//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the primary stateless implementation of the // Alias Analysis interface that implements identities (two different // globals cannot alias, etc), but does no stateful analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/PhiValues.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/KnownBits.h" #include #include #include #include #define DEBUG_TYPE "basicaa" using namespace llvm; /// Enable analysis of recursive PHI nodes. static cl::opt EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, cl::init(true)); /// SearchLimitReached / SearchTimes shows how often the limit of /// to decompose GEPs is reached. It will affect the precision /// of basic alias analysis. STATISTIC(SearchLimitReached, "Number of times the limit to " "decompose GEPs is reached"); STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); /// Cutoff after which to stop analysing a set of phi nodes potentially involved /// in a cycle. Because we are analysing 'through' phi nodes, we need to be /// careful with value equivalence. We use reachability to make sure a value /// cannot be involved in a cycle. const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; // The max limit of the search depth in DecomposeGEPExpression() and // getUnderlyingObject(). static const unsigned MaxLookupSearchDepth = 6; bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv) { // We don't care if this analysis itself is preserved, it has no state. But // we need to check that the analyses it depends on have been. Note that we // may be created without handles to some analyses and in that case don't // depend on them. if (Inv.invalidate(Fn, PA) || (DT && Inv.invalidate(Fn, PA)) || (PV && Inv.invalidate(Fn, PA))) return true; // Otherwise this analysis result remains valid. return false; } //===----------------------------------------------------------------------===// // Useful predicates //===----------------------------------------------------------------------===// /// Returns true if the pointer is one which would have been considered an /// escape by isNonEscapingLocalObject. static bool isEscapeSource(const Value *V) { if (isa(V)) return true; // The load case works because isNonEscapingLocalObject considers all // stores to be escapes (it passes true for the StoreCaptures argument // to PointerMayBeCaptured). if (isa(V)) return true; // The inttoptr case works because isNonEscapingLocalObject considers all // means of converting or equating a pointer to an int (ptrtoint, ptr store // which could be followed by an integer load, ptr<->int compare) as // escaping, and objects located at well-known addresses via platform-specific // means cannot be considered non-escaping local objects. if (isa(V)) return true; return false; } /// Returns the size of the object specified by V or UnknownSize if unknown. static uint64_t getObjectSize(const Value *V, const DataLayout &DL, const TargetLibraryInfo &TLI, bool NullIsValidLoc, bool RoundToAlign = false) { uint64_t Size; ObjectSizeOpts Opts; Opts.RoundToAlign = RoundToAlign; Opts.NullIsUnknownSize = NullIsValidLoc; if (getObjectSize(V, Size, DL, &TLI, Opts)) return Size; return MemoryLocation::UnknownSize; } /// Returns true if we can prove that the object specified by V is smaller than /// Size. static bool isObjectSmallerThan(const Value *V, uint64_t Size, const DataLayout &DL, const TargetLibraryInfo &TLI, bool NullIsValidLoc) { // Note that the meanings of the "object" are slightly different in the // following contexts: // c1: llvm::getObjectSize() // c2: llvm.objectsize() intrinsic // c3: isObjectSmallerThan() // c1 and c2 share the same meaning; however, the meaning of "object" in c3 // refers to the "entire object". // // Consider this example: // char *p = (char*)malloc(100) // char *q = p+80; // // In the context of c1 and c2, the "object" pointed by q refers to the // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. // // However, in the context of c3, the "object" refers to the chunk of memory // being allocated. So, the "object" has 100 bytes, and q points to the middle // the "object". In case q is passed to isObjectSmallerThan() as the 1st // parameter, before the llvm::getObjectSize() is called to get the size of // entire object, we should: // - either rewind the pointer q to the base-address of the object in // question (in this case rewind to p), or // - just give up. It is up to caller to make sure the pointer is pointing // to the base address the object. // // We go for 2nd option for simplicity. if (!isIdentifiedObject(V)) return false; // This function needs to use the aligned object size because we allow // reads a bit past the end given sufficient alignment. uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, /*RoundToAlign*/ true); return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; } /// Return the minimal extent from \p V to the end of the underlying object, /// assuming the result is used in an aliasing query. E.g., we do use the query /// location size and the fact that null pointers cannot alias here. static uint64_t getMinimalExtentFrom(const Value &V, const LocationSize &LocSize, const DataLayout &DL, bool NullIsValidLoc) { // If we have dereferenceability information we know a lower bound for the // extent as accesses for a lower offset would be valid. We need to exclude // the "or null" part if null is a valid pointer. We can ignore frees, as an // access after free would be undefined behavior. bool CanBeNull, CanBeFreed; uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; // If queried with a precise location size, we assume that location size to be // accessed, thus valid. if (LocSize.isPrecise()) DerefBytes = std::max(DerefBytes, LocSize.getValue()); return DerefBytes; } /// Returns true if we can prove that the object specified by V has size Size. static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, const TargetLibraryInfo &TLI, bool NullIsValidLoc) { uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; } //===----------------------------------------------------------------------===// // CaptureInfo implementations //===----------------------------------------------------------------------===// CaptureInfo::~CaptureInfo() = default; bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object, const Instruction *I) { return isNonEscapingLocalObject(Object, &IsCapturedCache); } bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object, const Instruction *I) { if (!isIdentifiedFunctionLocal(Object)) return false; auto Iter = EarliestEscapes.insert({Object, nullptr}); if (Iter.second) { Instruction *EarliestCapture = FindEarliestCapture( Object, *const_cast(I->getFunction()), /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT); if (EarliestCapture) { auto Ins = Inst2Obj.insert({EarliestCapture, {}}); Ins.first->second.push_back(Object); } Iter.first->second = EarliestCapture; } // No capturing instruction. if (!Iter.first->second) return true; return I != Iter.first->second && !