123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- //=====- CFLSummary.h - Abstract stratified sets implementation. --------=====//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- /// \file
- /// This file defines various utility types and functions useful to
- /// summary-based alias analysis.
- ///
- /// Summary-based analysis, also known as bottom-up analysis, is a style of
- /// interprocedrual static analysis that tries to analyze the callees before the
- /// callers get analyzed. The key idea of summary-based analysis is to first
- /// process each function independently, outline its behavior in a condensed
- /// summary, and then instantiate the summary at the callsite when the said
- /// function is called elsewhere. This is often in contrast to another style
- /// called top-down analysis, in which callers are always analyzed first before
- /// the callees.
- ///
- /// In a summary-based analysis, functions must be examined independently and
- /// out-of-context. We have no information on the state of the memory, the
- /// arguments, the global values, and anything else external to the function. To
- /// carry out the analysis conservative assumptions have to be made about those
- /// external states. In exchange for the potential loss of precision, the
- /// summary we obtain this way is highly reusable, which makes the analysis
- /// easier to scale to large programs even if carried out context-sensitively.
- ///
- /// Currently, all CFL-based alias analyses adopt the summary-based approach
- /// and therefore heavily rely on this header.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H
- #define LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/SmallVector.h"
- #include <bitset>
- namespace llvm {
- class CallBase;
- class Value;
- namespace cflaa {
- //===----------------------------------------------------------------------===//
- // AliasAttr related stuffs
- //===----------------------------------------------------------------------===//
- /// The number of attributes that AliasAttr should contain. Attributes are
- /// described below, and 32 was an arbitrary choice because it fits nicely in 32
- /// bits (because we use a bitset for AliasAttr).
- static const unsigned NumAliasAttrs = 32;
- /// These are attributes that an alias analysis can use to mark certain special
- /// properties of a given pointer. Refer to the related functions below to see
- /// what kinds of attributes are currently defined.
- typedef std::bitset<NumAliasAttrs> AliasAttrs;
- /// Attr represent whether the said pointer comes from an unknown source
- /// (such as opaque memory or an integer cast).
- AliasAttrs getAttrNone();
- /// AttrUnknown represent whether the said pointer comes from a source not known
- /// to alias analyses (such as opaque memory or an integer cast).
- AliasAttrs getAttrUnknown();
- bool hasUnknownAttr(AliasAttrs);
- /// AttrCaller represent whether the said pointer comes from a source not known
- /// to the current function but known to the caller. Values pointed to by the
- /// arguments of the current function have this attribute set
- AliasAttrs getAttrCaller();
- bool hasCallerAttr(AliasAttrs);
- bool hasUnknownOrCallerAttr(AliasAttrs);
- /// AttrEscaped represent whether the said pointer comes from a known source but
- /// escapes to the unknown world (e.g. casted to an integer, or passed as an
- /// argument to opaque function). Unlike non-escaped pointers, escaped ones may
- /// alias pointers coming from unknown sources.
- AliasAttrs getAttrEscaped();
- bool hasEscapedAttr(AliasAttrs);
- /// AttrGlobal represent whether the said pointer is a global value.
- /// AttrArg represent whether the said pointer is an argument, and if so, what
- /// index the argument has.
- AliasAttrs getGlobalOrArgAttrFromValue(const Value &);
- bool isGlobalOrArgAttr(AliasAttrs);
- /// Given an AliasAttrs, return a new AliasAttrs that only contains attributes
- /// meaningful to the caller. This function is primarily used for
- /// interprocedural analysis
- /// Currently, externally visible AliasAttrs include AttrUnknown, AttrGlobal,
- /// and AttrEscaped
- AliasAttrs getExternallyVisibleAttrs(AliasAttrs);
- //===----------------------------------------------------------------------===//
- // Function summary related stuffs
- //===----------------------------------------------------------------------===//
- /// The maximum number of arguments we can put into a summary.
- static const unsigned MaxSupportedArgsInSummary = 50;
- /// We use InterfaceValue to describe parameters/return value, as well as
- /// potential memory locations that are pointed to by parameters/return value,
- /// of a function.
- /// Index is an integer which represents a single parameter or a return value.
- /// When the index is 0, it refers to the return value. Non-zero index i refers
- /// to the i-th parameter.
- /// DerefLevel indicates the number of dereferences one must perform on the
- /// parameter/return value to get this InterfaceValue.
- struct InterfaceValue {
- unsigned Index;
- unsigned DerefLevel;
- };
- inline bool operator==(InterfaceValue LHS, InterfaceValue RHS) {
- return LHS.Index == RHS.Index && LHS.DerefLevel == RHS.DerefLevel;
- }
- inline bool operator!=(InterfaceValue LHS, InterfaceValue RHS) {
- return !(LHS == RHS);
- }
- inline bool operator<(InterfaceValue LHS, InterfaceValue RHS) {
- return LHS.Index < RHS.Index ||
- (LHS.Index == RHS.Index && LHS.DerefLevel < RHS.DerefLevel);
- }
- inline bool operator>(InterfaceValue LHS, InterfaceValue RHS) {
- return RHS < LHS;
- }
- inline bool operator<=(InterfaceValue LHS, InterfaceValue RHS) {
- return !(RHS < LHS);
- }
- inline bool operator>=(InterfaceValue LHS, InterfaceValue RHS) {
- return !(LHS < RHS);
- }
- // We use UnknownOffset to represent pointer offsets that cannot be determined
- // at compile time. Note that MemoryLocation::UnknownSize cannot be used here
- // because we require a signed value.
