;
- Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
- break;
- }
- }
- // Make sure that we have a scale that makes sense for this target's
- // index size.
- Scale = adjustToIndexSize(Scale, IndexSize);
- if (!!Scale) {
- VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW};
- Decomposed.VarIndices.push_back(Entry);
- }
- }
- // Take care of wrap-arounds
- if (GepHasConstantOffset)
- Decomposed.Offset = adjustToIndexSize(Decomposed.Offset, IndexSize);
- // Analyze the base pointer next.
- V = GEPOp->getOperand(0);
- } while (--MaxLookup);
- // If the chain of expressions is too deep, just return early.
- Decomposed.Base = V;
- SearchLimitReached++;
- return Decomposed;
- }
- /// Returns whether the given pointer value points to memory that is local to
- /// the function, with global constants being considered local to all
- /// functions.
- bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
- AAQueryInfo &AAQI, bool OrLocal) {
- assert(Visited.empty() && "Visited must be cleared after use!");
- unsigned MaxLookup = 8;
- SmallVector<const Value *, 16> Worklist;
- Worklist.push_back(Loc.Ptr);
- do {
- const Value *V = getUnderlyingObject(Worklist.pop_back_val());
- if (!Visited.insert(V).second) {
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
- }
- // An alloca instruction defines local memory.
- if (OrLocal && isa<AllocaInst>(V))
- continue;
- // A global constant counts as local memory for our purposes.
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
- // Note: this doesn't require GV to be "ODR" because it isn't legal for a
- // global to be marked constant in some modules and non-constant in
- // others. GV may even be a declaration, not a definition.
- if (!GV->isConstant()) {
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
- }
- continue;
- }
- // If both select values point to local memory, then so does the select.
- if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
- Worklist.push_back(SI->getTrueValue());
- Worklist.push_back(SI->getFalseValue());
- continue;
- }
- // If all values incoming to a phi node point to local memory, then so does
- // the phi.
- if (const PHINode *PN = dyn_cast<PHINode>(V)) {
- // Don't bother inspecting phi nodes with many operands.
- if (PN->getNumIncomingValues() > MaxLookup) {
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
- }
- append_range(Worklist, PN->incoming_values());
- continue;
- }
- // Otherwise be conservative.
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
- } while (!Worklist.empty() && --MaxLookup);
- Visited.clear();
- return Worklist.empty();
- }
- static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
- const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
- return II && II->getIntrinsicID() == IID;
- }
- /// Returns the behavior when calling the given call site.
- FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
- if (Call->doesNotAccessMemory())
- // Can't do better than this.
- return FMRB_DoesNotAccessMemory;
- FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
- // If the callsite knows it only reads memory, don't return worse
- // than that.
- if (Call->onlyReadsMemory())
- Min = FMRB_OnlyReadsMemory;
- else if (Call->onlyWritesMemory())
- Min = FMRB_OnlyWritesMemory;
- if (Call->onlyAccessesArgMemory())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
- else if (Call->onlyAccessesInaccessibleMemory())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
- else if (Call->onlyAccessesInaccessibleMemOrArgMem())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
- // If the call has operand bundles then aliasing attributes from the function
- // it calls do not directly apply to the call. This can be made more precise
- // in the future.
- if (!Call->hasOperandBundles())
- if (const Function *F = Call->getCalledFunction())
- Min =
- FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
- return Min;
- }
- /// Returns the behavior when calling the given function. For use when the call
- /// site is not known.
- FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
- // If the function declares it doesn't access memory, we can't do better.
- if (F->doesNotAccessMemory())
- return FMRB_DoesNotAccessMemory;
- FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
- // If the function declares it only reads memory, go with that.
- if (F->onlyReadsMemory())
- Min = FMRB_OnlyReadsMemory;
- else if (F->onlyWritesMemory())
- Min = FMRB_OnlyWritesMemory;
- if (F->onlyAccessesArgMemory())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
- else if (F->onlyAccessesInaccessibleMemory())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
- else if (F->onlyAccessesInaccessibleMemOrArgMem())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
- return Min;
- }
- /// Returns true if this is a writeonly (i.e Mod only) parameter.
- static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
- const TargetLibraryInfo &TLI) {
- if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
- return true;
- // We can bound the aliasing properties of memset_pattern16 just as we can
- // for memcpy/memset. This is particularly important because the
- // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
- // whenever possible.
- // FIXME Consider handling this in InferFunctionAttr.cpp together with other
- // attributes.
- LibFunc F;
- if (Call->getCalledFunction() &&
- TLI.getLibFunc(*Call->getCalledFunction(), F) &&
- F == LibFunc_memset_pattern16 && TLI.has(F))
- if (ArgIdx == 0)
- return true;
- // TODO: memset_pattern4, memset_pattern8
- // TODO: _chk variants
- // TODO: strcmp, strcpy
- return false;
- }
- ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
- unsigned ArgIdx) {
- // Checking for known builtin intrinsics and target library functions.