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI); } void EarliestEscapeInfo::removeInstruction(Instruction *I) { auto Iter = Inst2Obj.find(I); if (Iter != Inst2Obj.end()) { for (const Value *Obj : Iter->second) EarliestEscapes.erase(Obj); Inst2Obj.erase(I); } } //===----------------------------------------------------------------------===// // GetElementPtr Instruction Decomposition and Analysis //===----------------------------------------------------------------------===// namespace { /// Represents zext(sext(trunc(V))). struct CastedValue { const Value *V; unsigned ZExtBits = 0; unsigned SExtBits = 0; unsigned TruncBits = 0; explicit CastedValue(const Value *V) : V(V) {} explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits, unsigned TruncBits) : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits) {} unsigned getBitWidth() const { return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits + SExtBits; } CastedValue withValue(const Value *NewV) const { return CastedValue(NewV, ZExtBits, SExtBits, TruncBits); } /// Replace V with zext(NewV) CastedValue withZExtOfValue(const Value *NewV) const { unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - NewV->getType()->getPrimitiveSizeInBits(); if (ExtendBy <= TruncBits) return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) ExtendBy -= TruncBits; return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0); } /// Replace V with sext(NewV) CastedValue withSExtOfValue(const Value *NewV) const { unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - NewV->getType()->getPrimitiveSizeInBits(); if (ExtendBy <= TruncBits) return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); // zext(sext(sext(NewV))) ExtendBy -= TruncBits; return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0); } APInt evaluateWith(APInt N) const { assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && "Incompatible bit width"); if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits); if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); return N; } ConstantRange evaluateWith(ConstantRange N) const { assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && "Incompatible bit width"); if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits); if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits); if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits); return N; } bool canDistributeOver(bool NUW, bool NSW) const { // zext(x op y) == zext(x) op zext(y) // sext(x op y) == sext(x) op sext(y) // trunc(x op y) == trunc(x) op trunc(y) return (!ZExtBits || NUW) && (!SExtBits || NSW); } bool hasSameCastsAs(const CastedValue &Other) const { return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits && TruncBits == Other.TruncBits; } }; /// Represents zext(sext(trunc(V))) * Scale + Offset. struct LinearExpression { CastedValue Val; APInt Scale; APInt Offset; /// True if all operations in this expression are NSW. bool IsNSW; LinearExpression(const CastedValue &Val, const APInt &Scale, const APInt &Offset, bool IsNSW) : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) { unsigned BitWidth = Val.getBitWidth(); Scale = APInt(BitWidth, 1); Offset = APInt(BitWidth, 0); } LinearExpression mul(const APInt &Other, bool MulIsNSW) const { // The check for zero offset is necessary, because generally // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z). bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero())); return LinearExpression(Val, Scale * Other, Offset * Other, NSW); } }; } /// Analyzes the specified value as a linear expression: "A*V + B", where A and /// B are constant integers. static LinearExpression GetLinearExpression( const CastedValue &Val, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, DominatorTree *DT) { // Limit our recursion depth. if (Depth == 6) return Val; if (const ConstantInt *Const = dyn_cast(Val.V)) return LinearExpression(Val, APInt(Val.getBitWidth(), 0), Val.evaluateWith(Const->getValue()), true); if (const BinaryOperator *BOp = dyn_cast(Val.V)) { if (ConstantInt *RHSC = dyn_cast(BOp->getOperand(1))) { APInt RHS = Val.evaluateWith(RHSC->getValue()); // The only non-OBO case we deal with is or, and only limited to the // case where it is both nuw and nsw. bool NUW = true, NSW = true; if (isa(BOp)) { NUW &= BOp->hasNoUnsignedWrap(); NSW &= BOp->hasNoSignedWrap(); } if (!Val.canDistributeOver(NUW, NSW)) return Val; // While we can distribute over trunc, we cannot preserve nowrap flags // in that case. if (Val.TruncBits) NUW = NSW = false; LinearExpression E(Val); switch (BOp->getOpcode()) { default: // We don't understand this instruction, so we can't decompose it any // further. return Val; case Instruction::Or: // X|C == X+C if all the bits in C are unset in X. Otherwise we can't // analyze it. if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, BOp, DT)) return Val; LLVM_FALLTHROUGH; case Instruction::Add: { E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, Depth + 1, AC, DT); E.Offset += RHS; E.IsNSW &= NSW; break; } case Instruction::Sub: { E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, Depth + 1, AC, DT); E.Offset -= RHS; E.IsNSW &= NSW; break; } case Instruction::Mul: E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, Depth + 1, AC, DT) .mul(RHS, NSW); break; case Instruction::Shl: // We're trying to linearize an expression of the kind: // shl i8 -128, 36 // where the shift count exceeds the bitwidth of the type. // We can't decompose this further (the expression would return // a poison value). if (RHS.getLimitedValue() > Val.getBitWidth()) return Val; E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, Depth + 1, AC, DT); E.Offset <<= RHS.getLimitedValue(); E.Scale <<= RHS.getLimitedValue(); E.IsNSW &= NSW; break; } return E; } } if (isa(Val.V)) return GetLinearExpression( Val.withZExtOfValue(cast(Val.V)->getOperand(0)), DL, Depth + 1, AC, DT); if (isa(Val.V)) return GetLinearExpression( Val.withSExtOfValue(cast(Val.V)->getOperand(0)), DL, Depth + 1, AC, DT); return Val; } /// To ensure a pointer offset fits in an integer of size IndexSize /// (in bits) when that size is smaller than the maximum index size. This is /// an issue, for example, in particular for 32b pointers with negative indices /// that rely on two's complement wrap-arounds for precise alias information /// where the maximum index size is 64b. static APInt adjustToIndexSize(const APInt &Offset, unsigned IndexSize) { assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!"); unsigned ShiftBits = Offset.getBitWidth() - IndexSize; return (Offset << ShiftBits).ashr(ShiftBits); } namespace { // A linear transformation of a Value; this class represents // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale. struct VariableGEPIndex { CastedValue Val; APInt Scale; // Context instruction to use when querying information about this index. const Instruction *CxtI; /// True if all operations in this expression are NSW. bool IsNSW; void dump() const { print(dbgs()); dbgs() << "\n"; } void print(raw_ostream &OS) const { OS << "(V=" << Val.V->getName() << ", zextbits=" << Val.ZExtBits << ", sextbits=" << Val.SExtBits << ", truncbits=" << Val.TruncBits << ", scale=" << Scale << ")"; } }; } // Represents the internal structure of a GEP, decomposed into a base pointer, // constant offsets, and variable scaled indices. struct BasicAAResult::DecomposedGEP { // Base pointer of the GEP const Value *Base; // Total constant offset from base. APInt Offset; // Scaled variable (non-constant) indices. SmallVector VarIndices; // Are all operations inbounds GEPs or non-indexing operations? // (None iff expression doesn't involve any geps) Optional InBounds; void dump() const { print(dbgs()); dbgs() << "\n"; } void print(raw_ostream &OS) const { OS << "(DecomposedGEP Base=" << Base->getName() << ", Offset=" << Offset << ", VarIndices=["; for (size_t i = 0; i < VarIndices.size(); i++) { if (i != 0) OS << ", "; VarIndices[i].print(OS); } OS << "])"; } }; /// If V is a symbolic pointer expression, decompose it into a base pointer /// with a constant offset and a number of scaled symbolic offsets. /// /// The scaled symbolic offsets (represented by pairs of a Value* and a scale /// in the VarIndices vector) are Value*'s that are known to be scaled by the /// specified amount, but which may have other unrepresented high bits. As /// such, the gep cannot necessarily be reconstructed from its decomposed form. BasicAAResult::DecomposedGEP BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) { // Limit