123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570 |
- //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements sinking of negation into expression trees,
- // as long as that can be done without increasing instruction count.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/TargetFolder.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/DebugCounter.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include <cassert>
- #include <cstdint>
- #include <functional>
- #include <tuple>
- #include <type_traits>
- #include <utility>
- namespace llvm {
- class AssumptionCache;
- class DataLayout;
- class DominatorTree;
- class LLVMContext;
- } // namespace llvm
- using namespace llvm;
- #define DEBUG_TYPE "instcombine"
- STATISTIC(NegatorTotalNegationsAttempted,
- "Negator: Number of negations attempted to be sinked");
- STATISTIC(NegatorNumTreesNegated,
- "Negator: Number of negations successfully sinked");
- STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
- "reached while attempting to sink negation");
- STATISTIC(NegatorTimesDepthLimitReached,
- "Negator: How many times did the traversal depth limit was reached "
- "during sinking");
- STATISTIC(
- NegatorNumValuesVisited,
- "Negator: Total number of values visited during attempts to sink negation");
- STATISTIC(NegatorNumNegationsFoundInCache,
- "Negator: How many negations did we retrieve/reuse from cache");
- STATISTIC(NegatorMaxTotalValuesVisited,
- "Negator: Maximal number of values ever visited while attempting to "
- "sink negation");
- STATISTIC(NegatorNumInstructionsCreatedTotal,
- "Negator: Number of new negated instructions created, total");
- STATISTIC(NegatorMaxInstructionsCreated,
- "Negator: Maximal number of new instructions created during negation "
- "attempt");
- STATISTIC(NegatorNumInstructionsNegatedSuccess,
- "Negator: Number of new negated instructions created in successful "
- "negation sinking attempts");
- DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
- "Controls Negator transformations in InstCombine pass");
- static cl::opt<bool>
- NegatorEnabled("instcombine-negator-enabled", cl::init(true),
- cl::desc("Should we attempt to sink negations?"));
- static cl::opt<unsigned>
- NegatorMaxDepth("instcombine-negator-max-depth",
- cl::init(NegatorDefaultMaxDepth),
- cl::desc("What is the maximal lookup depth when trying to "
- "check for viability of negation sinking."));
- Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_,
- const DominatorTree &DT_, bool IsTrulyNegation_)
- : Builder(C, TargetFolder(DL_),
- IRBuilderCallbackInserter([&](Instruction *I) {
- ++NegatorNumInstructionsCreatedTotal;
- NewInstructions.push_back(I);
- })),
- DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}
- #if LLVM_ENABLE_STATS
- Negator::~Negator() {
- NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
- }
- #endif
- // Due to the InstCombine's worklist management, there are no guarantees that
- // each instruction we'll encounter has been visited by InstCombine already.
- // In particular, most importantly for us, that means we have to canonicalize
- // constants to RHS ourselves, since that is helpful sometimes.
- std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
- assert(I->getNumOperands() == 2 && "Only for binops!");
- std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
- if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
- InstCombiner::getComplexity(I->getOperand(1)))
- std::swap(Ops[0], Ops[1]);
- return Ops;
- }
- // FIXME: can this be reworked into a worklist-based algorithm while preserving
- // the depth-first, early bailout traversal?
- [[nodiscard]] Value *Negator::visitImpl(Value *V, unsigned Depth) {
- // -(undef) -> undef.
- if (match(V, m_Undef()))
- return V;
- // In i1, negation can simply be ignored.
- if (V->getType()->isIntOrIntVectorTy(1))
- return V;
- Value *X;
- // -(-(X)) -> X.
- if (match(V, m_Neg(m_Value(X))))
- return X;
- // Integral constants can be freely negated.
- if (match(V, m_AnyIntegralConstant()))
- return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
- /*HasNSW=*/false);
- // If we have a non-instruction, then give up.
- if (!isa<Instruction>(V))
- return nullptr;
- // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
- // got instruction that does not require recursive reasoning, we can still
- // negate it even if it has other uses, without increasing instruction count.
- if (!V->hasOneUse() && !IsTrulyNegation)
- return nullptr;
- auto *I = cast<Instruction>(V);
- unsigned BitWidth = I->getType()->getScalarSizeInBits();
- // We must preserve the insertion point and debug info that is set in the
- // builder at the time this function is called.
- InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
- // And since we are trying to negate instruction I, that tells us about the
- // insertion point and the debug info that we need to keep.