- if (isWriteOnlyParam(Call, ArgIdx, TLI))
- return ModRefInfo::Mod;
- if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
- return ModRefInfo::Ref;
- if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
- return ModRefInfo::NoModRef;
- return AAResultBase::getArgModRefInfo(Call, ArgIdx);
- }
- #ifndef NDEBUG
- static const Function *getParent(const Value *V) {
- if (const Instruction *inst = dyn_cast<Instruction>(V)) {
- if (!inst->getParent())
- return nullptr;
- return inst->getParent()->getParent();
- }
- if (const Argument *arg = dyn_cast<Argument>(V))
- return arg->getParent();
- return nullptr;
- }
- static bool notDifferentParent(const Value *O1, const Value *O2) {
- const Function *F1 = getParent(O1);
- const Function *F2 = getParent(O2);
- return !F1 || !F2 || F1 == F2;
- }
- #endif
- AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
- const MemoryLocation &LocB,
- AAQueryInfo &AAQI) {
- assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
- "BasicAliasAnalysis doesn't support interprocedural queries.");
- return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI);
- }
- /// Checks to see if the specified callsite can clobber the specified memory
- /// object.
- ///
- /// Since we only look at local properties of this function, we really can't
- /// say much about this query. We do, however, use simple "address taken"
- /// analysis on local objects.
- ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
- const MemoryLocation &Loc,
- AAQueryInfo &AAQI) {
- assert(notDifferentParent(Call, Loc.Ptr) &&
- "AliasAnalysis query involving multiple functions!");
- const Value *Object = getUnderlyingObject(Loc.Ptr);
- // Calls marked 'tail' cannot read or write allocas from the current frame
- // because the current frame might be destroyed by the time they run. However,
- // a tail call may use an alloca with byval. Calling with byval copies the
- // contents of the alloca into argument registers or stack slots, so there is
- // no lifetime issue.
- if (isa<AllocaInst>(Object))
- if (const CallInst *CI = dyn_cast<CallInst>(Call))
- if (CI->isTailCall() &&
- !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
- return ModRefInfo::NoModRef;
- // Stack restore is able to modify unescaped dynamic allocas. Assume it may
- // modify them even though the alloca is not escaped.
- if (auto *AI = dyn_cast<AllocaInst>(Object))
- if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
- return ModRefInfo::Mod;
- // If the pointer is to a locally allocated object that does not escape,
- // then the call can not mod/ref the pointer unless the call takes the pointer
- // as an argument, and itself doesn't capture it.
- if (!isa<Constant>(Object) && Call != Object &&
- AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) {
- // Optimistically assume that call doesn't touch Object and check this
- // assumption in the following loop.
- ModRefInfo Result = ModRefInfo::NoModRef;
- bool IsMustAlias = true;
- unsigned OperandNo = 0;
- for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
- CI != CE; ++CI, ++OperandNo) {
- // Only look at the no-capture or byval pointer arguments. If this
- // pointer were passed to arguments that were neither of these, then it
- // couldn't be no-capture.
- if (!(*CI)->getType()->isPointerTy() ||
- (!Call->doesNotCapture(OperandNo) && OperandNo < Call->arg_size() &&
- !Call->isByValArgument(OperandNo)))
- continue;
- // Call doesn't access memory through this operand, so we don't care
- // if it aliases with Object.
- if (Call->doesNotAccessMemory(OperandNo))
- continue;
- // If this is a no-capture pointer argument, see if we can tell that it
- // is impossible to alias the pointer we're checking.
- AliasResult AR = getBestAAResults().alias(
- MemoryLocation::getBeforeOrAfter(*CI),
- MemoryLocation::getBeforeOrAfter(Object), AAQI);
- if (AR != AliasResult::MustAlias)
- IsMustAlias = false;
- // Operand doesn't alias 'Object', continue looking for other aliases
- if (AR == AliasResult::NoAlias)
- continue;
- // Operand aliases 'Object', but call doesn't modify it. Strengthen
- // initial assumption and keep looking in case if there are more aliases.
- if (Call->onlyReadsMemory(OperandNo)) {
- Result = setRef(Result);
- continue;
- }
- // Operand aliases 'Object' but call only writes into it.
- if (Call->onlyWritesMemory(OperandNo)) {
- Result = setMod(Result);
- continue;
- }
- // This operand aliases 'Object' and call reads and writes into it.
- // Setting ModRef will not yield an early return below, MustAlias is not
- // used further.
- Result = ModRefInfo::ModRef;
- break;
- }
- // No operand aliases, reset Must bit. Add below if at least one aliases
- // and all aliases found are MustAlias.
- if (isNoModRef(Result))
- IsMustAlias = false;
- // Early return if we improved mod ref information
- if (!isModAndRefSet(Result)) {
- if (isNoModRef(Result))
- return ModRefInfo::NoModRef;
- return IsMustAlias ? setMust(Result) : clearMust(Result);
- }
- }
- // If the call is malloc/calloc like, we can assume that it doesn't
- // modify any IR visible value. This is only valid because we assume these
- // routines do not read values visible in the IR. TODO: Consider special
- // casing realloc and strdup routines which access only their arguments as
- // well. Or alternatively, replace all of this with inaccessiblememonly once
- // that's implemented fully.