recursion depth to limit compile time in crazy cases. unsigned MaxLookup = MaxLookupSearchDepth; SearchTimes++; const Instruction *CxtI = dyn_cast(V); unsigned MaxIndexSize = DL.getMaxIndexSizeInBits(); DecomposedGEP Decomposed; Decomposed.Offset = APInt(MaxIndexSize, 0); do { // See if this is a bitcast or GEP. const Operator *Op = dyn_cast(V); if (!Op) { // The only non-operator case we can handle are GlobalAliases. if (const GlobalAlias *GA = dyn_cast(V)) { if (!GA->isInterposable()) { V = GA->getAliasee(); continue; } } Decomposed.Base = V; return Decomposed; } if (Op->getOpcode() == Instruction::BitCast || Op->getOpcode() == Instruction::AddrSpaceCast) { V = Op->getOperand(0); continue; } const GEPOperator *GEPOp = dyn_cast(Op); if (!GEPOp) { if (const auto *PHI = dyn_cast(V)) { // Look through single-arg phi nodes created by LCSSA. if (PHI->getNumIncomingValues() == 1) { V = PHI->getIncomingValue(0); continue; } } else if (const auto *Call = dyn_cast(V)) { // CaptureTracking can know about special capturing properties of some // intrinsics like launder.invariant.group, that can't be expressed with // the attributes, but have properties like returning aliasing pointer. // Because some analysis may assume that nocaptured pointer is not // returned from some special intrinsic (because function would have to // be marked with returns attribute), it is crucial to use this function // because it should be in sync with CaptureTracking. Not using it may // cause weird miscompilations where 2 aliasing pointers are assumed to // noalias. if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { V = RP; continue; } } Decomposed.Base = V; return Decomposed; } // Track whether we've seen at least one in bounds gep, and if so, whether // all geps parsed were in bounds. if (Decomposed.InBounds == None) Decomposed.InBounds = GEPOp->isInBounds(); else if (!GEPOp->isInBounds()) Decomposed.InBounds = false; assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized"); // Don't attempt to analyze GEPs if index scale is not a compile-time // constant. if (isa(GEPOp->getSourceElementType())) { Decomposed.Base = V; return Decomposed; } unsigned AS = GEPOp->getPointerAddressSpace(); // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. gep_type_iterator GTI = gep_type_begin(GEPOp); unsigned IndexSize = DL.getIndexSizeInBits(AS); // Assume all GEP operands are constants until proven otherwise. bool GepHasConstantOffset = true; for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); I != E; ++I, ++GTI) { const Value *Index = *I; // Compute the (potentially symbolic) offset in bytes for this index. if (StructType *STy = GTI.getStructTypeOrNull()) { // For a struct, add the member offset. unsigned FieldNo = cast(Index)->getZExtValue(); if (FieldNo == 0) continue; Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); continue; } // For an array/pointer, add the element offset, explicitly scaled. if (const ConstantInt *CIdx = dyn_cast(Index)) { if (CIdx->isZero()) continue; Decomposed.Offset += DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * CIdx->getValue().sextOrTrunc(MaxIndexSize); continue; } GepHasConstantOffset = false; // If the integer type is smaller than the index size, it is implicitly // sign extended or truncated to index size. unsigned Width = Index->getType()->getIntegerBitWidth(); unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0; unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0; LinearExpression LE = GetLinearExpression( CastedValue(Index, 0, SExtBits, TruncBits), DL, 0, AC, DT); // Scale by the type size. unsigned TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize(); LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds()); Decomposed.Offset += LE.Offset.sextOrSelf(MaxIndexSize); APInt Scale = LE.Scale.sextOrSelf(MaxIndexSize); // If we already had an occurrence of this index variable, merge this // scale into it. For example, we want to handle: // A[x][x] -> x*16 + x*4 -> x*20 // This also ensures that 'x' only appears in the index list once. for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { if (Decomposed.VarIndices[i].Val.V == LE.Val.V && Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) { Scale += Decomposed.VarIndices[i].Scale; Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); break; } } // Make sure that we have a scale that makes sense for this target's // index size. Scale = adjustToIndexSize(Scale, IndexSize); if (!!Scale) { VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW}; Decomposed.VarIndices.push_back(Entry); } } // Take care of wrap-arounds if (GepHasConstantOffset) Decomposed.Offset = adjustToIndexSize(Decomposed.Offset, IndexSize); // Analyze the base pointer next. V = GEPOp->getOperand(0); } while (--MaxLookup); // If the chain of expressions is too deep, just return early. Decomposed.Base = V; SearchLimitReached++; return Decomposed; } /// Returns whether the given pointer value points to memory that is local to /// the function, with global constants being considered local to all /// functions. bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI, bool OrLocal) { assert(Visited.empty() && "Visited must be cleared after use!"); unsigned MaxLookup = 8; SmallVector Worklist; Worklist.push_back(Loc.Ptr); do { const Value *V = getUnderlyingObject(Worklist.pop_back_val()); if (!Visited.insert(V).second) { Visited.clear(); return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); } // An alloca instruction defines local memory. if (OrLocal && isa(V)) continue; // A global constant counts as local memory for our purposes. if (const GlobalVariable *GV = dyn_cast(V)) { // Note: this doesn't require GV to be "ODR" because it isn't legal for a // global to be marked constant in some modules and non-constant in // others. GV may even be a declaration, not a definition. if (!GV->isConstant()) { Visited.clear(); return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); } continue; } // If both select values point to local memory, then so does the select. if (const SelectInst *SI = dyn_cast(V)) { Worklist.push_back(SI->getTrueValue()); Worklist.push_back(SI->getFalseValue()); continue; } // If all values incoming to a phi node point to local memory, then so does // the phi. if (const PHINode *PN = dyn_cast(V)) { // Don't bother inspecting phi nodes with many operands. if (PN->getNumIncomingValues() > MaxLookup) { Visited.clear(); return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); } append_range(Worklist, PN->incoming_values()); continue; } // Otherwise be conservative. Visited.clear(); return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); } while (!Worklist.empty() && --MaxLookup); Visited.clear(); return Worklist.empty(); } static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { const IntrinsicInst *II = dyn_cast(Call); return II && II->getIntrinsicID() == IID; } /// Returns the behavior when calling the given call site. FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { if (Call->doesNotAccessMemory()) // Can't do better than this. return FMRB_DoesNotAccessMemory; FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; // If the callsite knows it only reads memory, don't return worse // than that. if (Call->onlyReadsMemory()) Min = FMRB_OnlyReadsMemory; else if (Call->onlyWritesMemory()) Min = FMRB_OnlyWritesMemory; if (Call->onlyAccessesArgMemory()) Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); else if (Call->onlyAccessesInaccessibleMemory()) Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); else if (Call->onlyAccessesInaccessibleMemOrArgMem()) Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); // If the call has operand bundles then aliasing attributes from the function // it calls do not directly apply to the call. This