- Builder.SetInsertPoint(I);
- // In some cases we can give the answer without further recursion.
- switch (I->getOpcode()) {
- case Instruction::Add: {
- std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
- // `inc` is always negatible.
- if (match(Ops[1], m_One()))
- return Builder.CreateNot(Ops[0], I->getName() + ".neg");
- break;
- }
- case Instruction::Xor:
- // `not` is always negatible.
- if (match(I, m_Not(m_Value(X))))
- return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
- I->getName() + ".neg");
- break;
- case Instruction::AShr:
- case Instruction::LShr: {
- // Right-shift sign bit smear is negatible.
- const APInt *Op1Val;
- if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
- Value *BO = I->getOpcode() == Instruction::AShr
- ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
- : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
- if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
- NewInstr->copyIRFlags(I);
- NewInstr->setName(I->getName() + ".neg");
- }
- return BO;
- }
- // While we could negate exact arithmetic shift:
- // ashr exact %x, C --> sdiv exact i8 %x, -1<<C
- // iff C != 0 and C u< bitwidth(%x), we don't want to,
- // because division is *THAT* much worse than a shift.
- break;
- }
- case Instruction::SExt:
- case Instruction::ZExt:
- // `*ext` of i1 is always negatible
- if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
- return I->getOpcode() == Instruction::SExt
- ? Builder.CreateZExt(I->getOperand(0), I->getType(),
- I->getName() + ".neg")
- : Builder.CreateSExt(I->getOperand(0), I->getType(),
- I->getName() + ".neg");
- break;
- case Instruction::Select: {
- // If both arms of the select are constants, we don't need to recurse.
- // Therefore, this transform is not limited by uses.
- auto *Sel = cast<SelectInst>(I);
- Constant *TrueC, *FalseC;
- if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) &&
- match(Sel->getFalseValue(), m_ImmConstant(FalseC))) {
- Constant *NegTrueC = ConstantExpr::getNeg(TrueC);
- Constant *NegFalseC = ConstantExpr::getNeg(FalseC);
- return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC,
- I->getName() + ".neg", /*MDFrom=*/I);
- }
- break;
- }
- default:
- break; // Other instructions require recursive reasoning.
- }
- if (I->getOpcode() == Instruction::Sub &&
- (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
- // `sub` is always negatible.
- // However, only do this either if the old `sub` doesn't stick around, or
- // it was subtracting from a constant. Otherwise, this isn't profitable.
- return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
- I->getName() + ".neg");
- }
- // Some other cases, while still don't require recursion,
- // are restricted to the one-use case.
- if (!V->hasOneUse())
- return nullptr;
- switch (I->getOpcode()) {
- case Instruction::ZExt: {
- // Negation of zext of signbit is signbit splat:
- // 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN
- Value *SrcOp = I->getOperand(0);
- unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits();
- const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1);
- if (IsTrulyNegation &&
- match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowUndef(FullShift)))) {
- Value *Ashr = Builder.CreateAShr(X, FullShift);
- return Builder.CreateSExt(Ashr, I->getType());
- }
- break;
- }
- case Instruction::And: {
- Constant *ShAmt;
- // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y)
- if (match(I, m_c_And(m_OneUse(m_TruncOrSelf(
- m_LShr(m_Value(X), m_ImmConstant(ShAmt)))),
- m_One()))) {
- unsigned BW = X->getType()->getScalarSizeInBits();
- Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1);
- Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt));
- R = Builder.CreateAShr(R, BWMinusOne);
- return Builder.CreateTruncOrBitCast(R, I->getType());
- }
- break;
- }
- case Instruction::SDiv:
- // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
- // While this is normally not behind a use-check,
- // let's consider division to be special since it's costly.
- if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
- if (!Op1C->containsUndefOrPoisonElement() &&
- Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
- Value *BO =
- Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
- I->getName() + ".neg");
- if (auto *NewInstr = dyn_cast<Instruction>(BO))
- NewInstr->setIsExact(I->isExact());
- return BO;
- }
- }
- break;
- }
- // Rest of the logic is recursive, so if it's time to give up then it's time.
- if (Depth > NegatorMaxDepth) {
- LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
- << *V << ". Giving up.\n");
- ++NegatorTimesDepthLimitReached;
- return nullptr;
- }
- switch (I->getOpcode()) {
- case Instruction::Freeze: {
- // `freeze` is negatible if its operand is negatible.
- Value *NegOp = negate(I->getOperand(0), Depth + 1);
- if (!NegOp) // Early return.