- if (isMallocOrCallocLikeFn(Call, &TLI)) {
- // Be conservative if the accessed pointer may alias the allocation -
- // fallback to the generic handling below.
- if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc,
- AAQI) == AliasResult::NoAlias)
- return ModRefInfo::NoModRef;
- }
- // Ideally, there should be no need to special case for memcpy/memove
- // intrinsics here since general machinery (based on memory attributes) should
- // already handle it just fine. Unfortunately, it doesn't due to deficiency in
- // operand bundles support. At the moment it's not clear if complexity behind
- // enhancing general mechanism worths it.
- // TODO: Consider improving operand bundles support in general mechanism.
- if (auto *Inst = dyn_cast<AnyMemTransferInst>(Call)) {
- AliasResult SrcAA =
- getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
- AliasResult DestAA =
- getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
- // It's also possible for Loc to alias both src and dest, or neither.
- ModRefInfo rv = ModRefInfo::NoModRef;
- if (SrcAA != AliasResult::NoAlias || Call->hasReadingOperandBundles())
- rv = setRef(rv);
- if (DestAA != AliasResult::NoAlias || Call->hasClobberingOperandBundles())
- rv = setMod(rv);
- return rv;
- }
- // Guard intrinsics are marked as arbitrarily writing so that proper control
- // dependencies are maintained but they never mods any particular memory
- // location.
- //
- // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
- // heap state at the point the guard is issued needs to be consistent in case
- // the guard invokes the "deopt" continuation.
- if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
- return ModRefInfo::Ref;
- // The same applies to deoptimize which is essentially a guard(false).
- if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
- return ModRefInfo::Ref;
- // Like assumes, invariant.start intrinsics were also marked as arbitrarily
- // writing so that proper control dependencies are maintained but they never
- // mod any particular memory location visible to the IR.
- // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
- // intrinsic is now modeled as reading memory. This prevents hoisting the
- // invariant.start intrinsic over stores. Consider:
- // *ptr = 40;
- // *ptr = 50;
- // invariant_start(ptr)
- // int val = *ptr;
- // print(val);
- //
- // This cannot be transformed to:
- //
- // *ptr = 40;
- // invariant_start(ptr)
- // *ptr = 50;
- // int val = *ptr;
- // print(val);
- //
- // The transformation will cause the second store to be ignored (based on
- // rules of invariant.start) and print 40, while the first program always
- // prints 50.
- if (isIntrinsicCall(Call, Intrinsic::invariant_start))
- return ModRefInfo::Ref;
- // The AAResultBase base class has some smarts, lets use them.
- return AAResultBase::getModRefInfo(Call, Loc, AAQI);
- }
- ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
- const CallBase *Call2,
- AAQueryInfo &AAQI) {
- // Guard intrinsics are marked as arbitrarily writing so that proper control
- // dependencies are maintained but they never mods any particular memory
- // location.
- //
- // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
- // heap state at the point the guard is issued needs to be consistent in case
- // the guard invokes the "deopt" continuation.
- // NB! This function is *not* commutative, so we special case two
- // possibilities for guard intrinsics.
- if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
- return isModSet(createModRefInfo(getModRefBehavior(Call2)))
- ? ModRefInfo::Ref
- : ModRefInfo::NoModRef;
- if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
- return isModSet(createModRefInfo(getModRefBehavior(Call1)))
- ? ModRefInfo::Mod
- : ModRefInfo::NoModRef;
- // The AAResultBase base class has some smarts, lets use them.
- return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
- }
- /// Return true if we know V to the base address of the corresponding memory
- /// object. This implies that any address less than V must be out of bounds
- /// for the underlying object. Note that just being isIdentifiedObject() is
- /// not enough - For example, a negative offset from a noalias argument or call
- /// can be inbounds w.r.t the actual underlying object.
- static bool isBaseOfObject(const Value *V) {
- // TODO: We can handle other cases here
- // 1) For GC languages, arguments to functions are often required to be
- // base pointers.
- // 2) Result of allocation routines are often base pointers. Leverage TLI.
- return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
- }
- /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
- /// another pointer.
- ///
- /// We know that V1 is a GEP, but we don't know anything about V2.
- /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
- /// V2.
- AliasResult BasicAAResult::aliasGEP(
- const GEPOperator *GEP1, LocationSize V1Size,
- const Value *V2, LocationSize V2Size,
- const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
- if (!V1Size.hasValue() && !V2Size.hasValue()) {
- // TODO: This limitation exists for compile-time reasons. Relax it if we
- // can avoid exponential pathological cases.
- if (!isa<GEPOperator>(V2))
- return AliasResult::MayAlias;
- // If both accesses have unknown size, we can only check whether the base
- // objects don't alias.
- AliasResult BaseAlias = getBestAAResults().alias(
- MemoryLocation::getBeforeOrAfter(UnderlyingV1),
- MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
- return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
- : AliasResult::MayAlias;
- }
- DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
- DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
- // Bail if we were not able to decompose anything.