can be made more precise // in the future. if (!Call->hasOperandBundles()) if (const Function *F = Call->getCalledFunction()) Min = FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); return Min; } /// Returns the behavior when calling the given function. For use when the call /// site is not known. FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { // If the function declares it doesn't access memory, we can't do better. if (F->doesNotAccessMemory()) return FMRB_DoesNotAccessMemory; FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; // If the function declares it only reads memory, go with that. if (F->onlyReadsMemory()) Min = FMRB_OnlyReadsMemory; else if (F->onlyWritesMemory()) Min = FMRB_OnlyWritesMemory; if (F->onlyAccessesArgMemory()) Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); else if (F->onlyAccessesInaccessibleMemory()) Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); else if (F->onlyAccessesInaccessibleMemOrArgMem()) Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); return Min; } /// Returns true if this is a writeonly (i.e Mod only) parameter. static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, const TargetLibraryInfo &TLI) { if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) return true; // We can bound the aliasing properties of memset_pattern16 just as we can // for memcpy/memset. This is particularly important because the // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 // whenever possible. // FIXME Consider handling this in InferFunctionAttr.cpp together with other // attributes. LibFunc F; if (Call->getCalledFunction() && TLI.getLibFunc(*Call->getCalledFunction(), F) && F == LibFunc_memset_pattern16 && TLI.has(F)) if (ArgIdx == 0) return true; // TODO: memset_pattern4, memset_pattern8 // TODO: _chk variants // TODO: strcmp, strcpy return false; } ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { // Checking for known builtin intrinsics and target library functions. if (isWriteOnlyParam(Call, ArgIdx, TLI)) return ModRefInfo::Mod; if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) return ModRefInfo::Ref; if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) return ModRefInfo::NoModRef; return AAResultBase::getArgModRefInfo(Call, ArgIdx); } #ifndef NDEBUG static const Function *getParent(const Value *V) { if (const Instruction *inst = dyn_cast(V)) { if (!inst->getParent()) return nullptr; return inst->getParent()->getParent(); } if (const Argument *arg = dyn_cast(V)) return arg->getParent(); return nullptr; } static bool notDifferentParent(const Value *O1, const Value *O2) { const Function *F1 = getParent(O1); const Function *F2 = getParent(O2); return !F1 || !F2 || F1 == F2; } #endif AliasResult BasicAAResult::alias(const MemoryLocation &LocA, const MemoryLocation &LocB, AAQueryInfo &AAQI) { assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && "BasicAliasAnalysis doesn't support interprocedural queries."); return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI); } /// Checks to see if the specified callsite can clobber the specified memory /// object. /// /// Since we only look at local properties of this function, we really can't /// say much about this query. We do, however, use simple "address taken" /// analysis on local objects. ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, const MemoryLocation &Loc, AAQueryInfo &AAQI) { assert(notDifferentParent(Call, Loc.Ptr) && "AliasAnalysis query involving multiple functions!"); const Value *Object = getUnderlyingObject(Loc.Ptr); // Calls marked 'tail' cannot read or write allocas from the current frame // because the current frame might be destroyed by the time they run. However, // a tail call may use an alloca with byval. Calling with byval copies the // contents of the alloca into argument registers or stack slots, so there is // no lifetime issue. if (isa(Object)) if (const CallInst *CI = dyn_cast(Call)) if (CI->isTailCall() && !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) return ModRefInfo::NoModRef; // Stack restore is able to modify unescaped dynamic allocas. Assume it may // modify them even though the alloca is not escaped. if (auto *AI = dyn_cast(Object)) if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) return ModRefInfo::Mod; // If the pointer is to a locally allocated object that does not escape, // then the call can not mod/ref the pointer unless the call takes the pointer // as an argument, and itself doesn't capture it. if (!isa(Object) && Call != Object && AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) { // Optimistically assume that call doesn't touch Object and check this // assumption in the following loop. ModRefInfo Result = ModRefInfo::NoModRef; bool IsMustAlias = true; unsigned OperandNo = 0; for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); CI != CE; ++CI, ++OperandNo) { // Only look at the no-capture or byval pointer arguments. If this // pointer were passed to arguments that were neither of these, then it // couldn't be no-capture. if (!(*CI)->getType()->isPointerTy() || (!Call->doesNotCapture(OperandNo) && OperandNo < Call->arg_size() && !Call->isByValArgument(OperandNo))) continue; // Call doesn't access memory through this operand, so we don't care // if it aliases with Object. if (Call->doesNotAccessMemory(OperandNo)) continue; // If this is a no-capture pointer argument, see if we can tell that it // is impossible to alias the pointer we're checking. AliasResult AR = getBestAAResults().alias( MemoryLocation::getBeforeOrAfter(*CI), MemoryLocation::getBeforeOrAfter(Object), AAQI); if (AR != AliasResult::MustAlias) IsMustAlias = false; // Operand doesn't alias 'Object', continue looking for other aliases if (AR == AliasResult::NoAlias) continue; // Operand aliases 'Object', but call doesn't modify it. Strengthen // initial assumption and keep looking in case if there are more aliases. if (Call->onlyReadsMemory(OperandNo)) { Result = setRef(Result); continue; } // Operand aliases 'Object' but call only writes into it. if (Call->onlyWritesMemory(OperandNo)) { Result = setMod(Result); continue; } // This operand aliases 'Object' and call reads and writes into it. // Setting ModRef will not yield an early return below, MustAlias is not // used further. Result = ModRefInfo::ModRef; break; } // No operand aliases, reset Must bit. Add below if at least one aliases // and all aliases found are MustAlias. if (isNoModRef(Result)) IsMustAlias = false; // Early return if we improved mod ref information if (!isModAndRefSet(Result)) { if (isNoModRef(Result)) return ModRefInfo::NoModRef; return IsMustAlias ? setMust(Result) : clearMust(Result); } } // If the call is malloc/calloc like, we can assume that it doesn't // modify any IR visible value. This is only valid because we assume these // routines do not read values visible in the IR. TODO: Consider special // casing realloc and strdup routines which access only their arguments as // well. Or alternatively, replace all of this with inaccessiblememonly once // that's implemented fully. if (isMallocOrCallocLikeFn(Call, &TLI)) { // Be conservative if the accessed pointer may alias the allocation - // fallback to the generic handling below. if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) == AliasResult::NoAlias) return ModRefInfo::NoModRef; } // Ideally, there should be no need to special case for memcpy/memove // intrinsics here since general machinery (based on memory attributes) should // already handle it just fine. Unfortunately, it doesn't due to deficiency in // operand bundles support. At the moment it's not clear if complexity behind // enhancing general mechanism worths it. // TODO: Consider improving operand bundles support in general mechanism. if (auto *Inst = dyn_cast(Call)) { AliasResult SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); AliasResult DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); // It's also possible for Loc to alias both src and dest, or neither. ModRefInfo rv = ModRefInfo::NoModRef; if (SrcAA != AliasResult::NoAlias || Call->hasReadingOperandBundles()) rv = setRef(rv); if (DestAA != AliasResult::NoAlias || Call->hasClobberingOperandBundles()) rv = setMod(rv); return rv; } // Guard intrinsics are marked as arbitrarily writing so that proper control // dependencies are maintained but they never mods any particular memory // location. // // *Unlike* assumes, guard intrinsics are modeled as reading memory since the // heap state at the point the guard is issued needs to be consistent in case // the guard invokes the "deopt" continuation. if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) return ModRefInfo::Ref; // The same applies to deoptimize which is essentially a guard(false). if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize)) return ModRefInfo::Ref; // Like assumes, invariant.start intrinsics were also marked as arbitrarily // writing so that proper control dependencies are maintained but they never // mod any particular memory location visible to the IR. // *Unlike* assumes (which are now modeled as NoModRef), invariant.start // intrinsic is now modeled as reading memory. This prevents hoisting the // invariant.start intrinsic over stores. Consider: // *ptr = 40; // *ptr = 50; // invariant_start(ptr) // int val = *ptr; // print(val); // // This cannot be transformed to: // // *ptr = 40; // invariant_start(ptr) // *ptr = 50; // int val = *ptr; // print(val); // // The transformation will cause the second store to be ignored (based on // rules of invariant.start) and print 40, while the first program always // prints 50. if (isIntrinsicCall(Call, Intrinsic::invariant_start)) return ModRefInfo::Ref; // The AAResultBase base class has some smarts, lets use them. return AAResultBase::getModRefInfo(Call, Loc, AAQI); } ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, const CallBase *Call2, AAQueryInfo &AAQI) { // Guard intrinsics are marked as arbitrarily writing so that proper control // dependencies are maintained but they never mods any particular memory // location. // // *Unlike* assumes, guard intrinsics are modeled as reading memory since the // heap state at the point the guard is issued needs to be consistent in case // the guard invokes the "deopt" continuation. // NB! This function is *not* commutative, so we special case two // possibilities for guard intrinsics. if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) return isModSet(createModRefInfo(getModRefBehavior(Call2))) ? ModRefInfo::Ref : ModRefInfo::NoModRef; if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) return isModSet(createModRefInfo(getModRefBehavior(Call1))) ? ModRefInfo::Mod : ModRefInfo::NoModRef; // The AAResultBase base class has some smarts, lets use them. return AAResultBase::getModRefInfo(Call1, Call2, AAQI); } /// Return true if we know V to the base address of the corresponding memory /// object. This implies that any address less than V must be out of bounds /// for the underlying object. Note that just being isIdentifiedObject() is /// not enough - For example, a negative offset from a noalias argument or call /// can be inbounds w.r.t the actual underlying object. static bool isBaseOfObject(const Value *V) { // TODO: We can handle other cases here // 1) For GC languages, arguments to functions are often required to be // base pointers. // 2) Result of allocation routines are often base pointers. Leverage TLI. return (isa(V) || isa(V)); } /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against /// another pointer. /// /// We know that V1 is a GEP, but we don't know anything about V2. /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for /// V2. AliasResult BasicAAResult::aliasGEP( const GEPOperator *GEP1, LocationSize V1Size, const Value *V2, LocationSize V2Size, const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { if (!V1Size.hasValue() && !V2Size.hasValue()) { // TODO: This limitation exists for compile-time reasons. Relax it if we // can avoid exponential pathological cases. if (!isa(V2)) return AliasResult::MayAlias; // If both accesses have unknown size, we can only check whether the base // objects don't alias. AliasResult BaseAlias = getBestAAResults().alias( MemoryLocation::getBeforeOrAfter(UnderlyingV1), MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias : AliasResult::MayAlias; } DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); // Bail if we were not able to decompose anything. if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2) return AliasResult::MayAlias; // Subtract the GEP2 pointer from the GEP1 pointer to find out their // symbolic difference. subtractDecomposedGEPs(DecompGEP1, DecompGEP2); // If an inbounds GEP would have to start from an out of bounds address // for the two to alias, then we can assume noalias. if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) && isBaseOfObject(DecompGEP2.Base)) return AliasResult::NoAlias; if (isa(V2)) { // Symmetric case to above. if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) && isBaseOfObject(DecompGEP1.Base)) return AliasResult::NoAlias; } // For GEPs with identical offsets, we can preserve the size and AAInfo // when performing the alias check on the underlying objects. if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) return getBestAAResults().alias(MemoryLocation(DecompGEP1.Base, V1Size), MemoryLocation(DecompGEP2.Base, V2Size), AAQI); // Do the base pointers alias? AliasResult BaseAlias = getBestAAResults().alias( MemoryLocation::getBeforeOrAfter(DecompGEP1.Base), MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI); // If we get a No or May, then return it immediately, no amount of analysis // will improve this situation. if (BaseAlias != AliasResult::MustAlias) { assert(BaseAlias == AliasResult::NoAlias || BaseAlias == AliasResult::MayAlias); return BaseAlias; } // If there is a constant difference between the pointers, but the difference // is less than the size of the associated memory object, then we know // that the objects are partially overlapping. If the difference is // greater, we know they do not overlap. if (DecompGEP1.VarIndices.empty()) { APInt &Off = DecompGEP1.Offset; // Initialize for Off >= 0 (V2 <= GEP1) case. const Value *LeftPtr = V2; const Value *RightPtr = GEP1; LocationSize VLeftSize = V2Size; LocationSize VRightSize = V1Size; const bool Swapped = Off.isNegative(); if (Swapped) { // Swap if we have the situation where: // + + // | BaseOffset | // ---------------->| // |-->V1Size |-------> V2Size // GEP1 V2 std::swap(LeftPtr, RightPtr); std::swap(VLeftSize, VRightSize); Off = -Off; } if (!VLeftSize.hasValue()) return AliasResult::MayAlias; const uint64_t LSize = VLeftSize.getValue(); if (Off.ult(LSize)) { // Conservatively drop processing if a phi was visited and/or offset is // too big. AliasResult AR = AliasResult::PartialAlias; if (VRightSize.hasValue() && Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(LSize)) { // Memory referenced by right pointer is nested. Save the offset in // cache. Note that originally offset estimated as GEP1-V2, but // AliasResult contains the shift that represents GEP1+Offset=V2. AR.setOffset(-Off.getSExtValue()); AR.swap(Swapped); } return AR; } return AliasResult::NoAlias; } // We need to know both acess sizes for all the following heuristics. if (!V1Size.hasValue() || !V2Size.hasValue()) return AliasResult::MayAlias; APInt GCD; ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset); for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { const VariableGEPIndex &Index = DecompGEP1.VarIndices[i]; const APInt &Scale = Index.Scale; APInt ScaleForGCD = Scale; if (!Index.IsNSW) ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(), Scale.countTrailingZeros()); if (i == 0) GCD = ScaleForGCD.abs(); else GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false, true, &AC, Index.CxtI); KnownBits Known = computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT); CR = CR.intersectWith( ConstantRange::fromKnownBits(Known, /* Signed */ true), ConstantRange::Signed); CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth()); assert(OffsetRange.getBitWidth() == Scale.getBitWidth() && "Bit widths are normalized to MaxIndexSize"); if (Index.IsNSW) OffsetRange = OffsetRange.add(CR.smul_sat(ConstantRange(Scale))); else OffsetRange = OffsetRange.add(CR.smul_fast(ConstantRange(Scale))); } // We now have accesses at two offsets from the same base: // 1. (...)