- return nullptr;
- return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
- }
- case Instruction::PHI: {
- // `phi` is negatible if all the incoming values are negatible.
- auto *PHI = cast<PHINode>(I);
- SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
- for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
- if (!(std::get<1>(I) =
- negate(std::get<0>(I), Depth + 1))) // Early return.
- return nullptr;
- }
- // All incoming values are indeed negatible. Create negated PHI node.
- PHINode *NegatedPHI = Builder.CreatePHI(
- PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
- for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
- NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
- return NegatedPHI;
- }
- case Instruction::Select: {
- if (isKnownNegation(I->getOperand(1), I->getOperand(2))) {
- // Of one hand of select is known to be negation of another hand,
- // just swap the hands around.
- auto *NewSelect = cast<SelectInst>(I->clone());
- // Just swap the operands of the select.
- NewSelect->swapValues();
- // Don't swap prof metadata, we didn't change the branch behavior.
- NewSelect->setName(I->getName() + ".neg");
- Builder.Insert(NewSelect);
- return NewSelect;
- }
- // `select` is negatible if both hands of `select` are negatible.
- Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
- if (!NegOp1) // Early return.
- return nullptr;
- Value *NegOp2 = negate(I->getOperand(2), Depth + 1);
- if (!NegOp2)
- return nullptr;
- // Do preserve the metadata!
- return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
- I->getName() + ".neg", /*MDFrom=*/I);
- }
- case Instruction::ShuffleVector: {
- // `shufflevector` is negatible if both operands are negatible.
- auto *Shuf = cast<ShuffleVectorInst>(I);
- Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
- if (!NegOp0) // Early return.
- return nullptr;
- Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
- if (!NegOp1)
- return nullptr;
- return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
- I->getName() + ".neg");
- }
- case Instruction::ExtractElement: {
- // `extractelement` is negatible if source operand is negatible.
- auto *EEI = cast<ExtractElementInst>(I);
- Value *NegVector = negate(EEI->getVectorOperand(), Depth + 1);
- if (!NegVector) // Early return.
- return nullptr;
- return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
- I->getName() + ".neg");
- }
- case Instruction::InsertElement: {
- // `insertelement` is negatible if both the source vector and
- // element-to-be-inserted are negatible.
- auto *IEI = cast<InsertElementInst>(I);
- Value *NegVector = negate(IEI->getOperand(0), Depth + 1);
- if (!NegVector) // Early return.
- return nullptr;
- Value *NegNewElt = negate(IEI->getOperand(1), Depth + 1);
- if (!NegNewElt) // Early return.
- return nullptr;
- return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
- I->getName() + ".neg");
- }
- case Instruction::Trunc: {
- // `trunc` is negatible if its operand is negatible.
- Value *NegOp = negate(I->getOperand(0), Depth + 1);
- if (!NegOp) // Early return.
- return nullptr;
- return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
- }
- case Instruction::Shl: {
- // `shl` is negatible if the first operand is negatible.
- if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1))
- return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg");
- // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
- auto *Op1C = dyn_cast<Constant>(I->getOperand(1));
- if (!Op1C || !IsTrulyNegation)
- return nullptr;
- return Builder.CreateMul(
- I->getOperand(0),
- ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
- I->getName() + ".neg");
- }
- case Instruction::Or: {
- if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I,
- &DT))
- return nullptr; // Don't know how to handle `or` in general.
- std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
- // `or`/`add` are interchangeable when operands have no common bits set.
- // `inc` is always negatible.
- if (match(Ops[1], m_One()))
- return Builder.CreateNot(Ops[0], I->getName() + ".neg");
- // Else, just defer to Instruction::Add handling.
- [[fallthrough]];
- }
- case Instruction::Add: {
- // `add` is negatible if both of its operands are negatible.
- SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
- for (Value *Op : I->operands()) {
- // Can we sink the negation into this operand?
- if (Value *NegOp = negate(Op, Depth + 1)) {
- NegatedOps.emplace_back(NegOp); // Successfully negated operand!
- continue;
- }
- // Failed to sink negation into this operand. IFF we started from negation
- // and we manage to sink negation into one operand, we can still do this.
- if (!IsTrulyNegation)
- return nullptr;
- NonNegatedOps.emplace_back(Op); // Just record which operand that was.
- }
- assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
- "Internal consistency check failed.");
- // Did we manage to sink negation into both of the operands?
- if (NegatedOps.size() == 2) // Then we get to keep the `add`!