- static const int64_t UnknownOffset = INT64_MAX;
- inline int64_t addOffset(int64_t LHS, int64_t RHS) {
- if (LHS == UnknownOffset || RHS == UnknownOffset)
- return UnknownOffset;
- // FIXME: Do we need to guard against integer overflow here?
- return LHS + RHS;
- }
- /// We use ExternalRelation to describe an externally visible aliasing relations
- /// between parameters/return value of a function.
- struct ExternalRelation {
- InterfaceValue From, To;
- int64_t Offset;
- };
- inline bool operator==(ExternalRelation LHS, ExternalRelation RHS) {
- return LHS.From == RHS.From && LHS.To == RHS.To && LHS.Offset == RHS.Offset;
- }
- inline bool operator!=(ExternalRelation LHS, ExternalRelation RHS) {
- return !(LHS == RHS);
- }
- inline bool operator<(ExternalRelation LHS, ExternalRelation RHS) {
- if (LHS.From < RHS.From)
- return true;
- if (LHS.From > RHS.From)
- return false;
- if (LHS.To < RHS.To)
- return true;
- if (LHS.To > RHS.To)
- return false;
- return LHS.Offset < RHS.Offset;
- }
- inline bool operator>(ExternalRelation LHS, ExternalRelation RHS) {
- return RHS < LHS;
- }
- inline bool operator<=(ExternalRelation LHS, ExternalRelation RHS) {
- return !(RHS < LHS);
- }
- inline bool operator>=(ExternalRelation LHS, ExternalRelation RHS) {
- return !(LHS < RHS);
- }
- /// We use ExternalAttribute to describe an externally visible AliasAttrs
- /// for parameters/return value.
- struct ExternalAttribute {
- InterfaceValue IValue;
- AliasAttrs Attr;
- };
- /// AliasSummary is just a collection of ExternalRelation and ExternalAttribute
- struct AliasSummary {
- // RetParamRelations is a collection of ExternalRelations.
- SmallVector<ExternalRelation, 8> RetParamRelations;
- // RetParamAttributes is a collection of ExternalAttributes.
- SmallVector<ExternalAttribute, 8> RetParamAttributes;
- };
- /// This is the result of instantiating InterfaceValue at a particular call
- struct InstantiatedValue {
- Value *Val;
- unsigned DerefLevel;
- };
- Optional<InstantiatedValue> instantiateInterfaceValue(InterfaceValue IValue,
- CallBase &Call);
- inline bool operator==(InstantiatedValue LHS, InstantiatedValue RHS) {
- return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel;
- }
- inline bool operator!=(InstantiatedValue LHS, InstantiatedValue RHS) {
- return !(LHS == RHS);
- }
- inline bool operator<(InstantiatedValue LHS, InstantiatedValue RHS) {
- return std::less<Value *>()(LHS.Val, RHS.Val) ||
- (LHS.Val == RHS.Val && LHS.DerefLevel < RHS.DerefLevel);
- }
- inline bool operator>(InstantiatedValue LHS, InstantiatedValue RHS) {
- return RHS < LHS;
- }
- inline bool operator<=(InstantiatedValue LHS, InstantiatedValue RHS) {
- return !(RHS < LHS);
- }
- inline bool operator>=(InstantiatedValue LHS, InstantiatedValue RHS) {
- return !(LHS < RHS);
- }
- /// This is the result of instantiating ExternalRelation at a particular
- /// callsite
- struct InstantiatedRelation {
- InstantiatedValue From, To;
- int64_t Offset;
- };
- Optional<InstantiatedRelation>
- instantiateExternalRelation(ExternalRelation ERelation, CallBase &Call);
- /// This is the result of instantiating ExternalAttribute at a particular
- /// callsite
- struct InstantiatedAttr {
- InstantiatedValue IValue;
- AliasAttrs Attr;
- };
- Optional<InstantiatedAttr> instantiateExternalAttribute(ExternalAttribute EAttr,
- CallBase &Call);
- }
- template <> struct DenseMapInfo<cflaa::InstantiatedValue> {
- static inline cflaa::InstantiatedValue getEmptyKey() {
- return cflaa::InstantiatedValue{DenseMapInfo<Value *>::getEmptyKey(),
- DenseMapInfo<unsigned>::getEmptyKey()};
- }
- static inline cflaa::InstantiatedValue getTombstoneKey() {
- return cflaa::InstantiatedValue{DenseMapInfo<Value *>::getTombstoneKey(),
- DenseMapInfo<unsigned>::getTombstoneKey()};
- }
- static unsigned getHashValue(const cflaa::InstantiatedValue &IV) {
- return DenseMapInfo<std::pair<Value *, unsigned>>::getHashValue(
- std::make_pair(IV.Val, IV.DerefLevel));
- }
- static bool isEqual(const cflaa::InstantiatedValue &LHS,
- const cflaa::InstantiatedValue &RHS) {
- return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel;
- }
- };
- }
- #endif
|