*GCD + DecompGEP1.Offset with size V1Size // 2. 0 with size V2Size // Using arithmetic modulo GCD, the accesses are at // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits // into the range [V2Size..GCD), then we know they cannot overlap. APInt ModOffset = DecompGEP1.Offset.srem(GCD); if (ModOffset.isNegative()) ModOffset += GCD; // We want mod, not rem. if (ModOffset.uge(V2Size.getValue()) && (GCD - ModOffset).uge(V1Size.getValue())) return AliasResult::NoAlias; // Compute ranges of potentially accessed bytes for both accesses. If the // interseciton is empty, there can be no overlap. unsigned BW = OffsetRange.getBitWidth(); ConstantRange Range1 = OffsetRange.add( ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue()))); ConstantRange Range2 = ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue())); if (Range1.intersectWith(Range2).isEmptySet()) return AliasResult::NoAlias; // Try to determine the range of values for VarIndex such that // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex. Optional MinAbsVarIndex; if (DecompGEP1.VarIndices.size() == 1) { // VarIndex = Scale*V. const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; if (Var.Val.TruncBits == 0 && isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) { // If V != 0 then abs(VarIndex) >= abs(Scale). MinAbsVarIndex = Var.Scale.abs(); } } else if (DecompGEP1.VarIndices.size() == 2) { // VarIndex = Scale*V0 + (-Scale)*V1. // If V0 != V1 then abs(VarIndex) >= abs(Scale). // Check that VisitedPhiBBs is empty, to avoid reasoning about // inequality of values across loop iterations. const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; if (Var0.Scale == -Var1.Scale && Var0.Val.TruncBits == 0 && Var0.Val.hasSameCastsAs(Var1.Val) && VisitedPhiBBs.empty() && isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr, DT)) MinAbsVarIndex = Var0.Scale.abs(); } if (MinAbsVarIndex) { // The constant offset will have added at least +/-MinAbsVarIndex to it. APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; // We know that Offset <= OffsetLo || Offset >= OffsetHi if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) return AliasResult::NoAlias; } if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT)) return AliasResult::NoAlias; // Statically, we can see that the base objects are the same, but the // pointers have dynamic offsets which we can't resolve. And none of our // little tricks above worked. return AliasResult::MayAlias; } static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { // If the results agree, take it. if (A == B) return A; // A mix of PartialAlias and MustAlias is PartialAlias. if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) return AliasResult::PartialAlias; // Otherwise, we don't know anything. return AliasResult::MayAlias; } /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction /// against another. AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, const Value *V2, LocationSize V2Size, AAQueryInfo &AAQI) { // If the values are Selects with the same condition, we can do a more precise // check: just check for aliases between the values on corresponding arms. if (const SelectInst *SI2 = dyn_cast(V2)) if (SI->getCondition() == SI2->getCondition()) { AliasResult Alias = getBestAAResults().alias( MemoryLocation(SI->getTrueValue(), SISize), MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); if (Alias == AliasResult::MayAlias) return AliasResult::MayAlias; AliasResult ThisAlias = getBestAAResults().alias( MemoryLocation(SI->getFalseValue(), SISize), MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); return MergeAliasResults(ThisAlias, Alias); } // If both arms of the Select node NoAlias or MustAlias V2, then returns // NoAlias / MustAlias. Otherwise, returns MayAlias. AliasResult Alias = getBestAAResults().alias( MemoryLocation(V2, V2Size), MemoryLocation(SI->getTrueValue(), SISize), AAQI); if (Alias == AliasResult::MayAlias) return AliasResult::MayAlias; AliasResult ThisAlias = getBestAAResults().alias( MemoryLocation(V2, V2Size), MemoryLocation(SI->getFalseValue(), SISize), AAQI); return MergeAliasResults(ThisAlias, Alias); } /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against /// another. AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, const Value *V2, LocationSize V2Size, AAQueryInfo &AAQI) { if (!PN->getNumIncomingValues()) return AliasResult::NoAlias; // If the values are PHIs in the same block, we can do a more precise // as well as efficient check: just check for aliases between the values // on corresponding edges. if (const PHINode *PN2 = dyn_cast(V2)) if (PN2->getParent() == PN->getParent()) { Optional Alias; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { AliasResult ThisAlias = getBestAAResults().alias( MemoryLocation(PN->getIncomingValue(i), PNSize), MemoryLocation( PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), AAQI); if (Alias) *Alias = MergeAliasResults(*Alias, ThisAlias); else Alias = ThisAlias; if (*Alias == AliasResult::MayAlias) break; } return *Alias; } SmallVector V1Srcs; // If a phi operand recurses back to the phi, we can still determine NoAlias // if we don't alias the underlying objects of the other phi operands, as we // know that the recursive phi needs to be based on them in some way. bool isRecursive = false; auto CheckForRecPhi = [&](Value *PV) { if (!EnableRecPhiAnalysis) return false; if (getUnderlyingObject(PV) == PN) { isRecursive = true; return true; } return false; }; if (PV) { // If we have PhiValues then use it to get the underlying phi values. const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); // If we have more phi values than the search depth then return MayAlias // conservatively to avoid compile time explosion. The worst possible case // is if both sides are PHI nodes. In which case, this is O(m x n) time // where 'm' and 'n' are the number of PHI sources. if (PhiValueSet.size() > MaxLookupSearchDepth) return AliasResult::MayAlias; // Add the values to V1Srcs for (Value *PV1 : PhiValueSet) { if (CheckForRecPhi(PV1)) continue; V1Srcs.push_back(PV1); } } else { // If we don't have PhiInfo then just look at the operands of the phi itself // FIXME: Remove this once we can guarantee that we have PhiInfo always SmallPtrSet UniqueSrc; Value *OnePhi = nullptr; for (Value *PV1 : PN->incoming_values()) { if (isa(PV1)) { if (OnePhi && OnePhi != PV1) { // To control potential compile time explosion, we choose to be // conserviate when we have more than one Phi input. It is important // that we handle the single phi case as that lets us handle LCSSA // phi nodes and (combined with the recursive phi handling) simple // pointer induction variable patterns. return AliasResult::MayAlias; } OnePhi = PV1; } if (CheckForRecPhi(PV1)) continue; if (UniqueSrc.insert(PV1).second) V1Srcs.push_back(PV1); } if (OnePhi && UniqueSrc.size() > 1) // Out of an abundance of