- return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
- I->getName() + ".neg");
- assert(IsTrulyNegation && "We should have early-exited then.");
- // Completely failed to sink negation?
- if (NonNegatedOps.size() == 2)
- return nullptr;
- // 0-(a+b) --> (-a)-b
- return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
- I->getName() + ".neg");
- }
- case Instruction::Xor: {
- std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
- // `xor` is negatible if one of its operands is invertible.
- // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
- if (auto *C = dyn_cast<Constant>(Ops[1])) {
- Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
- return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
- I->getName() + ".neg");
- }
- return nullptr;
- }
- case Instruction::Mul: {
- std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
- // `mul` is negatible if one of its operands is negatible.
- Value *NegatedOp, *OtherOp;
- // First try the second operand, in case it's a constant it will be best to
- // just invert it instead of sinking the `neg` deeper.
- if (Value *NegOp1 = negate(Ops[1], Depth + 1)) {
- NegatedOp = NegOp1;
- OtherOp = Ops[0];
- } else if (Value *NegOp0 = negate(Ops[0], Depth + 1)) {
- NegatedOp = NegOp0;
- OtherOp = Ops[1];
- } else
- // Can't negate either of them.
- return nullptr;
- return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg");
- }
- default:
- return nullptr; // Don't know, likely not negatible for free.
- }
- llvm_unreachable("Can't get here. We always return from switch.");
- }
- [[nodiscard]] Value *Negator::negate(Value *V, unsigned Depth) {
- NegatorMaxDepthVisited.updateMax(Depth);
- ++NegatorNumValuesVisited;
- #if LLVM_ENABLE_STATS
- ++NumValuesVisitedInThisNegator;
- #endif
- #ifndef NDEBUG
- // We can't ever have a Value with such an address.
- Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
- #endif
- // Did we already try to negate this value?
- auto NegationsCacheIterator = NegationsCache.find(V);
- if (NegationsCacheIterator != NegationsCache.end()) {
- ++NegatorNumNegationsFoundInCache;
- Value *NegatedV = NegationsCacheIterator->second;
- assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
- return NegatedV;
- }
- #ifndef NDEBUG
- // We did not find a cached result for negation of V. While there,
- // let's temporairly cache a placeholder value, with the idea that if later
- // during negation we fetch it from cache, we'll know we're in a cycle.
- NegationsCache[V] = Placeholder;
- #endif
- // No luck. Try negating it for real.
- Value *NegatedV = visitImpl(V, Depth);
- // And cache the (real) result for the future.
- NegationsCache[V] = NegatedV;
- return NegatedV;
- }
- [[nodiscard]] std::optional<Negator::Result> Negator::run(Value *Root) {
- Value *Negated = negate(Root, /*Depth=*/0);
- if (!Negated) {
- // We must cleanup newly-inserted instructions, to avoid any potential
- // endless combine looping.
- for (Instruction *I : llvm::reverse(NewInstructions))
- I->eraseFromParent();
- return std::nullopt;
- }
- return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
- }
- [[nodiscard]] Value *Negator::Negate(bool LHSIsZero, Value *Root,
- InstCombinerImpl &IC) {
- ++NegatorTotalNegationsAttempted;
- LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
- << "\n");
- if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
- return nullptr;
- Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(),
- IC.getDominatorTree(), LHSIsZero);
- std::optional<Result> Res = N.run(Root);
- if (!Res) { // Negation failed.
- LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
- << "\n");
- return nullptr;
- }
- LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
- << "\n NEW: " << *Res->second << "\n");
- ++NegatorNumTreesNegated;
- // We must temporarily unset the 'current' insertion point and DebugLoc of the
- // InstCombine's IRBuilder so that it won't interfere with the ones we have
- // already specified when producing negated instructions.
- InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
- IC.Builder.ClearInsertionPoint();
- IC.Builder.SetCurrentDebugLocation(DebugLoc());
- // And finally, we must add newly-created instructions into the InstCombine's
- // worklist (in a proper order!) so it can attempt to combine them.
- LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
- << " instrs to InstCombine\n");
- NegatorMaxInstructionsCreated.updateMax(Res->first.size());
- NegatorNumInstructionsNegatedSuccess += Res->first.size();
- // They are in def-use order, so nothing fancy, just insert them in order.
- for (Instruction *I : Res->first)
- IC.Builder.Insert(I, I->getName());
- // And return the new root.
- return Res->second;
- }
|