- if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2)
- return AliasResult::MayAlias;
- // Subtract the GEP2 pointer from the GEP1 pointer to find out their
- // symbolic difference.
- subtractDecomposedGEPs(DecompGEP1, DecompGEP2);
- // If an inbounds GEP would have to start from an out of bounds address
- // for the two to alias, then we can assume noalias.
- if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
- V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
- isBaseOfObject(DecompGEP2.Base))
- return AliasResult::NoAlias;
- if (isa<GEPOperator>(V2)) {
- // Symmetric case to above.
- if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
- V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
- isBaseOfObject(DecompGEP1.Base))
- return AliasResult::NoAlias;
- }
- // For GEPs with identical offsets, we can preserve the size and AAInfo
- // when performing the alias check on the underlying objects.
- if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
- return getBestAAResults().alias(MemoryLocation(DecompGEP1.Base, V1Size),
- MemoryLocation(DecompGEP2.Base, V2Size),
- AAQI);
- // Do the base pointers alias?
- AliasResult BaseAlias = getBestAAResults().alias(
- MemoryLocation::getBeforeOrAfter(DecompGEP1.Base),
- MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI);
- // If we get a No or May, then return it immediately, no amount of analysis
- // will improve this situation.
- if (BaseAlias != AliasResult::MustAlias) {
- assert(BaseAlias == AliasResult::NoAlias ||
- BaseAlias == AliasResult::MayAlias);
- return BaseAlias;
- }
- // If there is a constant difference between the pointers, but the difference
- // is less than the size of the associated memory object, then we know
- // that the objects are partially overlapping. If the difference is
- // greater, we know they do not overlap.
- if (DecompGEP1.VarIndices.empty()) {
- APInt &Off = DecompGEP1.Offset;
- // Initialize for Off >= 0 (V2 <= GEP1) case.
- const Value *LeftPtr = V2;
- const Value *RightPtr = GEP1;
- LocationSize VLeftSize = V2Size;
- LocationSize VRightSize = V1Size;
- const bool Swapped = Off.isNegative();
- if (Swapped) {
- // Swap if we have the situation where:
- // + +
- // | BaseOffset |
- // ---------------->|
- // |-->V1Size |-------> V2Size
- // GEP1 V2
- std::swap(LeftPtr, RightPtr);
- std::swap(VLeftSize, VRightSize);
- Off = -Off;
- }
- if (!VLeftSize.hasValue())
- return AliasResult::MayAlias;
- const uint64_t LSize = VLeftSize.getValue();
- if (Off.ult(LSize)) {
- // Conservatively drop processing if a phi was visited and/or offset is
- // too big.
- AliasResult AR = AliasResult::PartialAlias;
- if (VRightSize.hasValue() && Off.ule(INT32_MAX) &&
- (Off + VRightSize.getValue()).ule(LSize)) {
- // Memory referenced by right pointer is nested. Save the offset in
- // cache. Note that originally offset estimated as GEP1-V2, but
- // AliasResult contains the shift that represents GEP1+Offset=V2.
- AR.setOffset(-Off.getSExtValue());
- AR.swap(Swapped);
- }
- return AR;
- }
- return AliasResult::NoAlias;
- }
- // We need to know both acess sizes for all the following heuristics.
- if (!V1Size.hasValue() || !V2Size.hasValue())
- return AliasResult::MayAlias;
- APInt GCD;
- ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset);
- for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
- const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
- const APInt &Scale = Index.Scale;
- APInt ScaleForGCD = Scale;
- if (!Index.IsNSW)
- ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(),
- Scale.countTrailingZeros());
- if (i == 0)
- GCD = ScaleForGCD.abs();
- else
- GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
- ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false,
- true, &AC, Index.CxtI);
- KnownBits Known =
- computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT);
- CR = CR.intersectWith(
- ConstantRange::fromKnownBits(Known, /* Signed */ true),
- ConstantRange::Signed);
- CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth());
- assert(OffsetRange.getBitWidth() == Scale.getBitWidth() &&
- "Bit widths are normalized to MaxIndexSize");
- if (Index.IsNSW)
- OffsetRange = OffsetRange.add(CR.smul_sat(ConstantRange(Scale)));
- else
- OffsetRange = OffsetRange.add(CR.smul_fast(ConstantRange(Scale)));
- }
- // We now have accesses at two offsets from the same base:
- // 1. (...)*GCD + DecompGEP1.Offset with size V1Size
- // 2. 0 with size V2Size
- // Using arithmetic modulo GCD, the accesses are at
- // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
- // into the range [V2Size..GCD), then we know they cannot overlap.
- APInt ModOffset = DecompGEP1.Offset.srem(GCD);
- if (ModOffset.isNegative())
- ModOffset += GCD; // We want mod, not rem.
- if (ModOffset.uge(V2Size.getValue()) &&
- (GCD - ModOffset).uge(V1Size.getValue()))
- return AliasResult::NoAlias;
- // Compute ranges of potentially accessed bytes for both accesses. If the
- // interseciton is empty, there can be no overlap.