caution, allow only the trivial lcssa and // recursive phi cases. return AliasResult::MayAlias; } // If V1Srcs is empty then that means that the phi has no underlying non-phi // value. This should only be possible in blocks unreachable from the entry // block, but return MayAlias just in case. if (V1Srcs.empty()) return AliasResult::MayAlias; // If this PHI node is recursive, indicate that the pointer may be moved // across iterations. We can only prove NoAlias if different underlying // objects are involved. if (isRecursive) PNSize = LocationSize::beforeOrAfterPointer(); // In the recursive alias queries below, we may compare values from two // different loop iterations. Keep track of visited phi blocks, which will // be used when determining value equivalence. bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second; auto _ = make_scope_exit([&]() { if (BlockInserted) VisitedPhiBBs.erase(PN->getParent()); }); // If we inserted a block into VisitedPhiBBs, alias analysis results that // have been cached earlier may no longer be valid. Perform recursive queries // with a new AAQueryInfo. AAQueryInfo NewAAQI = AAQI.withEmptyCache(); AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI; AliasResult Alias = getBestAAResults().alias( MemoryLocation(V2, V2Size), MemoryLocation(V1Srcs[0], PNSize), *UseAAQI); // Early exit if the check of the first PHI source against V2 is MayAlias. // Other results are not possible. if (Alias == AliasResult::MayAlias) return AliasResult::MayAlias; // With recursive phis we cannot guarantee that MustAlias/PartialAlias will // remain valid to all elements and needs to conservatively return MayAlias. if (isRecursive && Alias != AliasResult::NoAlias) return AliasResult::MayAlias; // If all sources of the PHI node NoAlias or MustAlias V2, then returns // NoAlias / MustAlias. Otherwise, returns MayAlias. for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { Value *V = V1Srcs[i]; AliasResult ThisAlias = getBestAAResults().alias( MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI); Alias = MergeAliasResults(ThisAlias, Alias); if (Alias == AliasResult::MayAlias) break; } return Alias; } /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as /// array references. AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, const Value *V2, LocationSize V2Size, AAQueryInfo &AAQI) { // If either of the memory references is empty, it doesn't matter what the // pointer values are. if (V1Size.isZero() || V2Size.isZero()) return AliasResult::NoAlias; // Strip off any casts if they exist. V1 = V1->stripPointerCastsForAliasAnalysis(); V2 = V2->stripPointerCastsForAliasAnalysis(); // If V1 or V2 is undef, the result is NoAlias because we can always pick a // value for undef that aliases nothing in the program. if (isa(V1) || isa(V2)) return AliasResult::NoAlias; // Are we checking for alias of the same value? // Because we look 'through' phi nodes, we could look at "Value" pointers from // different iterations. We must therefore make sure that this is not the // case. The function isValueEqualInPotentialCycles ensures that this cannot // happen by looking at the visited phi nodes and making sure they cannot // reach the value. if (isValueEqualInPotentialCycles(V1, V2)) return AliasResult::MustAlias; if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) return AliasResult::NoAlias; // Scalars cannot alias each other // Figure out what objects these things are pointing to if we can. const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); // Null values in the default address space don't point to any object, so they // don't alias any other pointer. if (const ConstantPointerNull *CPN = dyn_cast(O1)) if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) return AliasResult::NoAlias; if (const ConstantPointerNull *CPN = dyn_cast(O2)) if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) return AliasResult::NoAlias; if (O1 != O2) { // If V1/V2 point to two different objects, we know that we have no alias. if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) return AliasResult::NoAlias; // Constant pointers can't alias with non-const isIdentifiedObject objects. if ((isa(O1) && isIdentifiedObject(O2) && !isa(O2)) || (isa(O2) && isIdentifiedObject(O1) && !isa(O1))) return AliasResult::NoAlias; // Function arguments can't alias with things that are known to be // unambigously identified at the function level. if ((isa(O1) && isIdentifiedFunctionLocal(O2)) || (isa(O2) && isIdentifiedFunctionLocal(O1))) return AliasResult::NoAlias; // If one pointer is the result of a call/invoke or load and the other is a // non-escaping local object within the same function, then we know the // object couldn't escape to a point where the call could return it. // // Note that if the pointers are in different functions, there are a // variety of complications. A call with a nocapture argument may still // temporary store the nocapture argument's value in a temporary memory // location if that memory location doesn't escape. Or it may pass a // nocapture value to other functions as long as they don't capture it. if (isEscapeSource(O1) && AAQI.CI->isNotCapturedBeforeOrAt(O2, cast(O1))) return AliasResult::NoAlias; if (isEscapeSource(O2) && AAQI.CI->isNotCapturedBeforeOrAt(O1, cast(O2))) return AliasResult::NoAlias; } // If the size of one access is larger than the entire object on the other // side, then we know such behavior is undefined and can assume no alias. bool NullIsValidLocation = NullPointerIsDefined(&F); if ((isObjectSmallerThan( O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, TLI, NullIsValidLocation)) || (isObjectSmallerThan( O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, TLI, NullIsValidLocation))) return AliasResult::NoAlias; // If one the accesses may be before the accessed pointer, canonicalize this // by using unknown after-pointer sizes for both accesses. This is // equivalent, because regardless of which pointer is lower, one of them // will always came after the other, as long as the underlying objects aren't // disjoint. We do this so that the rest of BasicAA does not have to deal // with accesses before the base pointer, and to improve cache utilization by // merging equivalent states. if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { V1Size = LocationSize::afterPointer(); V2Size = LocationSize::afterPointer(); } // FIXME: If this depth limit is hit, then we may cache sub-optimal results // for recursive queries. For this reason, this limit is chosen to be large // enough to be very rarely hit, while still being small enough to avoid // stack overflows. if (AAQI.Depth >= 512) return AliasResult::MayAlias; // Check the cache before climbing up use-def chains. This also terminates // otherwise infinitely recursive queries. AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size}); const bool Swapped = V1 > V2; if (Swapped) std::swap(Locs.first, Locs.second); const auto &Pair = AAQI.AliasCache.try_emplace( Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); if (!Pair.second) { auto &Entry = Pair.first->second; if (!Entry.isDefinitive()) { // Remember that we used an assumption. ++Entry.NumAssumptionUses; ++AAQI.NumAssumptionUses; } // Cache contains sorted {V1,V2} pairs but we should return original order. auto Result = Entry.Result; Result.swap(Swapped); return Result; } int OrigNumAssumptionUses = AAQI.NumAssumptionUses; unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); AliasResult Result = aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); auto It = AAQI.AliasCache.find(Locs); assert(It != AAQI.AliasCache.end() && "Must be in cache"); auto &Entry = It->second; // Check whether a NoAlias assumption has been used, but disproven. bool AssumptionDisproven = Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; if (AssumptionDisproven) Result = AliasResult::MayAlias; // This is a definitive result now, when considered as a root query. AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; Entry.Result = Result; // Cache contains sorted {V1,V2} pairs. Entry.Result.swap(Swapped); Entry.NumAssumptionUses = -1; // If the assumption has been disproven, remove any results that may have // been based on this assumption. Do this after the Entry updates above to // avoid iterator invalidation. if (AssumptionDisproven) while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); // The result may still be based on assumptions higher up in the chain. // Remember it, so it can be purged from the cache later. if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && Result != AliasResult::MayAlias) AAQI.AssumptionBasedResults.push_back(Locs); return Result; } AliasResult BasicAAResult::aliasCheckRecursive( const Value *V1, LocationSize V1Size, const Value *V2, LocationSize V2Size, AAQueryInfo &AAQI, const Value *O1, const Value *O2) { if (const GEPOperator *GV1 = dyn_cast(V1)) { AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); if (Result != AliasResult::MayAlias) return Result; } else if (const GEPOperator *GV2 = dyn_cast(V2)) { AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); Result.swap(); if (Result != AliasResult::MayAlias) return Result; } if (const PHINode *PN = dyn_cast(V1)) { AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); if (Result != AliasResult::MayAlias) return Result; } else if (const PHINode *PN = dyn_cast(V2)) { AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); Result.swap(); if (Result != AliasResult::MayAlias) return Result; } if (const SelectInst *S1 = dyn_cast(V1)) { AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); if (Result != AliasResult::MayAlias) return Result; } else if (const SelectInst *S2 = dyn_cast(V2)) { AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); Result.swap(); if (Result != AliasResult::MayAlias) return Result; } // If both pointers are pointing into the same object and one of them // accesses the entire object, then the accesses must overlap in some way. if (O1 == O2) { bool NullIsValidLocation = NullPointerIsDefined(&F); if (V1Size.isPrecise() && V2Size.isPrecise() && (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) return AliasResult::PartialAlias; } return AliasResult::MayAlias; } /// Check whether two Values can be considered equivalent. /// /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether /// they can not be part of a cycle in the value graph by looking at all /// visited phi nodes an making sure that the phis cannot reach the value. We /// have to do this because we are looking through phi nodes (That is we say /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, const Value *V2) { if (V != V2) return false; const Instruction *Inst = dyn_cast(V); if (!Inst) return true; if (VisitedPhiBBs.empty()) return true; if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) return false; // Make sure that the visited phis cannot reach the Value. This ensures that // the Values cannot come from different iterations of a potential cycle the // phi nodes could be involved in. for (auto *P : VisitedPhiBBs) if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT)) return false; return true; } /// Computes the symbolic difference between two de-composed GEPs. void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, const DecomposedGEP &SrcGEP) { DestGEP.Offset -= SrcGEP.Offset; for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { // Find V in Dest. This is N^2, but pointer indices almost never have more // than a few variable indexes. bool Found = false; for (auto I : enumerate(DestGEP.VarIndices)) { VariableGEPIndex &Dest = I.value(); if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V) || !Dest.Val.hasSameCastsAs(Src.Val)) continue; // If we found it, subtract off Scale V's from the entry in Dest. If it // goes to zero, remove the entry. if (Dest.Scale != Src.Scale) { Dest.Scale -= Src.Scale; Dest.IsNSW = false; } else { DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index()); } Found = true; break; } // If we didn't consume this entry, add it to the end of the Dest list. if (!Found) { VariableGEPIndex Entry = {Src.Val, -Src.Scale, Src.CxtI, Src.IsNSW}; DestGEP.VarIndices.push_back(Entry); } } } bool BasicAAResult::constantOffsetHeuristic( const DecomposedGEP &GEP, LocationSize MaybeV1Size, LocationSize MaybeV2Size, AssumptionCache *AC, DominatorTree *DT) { if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || !MaybeV2Size.hasValue()) return false; const uint64_t V1Size = MaybeV1Size.getValue(); const uint64_t V2Size = MaybeV2Size.getValue(); const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) || Var0.Scale != -Var1.Scale || Var0.Val.V->getType() != Var1.Val.V->getType()) return false; // We'll strip off the Extensions of Var0 and Var1 and do another round // of GetLinearExpression decomposition. In the example above, if Var0 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. LinearExpression E0 = GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT); LinearExpression E1 = GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT); if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) || !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V)) return false; // We have a hit - Var0 and Var1 only differ by a constant offset! // If we've been sext'ed then zext'd the maximum difference between Var0 and // Var1 is possible to calculate, but we're just interested in the absolute // minimum difference between the two. The minimum distance may occur due to // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so // the minimum distance between %i and %i + 5 is 3. APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; MinDiff = APIntOps::umin(MinDiff, Wrapped); APInt MinDiffBytes = MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); // We can't definitely say whether GEP1 is before or after V2 due to wrapping // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and // V2Size can fit in the MinDiffBytes gap. return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) && MinDiffBytes.uge(V2Size + GEP.Offset.abs()); } //===----------------------------------------------------------------------===// // BasicAliasAnalysis Pass //===----------------------------------------------------------------------===// AnalysisKey BasicAA::Key; BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { auto &TLI = AM.getResult(F); auto &AC = AM.getResult(F); auto *DT = &AM.getResult(F); auto *PV = AM.getCachedResult(F); return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV); } BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); } char BasicAAWrapperPass::ID = 0; void BasicAAWrapperPass::anchor() {} INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", "Basic Alias Analysis (stateless AA impl)", true, true) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", "Basic Alias Analysis (stateless AA impl)", true, true) FunctionPass *llvm::createBasicAAWrapperPass() { return new BasicAAWrapperPass(); } bool BasicAAWrapperPass::runOnFunction(Function &F) { auto &ACT = getAnalysis(); auto &TLIWP = getAnalysis(); auto &DTWP = getAnalysis(); auto *PVWP = getAnalysisIfAvailable(); Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, TLIWP.getTLI(F), ACT.getAssumptionCache(F), &DTWP.getDomTree(), PVWP ? &PVWP->getResult() : nullptr)); return false; } void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); AU.addUsedIfAvailable(); } BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { return BasicAAResult( F.getParent()->getDataLayout(), F, P.getAnalysis().getTLI(F), P.getAnalysis().getAssumptionCache(F)); }