//=====- CFLSummary.h - Abstract stratified sets implementation. --------=====// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file defines various utility types and functions useful to /// summary-based alias analysis. /// /// Summary-based analysis, also known as bottom-up analysis, is a style of /// interprocedrual static analysis that tries to analyze the callees before the /// callers get analyzed. The key idea of summary-based analysis is to first /// process each function independently, outline its behavior in a condensed /// summary, and then instantiate the summary at the callsite when the said /// function is called elsewhere. This is often in contrast to another style /// called top-down analysis, in which callers are always analyzed first before /// the callees. /// /// In a summary-based analysis, functions must be examined independently and /// out-of-context. We have no information on the state of the memory, the /// arguments, the global values, and anything else external to the function. To /// carry out the analysis conservative assumptions have to be made about those /// external states. In exchange for the potential loss of precision, the /// summary we obtain this way is highly reusable, which makes the analysis /// easier to scale to large programs even if carried out context-sensitively. /// /// Currently, all CFL-based alias analyses adopt the summary-based approach /// and therefore heavily rely on this header. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H #define LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include namespace llvm { class CallBase; class Value; namespace cflaa { //===----------------------------------------------------------------------===// // AliasAttr related stuffs //===----------------------------------------------------------------------===// /// The number of attributes that AliasAttr should contain. Attributes are /// described below, and 32 was an arbitrary choice because it fits nicely in 32 /// bits (because we use a bitset for AliasAttr). static const unsigned NumAliasAttrs = 32; /// These are attributes that an alias analysis can use to mark certain special /// properties of a given pointer. Refer to the related functions below to see /// what kinds of attributes are currently defined. typedef std::bitset AliasAttrs; /// Attr represent whether the said pointer comes from an unknown source /// (such as opaque memory or an integer cast). AliasAttrs getAttrNone(); /// AttrUnknown represent whether the said pointer comes from a source not known /// to alias analyses (such as opaque memory or an integer cast). AliasAttrs getAttrUnknown(); bool hasUnknownAttr(AliasAttrs); /// AttrCaller represent whether the said pointer comes from a source not known /// to the current function but known to the caller. Values pointed to by the /// arguments of the current function have this attribute set AliasAttrs getAttrCaller(); bool hasCallerAttr(AliasAttrs); bool hasUnknownOrCallerAttr(AliasAttrs); /// AttrEscaped represent whether the said pointer comes from a known source but /// escapes to the unknown world (e.g. casted to an integer, or passed as an /// argument to opaque function). Unlike non-escaped pointers, escaped ones may /// alias pointers coming from unknown sources. AliasAttrs getAttrEscaped(); bool hasEscapedAttr(AliasAttrs); /// AttrGlobal represent whether the said pointer is a global value. /// AttrArg represent whether the said pointer is an argument, and if so, what /// index the argument has. AliasAttrs getGlobalOrArgAttrFromValue(const Value &); bool isGlobalOrArgAttr(AliasAttrs); /// Given an AliasAttrs, return a new AliasAttrs that only contains attributes /// meaningful to the caller. This function is primarily used for /// interprocedural analysis /// Currently, externally visible AliasAttrs include AttrUnknown, AttrGlobal, /// and AttrEscaped AliasAttrs getExternallyVisibleAttrs(AliasAttrs); //===----------------------------------------------------------------------===// // Function summary related stuffs //===----------------------------------------------------------------------===// /// The maximum number of arguments we can put into a summary. static const unsigned MaxSupportedArgsInSummary = 50; /// We use InterfaceValue to describe parameters/return value, as well as /// potential memory locations that are pointed to by parameters/return value, /// of a function. /// Index is an integer which represents a single parameter or a return value. /// When the index is 0, it refers to the return value. Non-zero index i refers /// to the i-th parameter. /// DerefLevel indicates the number of dereferences one must perform on the /// parameter/return value to get this InterfaceValue. struct InterfaceValue { unsigned Index; unsigned DerefLevel; }; inline bool operator==(InterfaceValue LHS, InterfaceValue RHS) { return LHS.Index == RHS.Index && LHS.DerefLevel == RHS.DerefLevel; } inline bool operator!