- unsigned BW = OffsetRange.getBitWidth();
- ConstantRange Range1 = OffsetRange.add(
- ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue())));
- ConstantRange Range2 =
- ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue()));
- if (Range1.intersectWith(Range2).isEmptySet())
- return AliasResult::NoAlias;
- // Try to determine the range of values for VarIndex such that
- // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex.
- Optional<APInt> MinAbsVarIndex;
- if (DecompGEP1.VarIndices.size() == 1) {
- // VarIndex = Scale*V.
- const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
- if (Var.Val.TruncBits == 0 &&
- isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) {
- // If V != 0 then abs(VarIndex) >= abs(Scale).
- MinAbsVarIndex = Var.Scale.abs();
- }
- } else if (DecompGEP1.VarIndices.size() == 2) {
- // VarIndex = Scale*V0 + (-Scale)*V1.
- // If V0 != V1 then abs(VarIndex) >= abs(Scale).
- // Check that VisitedPhiBBs is empty, to avoid reasoning about
- // inequality of values across loop iterations.
- const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
- const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
- if (Var0.Scale == -Var1.Scale && Var0.Val.TruncBits == 0 &&
- Var0.Val.hasSameCastsAs(Var1.Val) && VisitedPhiBBs.empty() &&
- isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr,
- DT))
- MinAbsVarIndex = Var0.Scale.abs();
- }
- if (MinAbsVarIndex) {
- // The constant offset will have added at least +/-MinAbsVarIndex to it.
- APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
- APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
- // We know that Offset <= OffsetLo || Offset >= OffsetHi
- if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
- OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
- return AliasResult::NoAlias;
- }
- if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT))
- return AliasResult::NoAlias;
- // Statically, we can see that the base objects are the same, but the
- // pointers have dynamic offsets which we can't resolve. And none of our
- // little tricks above worked.
- return AliasResult::MayAlias;
- }
- static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
- // If the results agree, take it.
- if (A == B)
- return A;
- // A mix of PartialAlias and MustAlias is PartialAlias.
- if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
- (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
- return AliasResult::PartialAlias;
- // Otherwise, we don't know anything.
- return AliasResult::MayAlias;
- }
- /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
- /// against another.
- AliasResult
- BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
- const Value *V2, LocationSize V2Size,
- AAQueryInfo &AAQI) {
- // If the values are Selects with the same condition, we can do a more precise
- // check: just check for aliases between the values on corresponding arms.
- if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
- if (SI->getCondition() == SI2->getCondition()) {
- AliasResult Alias = getBestAAResults().alias(
- MemoryLocation(SI->getTrueValue(), SISize),
- MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
- if (Alias == AliasResult::MayAlias)
- return AliasResult::MayAlias;
- AliasResult ThisAlias = getBestAAResults().alias(
- MemoryLocation(SI->getFalseValue(), SISize),
- MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
- return MergeAliasResults(ThisAlias, Alias);
- }
- // If both arms of the Select node NoAlias or MustAlias V2, then returns
- // NoAlias / MustAlias. Otherwise, returns MayAlias.
- AliasResult Alias = getBestAAResults().alias(
- MemoryLocation(V2, V2Size),
- MemoryLocation(SI->getTrueValue(), SISize), AAQI);
- if (Alias == AliasResult::MayAlias)
- return AliasResult::MayAlias;
- AliasResult ThisAlias = getBestAAResults().alias(
- MemoryLocation(V2, V2Size),
- MemoryLocation(SI->getFalseValue(), SISize), AAQI);
- return MergeAliasResults(ThisAlias, Alias);
- }
- /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
- /// another.
- AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
- const Value *V2, LocationSize V2Size,
- AAQueryInfo &AAQI) {
- if (!PN->getNumIncomingValues())
- return AliasResult::NoAlias;
- // If the values are PHIs in the same block, we can do a more precise
- // as well as efficient check: just check for aliases between the values
- // on corresponding edges.
- if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
- if (PN2->getParent() == PN->getParent()) {
- Optional<AliasResult> Alias;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- AliasResult ThisAlias = getBestAAResults().alias(
- MemoryLocation(PN->getIncomingValue(i), PNSize),
- MemoryLocation(
- PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
- AAQI);
- if (Alias)
- *Alias = MergeAliasResults(*Alias, ThisAlias);
- else
- Alias = ThisAlias;
- if (*Alias == AliasResult::MayAlias)
- break;
- }
- return *Alias;
- }
- SmallVector<Value *, 4> V1Srcs;
- // If a phi operand recurses back to the phi, we can still determine NoAlias
- // if we don't alias the underlying objects of the other phi operands, as we
- // know that the recursive phi needs to be based on them in some way.
- bool isRecursive = false;
- auto CheckForRecPhi = [&](Value *PV) {
- if (!EnableRecPhiAnalysis)
- return false;
- if (getUnderlyingObject(PV) == PN) {
- isRecursive = true;
- return true;
- }
- return false;
- };
- if (PV) {
- // If we have PhiValues then use it to get the underlying phi values.
- const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
- // If we have more phi values than the search depth then return MayAlias
- // conservatively to avoid compile time explosion. The worst possible case
- // is if both sides are PHI nodes. In which case, this is O(m x n) time
- // where 'm' and 'n' are the number of PHI sources.
- if (PhiValueSet.size() > MaxLookupSearchDepth)
- return AliasResult::MayAlias;
- // Add the values to V1Srcs
- for (Value *PV1 : PhiValueSet) {
- if (CheckForRecPhi(PV1))
- continue;
- V1Srcs.push_back(PV1);
- }
- } else {
- // If we don't have PhiInfo then just look at the operands of the phi itself
- // FIXME: Remove this once we can guarantee that we have PhiInfo always
- SmallPtrSet<Value *, 4> UniqueSrc;
- Value *OnePhi = nullptr;
- for (Value *PV1 : PN->incoming_values()) {
- if (isa<PHINode>(PV1)) {
- if (OnePhi && OnePhi != PV1) {
- // To control potential compile time explosion, we choose to be
- // conserviate when we have more than one Phi input. It is important
- // that we handle the single phi case as that lets us handle LCSSA
- // phi nodes and (combined with the recursive phi handling) simple
- // pointer induction variable patterns.
- return AliasResult::MayAlias;
- }
- OnePhi = PV1;
- }
- if (CheckForRecPhi(PV1))
- continue;
- if (UniqueSrc.insert(PV1).second)
- V1Srcs.push_back(PV1);
- }
- if (OnePhi && UniqueSrc.size() > 1)
- // Out of an abundance of caution, allow only the trivial lcssa and
- // recursive phi cases.
- return AliasResult::MayAlias;
- }
- // If V1Srcs is empty then that means that the phi has no underlying non-phi
- // value. This should only be possible in blocks unreachable from the entry
- // block, but return MayAlias just in case.
- if (V1Srcs.empty())
- return AliasResult::MayAlias;
- // If this PHI node is recursive, indicate that the pointer may be moved
- // across iterations. We can only prove NoAlias if different underlying
- // objects are involved.
- if (isRecursive)
- PNSize = LocationSize::beforeOrAfterPointer();
- // In the recursive alias queries below, we may compare values from two
- // different loop iterations. Keep track of visited phi blocks, which will
- // be used when determining value equivalence.
- bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
- auto _ = make_scope_exit([&]() {
- if (BlockInserted)
- VisitedPhiBBs.erase(PN->getParent());
- });
- // If we inserted a block into VisitedPhiBBs, alias analysis results that
- // have been cached earlier may no longer be valid. Perform recursive queries
- // with a new AAQueryInfo.
- AAQueryInfo NewAAQI = AAQI.withEmptyCache();
- AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
- AliasResult Alias = getBestAAResults().alias(
- MemoryLocation(V2, V2Size),
- MemoryLocation(V1Srcs[0], PNSize), *UseAAQI);
- // Early exit if the check of the first PHI source against V2 is MayAlias.
- // Other results are not possible.
- if (Alias == AliasResult::MayAlias)
- return AliasResult::MayAlias;
- // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
- // remain valid to all elements and needs to conservatively return MayAlias.
- if (isRecursive && Alias != AliasResult::NoAlias)
- return AliasResult::MayAlias;
- // If all sources of the PHI node NoAlias or MustAlias V2, then returns
- // NoAlias / MustAlias. Otherwise, returns MayAlias.
- for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
- Value *V = V1Srcs[i];
- AliasResult ThisAlias = getBestAAResults().alias(
- MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI);
- Alias = MergeAliasResults(ThisAlias, Alias);
- if (Alias == AliasResult::MayAlias)
- break;
- }
- return Alias;
- }
- /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
- /// array references.
- AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
- const Value *V2, LocationSize V2Size,
- AAQueryInfo &AAQI) {
- // If either of the memory references is empty, it doesn't matter what the
- // pointer values are.
- if (V1Size.isZero() || V2Size.isZero())
- return AliasResult::NoAlias;
- // Strip off any casts if they exist.
- V1 = V1->stripPointerCastsForAliasAnalysis();
- V2 = V2->stripPointerCastsForAliasAnalysis();
- // If V1 or V2 is undef, the result is NoAlias because we can always pick a
- // value for undef that aliases nothing in the program.
- if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
- return AliasResult::NoAlias;
- // Are we checking for alias of the same value?
- // Because we look 'through' phi nodes, we could look at "Value" pointers from
- // different iterations. We must therefore make sure that this is not the
- // case. The function isValueEqualInPotentialCycles ensures that this cannot
- // happen by looking at the visited phi nodes and making sure they cannot
- // reach the value.
- if (isValueEqualInPotentialCycles(V1, V2))
- return AliasResult::MustAlias;
- if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
- return AliasResult::NoAlias; // Scalars cannot alias each other
- // Figure out what objects these things are pointing to if we can.
- const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
- const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
- // Null values in the default address space don't point to any object, so they
- // don't alias any other pointer.