=(InterfaceValue LHS, InterfaceValue RHS) { return !(LHS == RHS); } inline bool operator<(InterfaceValue LHS, InterfaceValue RHS) { return LHS.Index < RHS.Index || (LHS.Index == RHS.Index && LHS.DerefLevel < RHS.DerefLevel); } inline bool operator>(InterfaceValue LHS, InterfaceValue RHS) { return RHS < LHS; } inline bool operator<=(InterfaceValue LHS, InterfaceValue RHS) { return !(RHS < LHS); } inline bool operator>=(InterfaceValue LHS, InterfaceValue RHS) { return !(LHS < RHS); } // We use UnknownOffset to represent pointer offsets that cannot be determined // at compile time. Note that MemoryLocation::UnknownSize cannot be used here // because we require a signed value. static const int64_t UnknownOffset = INT64_MAX; inline int64_t addOffset(int64_t LHS, int64_t RHS) { if (LHS == UnknownOffset || RHS == UnknownOffset) return UnknownOffset; // FIXME: Do we need to guard against integer overflow here? return LHS + RHS; } /// We use ExternalRelation to describe an externally visible aliasing relations /// between parameters/return value of a function. struct ExternalRelation { InterfaceValue From, To; int64_t Offset; }; inline bool operator==(ExternalRelation LHS, ExternalRelation RHS) { return LHS.From == RHS.From && LHS.To == RHS.To && LHS.Offset == RHS.Offset; } inline bool operator!=(ExternalRelation LHS, ExternalRelation RHS) { return !(LHS == RHS); } inline bool operator<(ExternalRelation LHS, ExternalRelation RHS) { if (LHS.From < RHS.From) return true; if (LHS.From > RHS.From) return false; if (LHS.To < RHS.To) return true; if (LHS.To > RHS.To) return false; return LHS.Offset < RHS.Offset; } inline bool operator>(ExternalRelation LHS, ExternalRelation RHS) { return RHS < LHS; } inline bool operator<=(ExternalRelation LHS, ExternalRelation RHS) { return !(RHS < LHS); } inline bool operator>=(ExternalRelation LHS, ExternalRelation RHS) { return !(LHS < RHS); } /// We use ExternalAttribute to describe an externally visible AliasAttrs /// for parameters/return value. struct ExternalAttribute { InterfaceValue IValue; AliasAttrs Attr; }; /// AliasSummary is just a collection of ExternalRelation and ExternalAttribute struct AliasSummary { // RetParamRelations is a collection of ExternalRelations. SmallVector RetParamRelations; // RetParamAttributes is a collection of ExternalAttributes. SmallVector RetParamAttributes; }; /// This is the result of instantiating InterfaceValue at a particular call struct InstantiatedValue { Value *Val; unsigned DerefLevel; }; Optional instantiateInterfaceValue(InterfaceValue IValue, CallBase &Call); inline bool operator==(InstantiatedValue LHS, InstantiatedValue RHS) { return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel; } inline bool operator!=(InstantiatedValue LHS, InstantiatedValue RHS) { return !(LHS == RHS); } inline bool operator<(InstantiatedValue LHS, InstantiatedValue RHS) { return std::less()(LHS.Val, RHS.Val) || (LHS.Val == RHS.Val && LHS.DerefLevel < RHS.DerefLevel); } inline bool operator>(InstantiatedValue LHS, InstantiatedValue RHS) { return RHS < LHS; } inline bool operator<=(InstantiatedValue LHS, InstantiatedValue RHS) { return !(RHS < LHS); } inline bool operator>=(InstantiatedValue LHS, InstantiatedValue RHS) { return !(LHS < RHS); } /// This is the result of instantiating ExternalRelation at a particular /// callsite struct InstantiatedRelation { InstantiatedValue From, To; int64_t Offset; }; Optional instantiateExternalRelation(ExternalRelation ERelation, CallBase &Call); /// This is the result of instantiating ExternalAttribute at a particular /// callsite struct InstantiatedAttr { InstantiatedValue IValue; AliasAttrs Attr; }; Optional instantiateExternalAttribute(ExternalAttribute EAttr, CallBase &Call); } template <> struct DenseMapInfo { static inline cflaa::InstantiatedValue getEmptyKey() { return cflaa::InstantiatedValue{DenseMapInfo::getEmptyKey(), DenseMapInfo::getEmptyKey()}; } static inline cflaa::InstantiatedValue getTombstoneKey() { return cflaa::InstantiatedValue{DenseMapInfo::getTombstoneKey(), DenseMapInfo::getTombstoneKey()}; } static unsigned getHashValue(const cflaa::InstantiatedValue &IV) { return DenseMapInfo>::getHashValue( std::make_pair(IV.Val, IV.DerefLevel)); } static bool isEqual(const cflaa::InstantiatedValue &LHS, const cflaa::InstantiatedValue &RHS) { return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel; } }; } #endif