- if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
- if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
- return AliasResult::NoAlias;
- if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
- if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
- return AliasResult::NoAlias;
- if (O1 != O2) {
- // If V1/V2 point to two different objects, we know that we have no alias.
- if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
- return AliasResult::NoAlias;
- // Constant pointers can't alias with non-const isIdentifiedObject objects.
- if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
- (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
- return AliasResult::NoAlias;
- // Function arguments can't alias with things that are known to be
- // unambigously identified at the function level.
- if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
- (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
- return AliasResult::NoAlias;
- // If one pointer is the result of a call/invoke or load and the other is a
- // non-escaping local object within the same function, then we know the
- // object couldn't escape to a point where the call could return it.
- //
- // Note that if the pointers are in different functions, there are a
- // variety of complications. A call with a nocapture argument may still
- // temporary store the nocapture argument's value in a temporary memory
- // location if that memory location doesn't escape. Or it may pass a
- // nocapture value to other functions as long as they don't capture it.
- if (isEscapeSource(O1) &&
- AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1)))
- return AliasResult::NoAlias;
- if (isEscapeSource(O2) &&
- AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2)))
- return AliasResult::NoAlias;
- }
- // If the size of one access is larger than the entire object on the other
- // side, then we know such behavior is undefined and can assume no alias.
- bool NullIsValidLocation = NullPointerIsDefined(&F);
- if ((isObjectSmallerThan(
- O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
- TLI, NullIsValidLocation)) ||
- (isObjectSmallerThan(
- O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
- TLI, NullIsValidLocation)))
- return AliasResult::NoAlias;
- // If one the accesses may be before the accessed pointer, canonicalize this
- // by using unknown after-pointer sizes for both accesses. This is
- // equivalent, because regardless of which pointer is lower, one of them
- // will always came after the other, as long as the underlying objects aren't
- // disjoint. We do this so that the rest of BasicAA does not have to deal
- // with accesses before the base pointer, and to improve cache utilization by
- // merging equivalent states.
- if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
- V1Size = LocationSize::afterPointer();
- V2Size = LocationSize::afterPointer();
- }
- // FIXME: If this depth limit is hit, then we may cache sub-optimal results
- // for recursive queries. For this reason, this limit is chosen to be large
- // enough to be very rarely hit, while still being small enough to avoid
- // stack overflows.
- if (AAQI.Depth >= 512)
- return AliasResult::MayAlias;
- // Check the cache before climbing up use-def chains. This also terminates
- // otherwise infinitely recursive queries.
- AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size});
- const bool Swapped = V1 > V2;
- if (Swapped)
- std::swap(Locs.first, Locs.second);
- const auto &Pair = AAQI.AliasCache.try_emplace(
- Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
- if (!Pair.second) {
- auto &Entry = Pair.first->second;
- if (!Entry.isDefinitive()) {
- // Remember that we used an assumption.
- ++Entry.NumAssumptionUses;
- ++AAQI.NumAssumptionUses;
- }
- // Cache contains sorted {V1,V2} pairs but we should return original order.
- auto Result = Entry.Result;
- Result.swap(Swapped);
- return Result;
- }
- int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
- unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
- AliasResult Result =
- aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
- auto It = AAQI.AliasCache.find(Locs);
- assert(It != AAQI.AliasCache.end() && "Must be in cache");
- auto &Entry = It->second;
- // Check whether a NoAlias assumption has been used, but disproven.
- bool AssumptionDisproven =
- Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
- if (AssumptionDisproven)
- Result = AliasResult::MayAlias;
- // This is a definitive result now, when considered as a root query.
- AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
- Entry.Result = Result;
- // Cache contains sorted {V1,V2} pairs.
- Entry.Result.swap(Swapped);
- Entry.NumAssumptionUses = -1;
- // If the assumption has been disproven, remove any results that may have
- // been based on this assumption. Do this after the Entry updates above to
- // avoid iterator invalidation.
- if (AssumptionDisproven)
- while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
- AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
- // The result may still be based on assumptions higher up in the chain.
- // Remember it, so it can be purged from the cache later.
- if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
- Result != AliasResult::MayAlias)
- AAQI.AssumptionBasedResults.push_back(Locs);
- return Result;
- }
- AliasResult BasicAAResult::aliasCheckRecursive(
- const Value *V1, LocationSize V1Size,
- const Value *V2, LocationSize V2Size,
- AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
- if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
- AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
- if (Result != AliasResult::MayAlias)
- return Result;
- } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
- AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
- Result.swap();
- if (Result != AliasResult::MayAlias)
- return Result;
- }
- if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
- AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
- if (Result != AliasResult::MayAlias)
- return Result;
- } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
- AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
- Result.swap();
- if (Result != AliasResult::MayAlias)
- return Result;
- }
- if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
- AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
- if (Result != AliasResult::MayAlias)
- return Result;
- } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
- AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
- Result.swap();
- if (Result != AliasResult::MayAlias)
- return Result;
- }
- // If both pointers are pointing into the same object and one of them
- // accesses the entire object, then the accesses must overlap in some way.
- if (O1 == O2) {
- bool NullIsValidLocation = NullPointerIsDefined(&F);
- if (V1Size.isPrecise() && V2Size.isPrecise() &&
- (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
- isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
- return AliasResult::PartialAlias;
- }
- return AliasResult::MayAlias;
- }
- /// Check whether two Values can be considered equivalent.
- ///
- /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
- /// they can not be part of a cycle in the value graph by looking at all
- /// visited phi nodes an making sure that the phis cannot reach the value. We
- /// have to do this because we are looking through phi nodes (That is we say
- /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
- bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
- const Value *V2) {
- if (V != V2)
- return false;
- const Instruction *Inst = dyn_cast<Instruction>(V);
- if (!Inst)
- return true;
- if (VisitedPhiBBs.empty())
- return true;
- if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
- return false;
- // Make sure that the visited phis cannot reach the Value. This ensures that
- // the Values cannot come from different iterations of a potential cycle the
- // phi nodes could be involved in.
- for (auto *P : VisitedPhiBBs)
- if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
- return false;
- return true;
- }
- /// Computes the symbolic difference between two de-composed GEPs.
- void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
- const DecomposedGEP &SrcGEP) {
- DestGEP.Offset -= SrcGEP.Offset;
- for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
- // Find V in Dest. This is N^2, but pointer indices almost never have more
- // than a few variable indexes.
- bool Found = false;
- for (auto I : enumerate(DestGEP.VarIndices)) {
- VariableGEPIndex &Dest = I.value();
- if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V) ||
- !Dest.Val.hasSameCastsAs(Src.Val))
- continue;
- // If we found it, subtract off Scale V's from the entry in Dest. If it
- // goes to zero, remove the entry.
- if (Dest.Scale != Src.Scale) {
- Dest.Scale -= Src.Scale;
- Dest.IsNSW = false;
- } else {
- DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index());
- }
- Found = true;
- break;
- }
- // If we didn't consume this entry, add it to the end of the Dest list.
- if (!Found) {
- VariableGEPIndex Entry = {Src.Val, -Src.Scale, Src.CxtI, Src.IsNSW};
- DestGEP.VarIndices.push_back(Entry);
- }
- }
- }
- bool BasicAAResult::constantOffsetHeuristic(
- const DecomposedGEP &GEP, LocationSize MaybeV1Size,
- LocationSize MaybeV2Size, AssumptionCache *AC, DominatorTree *DT) {
- if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
- !MaybeV2Size.hasValue())
- return false;
- const uint64_t V1Size = MaybeV1Size.getValue();
- const uint64_t V2Size = MaybeV2Size.getValue();
- const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];
- if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) ||
- Var0.Scale != -Var1.Scale ||
- Var0.Val.V->getType() != Var1.Val.V->getType())
- return false;
- // We'll strip off the Extensions of Var0 and Var1 and do another round
- // of GetLinearExpression decomposition. In the example above, if Var0
- // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
- LinearExpression E0 =
- GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT);
- LinearExpression E1 =
- GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT);
- if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) ||
- !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V))
- return false;
- // We have a hit - Var0 and Var1 only differ by a constant offset!
- // If we've been sext'ed then zext'd the maximum difference between Var0 and
- // Var1 is possible to calculate, but we're just interested in the absolute
- // minimum difference between the two. The minimum distance may occur due to
- // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
- // the minimum distance between %i and %i + 5 is 3.
- APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
- MinDiff = APIntOps::umin(MinDiff, Wrapped);
- APInt MinDiffBytes =
- MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
- // We can't definitely say whether GEP1 is before or after V2 due to wrapping
- // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
- // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
- // V2Size can fit in the MinDiffBytes gap.
- return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) &&
- MinDiffBytes.uge(V2Size + GEP.Offset.abs());
- }
- //===----------------------------------------------------------------------===//
- // BasicAliasAnalysis Pass
- //===----------------------------------------------------------------------===//
- AnalysisKey BasicAA::Key;
- BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
- auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
- return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
- }
- BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
- initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
- }
- char BasicAAWrapperPass::ID = 0;
- void BasicAAWrapperPass::anchor() {}
- INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
- "Basic Alias Analysis (stateless AA impl)", true, true)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
- INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
- "Basic Alias Analysis (stateless AA impl)", true, true)
- FunctionPass *llvm::createBasicAAWrapperPass() {
- return new BasicAAWrapperPass();
- }
- bool BasicAAWrapperPass::runOnFunction(Function &F) {
- auto &ACT = getAnalysis<AssumptionCacheTracker>();
- auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
- auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
- auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
- Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
- TLIWP.getTLI(F), ACT.getAssumptionCache(F),
- &DTWP.getDomTree(),
- PVWP ? &PVWP->getResult() : nullptr));
- return false;
- }
- void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredTransitive<AssumptionCacheTracker>();
- AU.addRequiredTransitive<DominatorTreeWrapperPass>();
- AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
- AU.addUsedIfAvailable<PhiValuesWrapperPass>();
- }
- BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
- return BasicAAResult(
- F.getParent()->getDataLayout(), F,
- P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
- P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
- }
|