//===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements sinking of negation into expression trees, // as long as that can be done without increasing instruction count. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/DebugCounter.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/InstCombine/InstCombiner.h" #include #include #include #include #include #include namespace llvm { class AssumptionCache; class DataLayout; class DominatorTree; class LLVMContext; } // namespace llvm using namespace llvm; #define DEBUG_TYPE "instcombine" STATISTIC(NegatorTotalNegationsAttempted, "Negator: Number of negations attempted to be sinked"); STATISTIC(NegatorNumTreesNegated, "Negator: Number of negations successfully sinked"); STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever " "reached while attempting to sink negation"); STATISTIC(NegatorTimesDepthLimitReached, "Negator: How many times did the traversal depth limit was reached " "during sinking"); STATISTIC( NegatorNumValuesVisited, "Negator: Total number of values visited during attempts to sink negation"); STATISTIC(NegatorNumNegationsFoundInCache, "Negator: How many negations did we retrieve/reuse from cache"); STATISTIC(NegatorMaxTotalValuesVisited, "Negator: Maximal number of values ever visited while attempting to " "sink negation"); STATISTIC(NegatorNumInstructionsCreatedTotal, "Negator: Number of new negated instructions created, total"); STATISTIC(NegatorMaxInstructionsCreated, "Negator: Maximal number of new instructions created during negation " "attempt"); STATISTIC(NegatorNumInstructionsNegatedSuccess, "Negator: Number of new negated instructions created in successful " "negation sinking attempts"); DEBUG_COUNTER(NegatorCounter, "instcombine-negator", "Controls Negator transformations in InstCombine pass"); static cl::opt NegatorEnabled("instcombine-negator-enabled", cl::init(true), cl::desc("Should we attempt to sink negations?")); static cl::opt NegatorMaxDepth("instcombine-negator-max-depth", cl::init(NegatorDefaultMaxDepth), cl::desc("What is the maximal lookup depth when trying to " "check for viability of negation sinking.")); Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_, const DominatorTree &DT_, bool IsTrulyNegation_) : Builder(C, TargetFolder(DL_), IRBuilderCallbackInserter([&](Instruction *I) { ++NegatorNumInstructionsCreatedTotal; NewInstructions.push_back(I); })), DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {} #if LLVM_ENABLE_STATS Negator::~Negator() { NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator); } #endif // Due to the InstCombine's worklist management, there are no guarantees that // each instruction we'll encounter has been visited by InstCombine already. // In particular, most importantly for us, that means we have to canonicalize // constants to RHS ourselves, since that is helpful sometimes. std::array Negator::getSortedOperandsOfBinOp(Instruction *I) { assert(I->getNumOperands() == 2 && "Only for binops!"); std::array Ops{I->getOperand(0), I->getOperand(1)}; if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) < InstCombiner::getComplexity(I->getOperand(1))) std::swap(Ops[0], Ops[1]); return Ops; } // FIXME: can this be reworked into a worklist-based algorithm while preserving // the depth-first, early bailout traversal? [[nodiscard]] Value *Negator::visitImpl(Value *V, unsigned Depth) { // -(undef) -> undef. if (match(V, m_Undef())) return V; // In i1, negation can simply be ignored. if (V->getType()->isIntOrIntVectorTy(1)) return V; Value *X; // -(-(X)) -> X. if (match(V, m_Neg(m_Value(X)))) return X; // Integral constants can be freely negated. if (match(V, m_AnyIntegralConstant())) return ConstantExpr::getNeg(cast(V), /*HasNUW=*/false, /*HasNSW=*/false); // If we have a non-instruction, then give up. if (!isa(V)) return nullptr; // If we have started with a true negation (i.e. `sub 0, %y`), then if we've // got instruction that does not require recursive reasoning, we can still // negate it even if it has other uses, without increasing instruction count. if (!V->hasOneUse() && !IsTrulyNegation) return nullptr; auto *I = cast(V); unsigned BitWidth = I->getType()->getScalarSizeInBits(); // We must preserve the insertion point and debug info that is set in the // builder at the time this function is called. InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); // And since we are trying to negate instruction I, that tells us about the // insertion point and the debug info that we need to keep. Builder.SetInsertPoint(I); // In some cases we can give the answer without further recursion. switch (I->getOpcode()) { case Instruction::Add: { std::array Ops = getSortedOperandsOfBinOp(I); // `inc` is always negatible. if (match(Ops[1], m_One())) return Builder.CreateNot(Ops[0], I->getName() + ".neg"); break; } case Instruction::Xor: // `not` is always negatible. if (match(I, m_Not(m_Value(X)))) return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1), I->getName() + ".neg"); break; case Instruction::AShr: case Instruction::LShr: { // Right-shift sign bit smear is negatible. const APInt *Op1Val; if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) { Value *BO = I->getOpcode() == Instruction::AShr ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1)) : Builder.CreateAShr(I->getOperand(0), I->getOperand(1)); if (auto *NewInstr = dyn_cast(BO)) { NewInstr->copyIRFlags(I); NewInstr->setName(I->getName() + ".neg"); } return BO; } // While we could negate exact arithmetic shift: // ashr exact %x, C --> sdiv exact i8 %x, -1<getOperand(0)->getType()->isIntOrIntVectorTy(1)) return I->getOpcode() == Instruction::SExt ? Builder.CreateZExt(I->getOperand(0), I->getType(), I->getName() + ".neg") : Builder.CreateSExt(I->getOperand(0), I->getType(), I->getName() + ".neg"); break; case Instruction::Select: { // If both arms of the select are constants, we don't need to recurse. // Therefore, this transform is not limited by uses. auto *Sel = cast(I); Constant *TrueC, *FalseC; if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) && match(Sel->getFalseValue(), m_ImmConstant(FalseC))) { Constant *NegTrueC = ConstantExpr::getNeg(TrueC); Constant *NegFalseC = ConstantExpr::getNeg(FalseC); return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC, I->getName() + ".neg", /*MDFrom=*/I); } break; } default: break; // Other instructions require recursive reasoning. } if (I->getOpcode() == Instruction::Sub && (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) { // `sub` is always negatible. // However, only do this either if the old `sub` doesn't stick around, or // it was subtracting from a constant. Otherwise, this isn't profitable. return Builder.CreateSub(I->getOperand(1), I->getOperand(0), I->getName() + ".neg"); } // Some other cases, while still don't require recursion, // are restricted to the one-use case. if (!V->hasOneUse()) return nullptr; switch (I->getOpcode()) { case Instruction::ZExt: { // Negation of zext of signbit is signbit splat: // 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN Value *SrcOp = I->getOperand(0); unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits(); const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1); if (IsTrulyNegation && match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowUndef(FullShift)))) { Value *Ashr = Builder.CreateAShr(X, FullShift); return Builder.CreateSExt(Ashr, I->getType()); } break; } case Instruction::And: { Constant *ShAmt; // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y) if (match(I, m_c_And(m_OneUse(m_TruncOrSelf( m_LShr(m_Value(X), m_ImmConstant(ShAmt)))), m_One()))) { unsigned BW = X->getType()->getScalarSizeInBits(); Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1); Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt)); R = Builder.CreateAShr(R, BWMinusOne); return Builder.CreateTruncOrBitCast(R, I->getType()); } break; } case Instruction::SDiv: // `sdiv` is negatible if divisor is not undef/INT_MIN/1. // While this is normally not behind a use-check, // let's consider division to be special since it's costly. if (auto *Op1C = dyn_cast(I->getOperand(1))) { if (!Op1C->containsUndefOrPoisonElement() && Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) { Value *BO = Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C), I->getName() + ".neg"); if (auto *NewInstr = dyn_cast(BO)) NewInstr->setIsExact(I->isExact()); return BO; } } break; } // Rest of the logic is recursive, so if it's time to give up then it's time. if (Depth > NegatorMaxDepth) { LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in " << *V << ". Giving up.\n"); ++NegatorTimesDepthLimitReached; return nullptr; } switch (I->getOpcode()) { case Instruction::Freeze: { // `freeze` is negatible if its operand is negatible. Value *NegOp = negate(I->getOperand(0), Depth + 1); if (!NegOp) // Early return. return nullptr; return Builder.CreateFreeze(NegOp, I->getName() + ".neg"); } case Instruction::PHI: { // `phi` is negatible if all the incoming values are negatible. auto *PHI = cast(I); SmallVector NegatedIncomingValues(PHI->getNumOperands()); for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) { if (!(std::get<1>(I) = negate(std::get<0>(I), Depth + 1))) // Early return. return nullptr; } // All incoming values are indeed negatible. Create negated PHI node. PHINode *NegatedPHI = Builder.CreatePHI( PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg"); for (auto I : zip(NegatedIncomingValues, PHI->blocks())) NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I)); return NegatedPHI; } case Instruction::Select: { if (isKnownNegation(I->getOperand(1), I->getOperand(2))) { // Of one hand of select is known to be negation of another hand, // just swap the hands around. auto *NewSelect = cast(I->clone()); // Just swap the operands of the select. NewSelect->swapValues(); // Don't swap prof metadata, we didn't change the branch behavior. NewSelect->setName(I->getName() + ".neg"); Builder.Insert(NewSelect); return NewSelect; } // `select` is negatible if both hands of `select` are negatible. Value *NegOp1 = negate(I->getOperand(1), Depth + 1); if (!NegOp1) // Early return. return nullptr; Value *NegOp2 = negate(I->getOperand(2), Depth + 1); if (!NegOp2) return nullptr; // Do preserve the metadata! return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2, I->getName() + ".neg", /*MDFrom=*/I); } case Instruction::ShuffleVector: { // `shufflevector` is negatible if both operands are negatible. auto *Shuf = cast(I); Value *NegOp0 = negate(I->getOperand(0), Depth + 1); if (!NegOp0) // Early return. return nullptr; Value *NegOp1 = negate(I->getOperand(1), Depth + 1); if (!NegOp1) return nullptr; return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(), I->getName() + ".neg"); } case Instruction::ExtractElement: { // `extractelement` is negatible if source operand is negatible. auto *EEI = cast(I); Value *NegVector = negate(EEI->getVectorOperand(), Depth + 1); if (!NegVector) // Early return. return nullptr; return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(), I->getName() + ".neg"); } case Instruction::InsertElement: { // `insertelement` is negatible if both the source vector and // element-to-be-inserted are negatible. auto *IEI = cast(I); Value *NegVector = negate(IEI->getOperand(0), Depth + 1); if (!NegVector) // Early return. return nullptr; Value *NegNewElt = negate(IEI->getOperand(1), Depth + 1); if (!NegNewElt) // Early return. return nullptr; return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2), I->getName() + ".neg"); } case Instruction::Trunc: { // `trunc` is negatible if its operand is negatible. Value *NegOp = negate(I->getOperand(0), Depth + 1); if (!NegOp) // Early return. return nullptr; return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg"); } case Instruction::Shl: { // `shl` is negatible if the first operand is negatible. if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1)) return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg"); // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<(I->getOperand(1)); if (!Op1C || !IsTrulyNegation) return nullptr; return Builder.CreateMul( I->getOperand(0), ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C), I->getName() + ".neg"); } case Instruction::Or: { if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I, &DT)) return nullptr; // Don't know how to handle `or` in general. std::array Ops = getSortedOperandsOfBinOp(I); // `or`/`add` are interchangeable when operands have no common bits set. // `inc` is always negatible. if (match(Ops[1], m_One())) return Builder.CreateNot(Ops[0], I->getName() + ".neg"); // Else, just defer to Instruction::Add handling. [[fallthrough]]; } case Instruction::Add: { // `add` is negatible if both of its operands are negatible. SmallVector NegatedOps, NonNegatedOps; for (Value *Op : I->operands()) { // Can we sink the negation into this operand? if (Value *NegOp = negate(Op, Depth + 1)) { NegatedOps.emplace_back(NegOp); // Successfully negated operand! continue; } // Failed to sink negation into this operand. IFF we started from negation // and we manage to sink negation into one operand, we can still do this. if (!IsTrulyNegation) return nullptr; NonNegatedOps.emplace_back(Op); // Just record which operand that was. } assert((NegatedOps.size() + NonNegatedOps.size()) == 2 && "Internal consistency check failed."); // Did we manage to sink negation into both of the operands? if (NegatedOps.size() == 2) // Then we get to keep the `add`! return Builder.CreateAdd(NegatedOps[0], NegatedOps[1], I->getName() + ".neg"); assert(IsTrulyNegation && "We should have early-exited then."); // Completely failed to sink negation? if (NonNegatedOps.size() == 2) return nullptr; // 0-(a+b) --> (-a)-b return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0], I->getName() + ".neg"); } case Instruction::Xor: { std::array Ops = getSortedOperandsOfBinOp(I); // `xor` is negatible if one of its operands is invertible. // FIXME: InstCombineInverter? But how to connect Inverter and Negator? if (auto *C = dyn_cast(Ops[1])) { Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C)); return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1), I->getName() + ".neg"); } return nullptr; } case Instruction::Mul: { std::array Ops = getSortedOperandsOfBinOp(I); // `mul` is negatible if one of its operands is negatible. Value *NegatedOp, *OtherOp; // First try the second operand, in case it's a constant it will be best to // just invert it instead of sinking the `neg` deeper. if (Value *NegOp1 = negate(Ops[1], Depth + 1)) { NegatedOp = NegOp1; OtherOp = Ops[0]; } else if (Value *NegOp0 = negate(Ops[0], Depth + 1)) { NegatedOp = NegOp0; OtherOp = Ops[1]; } else // Can't negate either of them. return nullptr; return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg"); } default: return nullptr; // Don't know, likely not negatible for free. } llvm_unreachable("Can't get here. We always return from switch."); } [[nodiscard]] Value *Negator::negate(Value *V, unsigned Depth) { NegatorMaxDepthVisited.updateMax(Depth); ++NegatorNumValuesVisited; #if LLVM_ENABLE_STATS ++NumValuesVisitedInThisNegator; #endif #ifndef NDEBUG // We can't ever have a Value with such an address. Value *Placeholder = reinterpret_cast(static_cast(-1)); #endif // Did we already try to negate this value? auto NegationsCacheIterator = NegationsCache.find(V); if (NegationsCacheIterator != NegationsCache.end()) { ++NegatorNumNegationsFoundInCache; Value *NegatedV = NegationsCacheIterator->second; assert(NegatedV != Placeholder && "Encountered a cycle during negation."); return NegatedV; } #ifndef NDEBUG // We did not find a cached result for negation of V. While there, // let's temporairly cache a placeholder value, with the idea that if later // during negation we fetch it from cache, we'll know we're in a cycle. NegationsCache[V] = Placeholder; #endif // No luck. Try negating it for real. Value *NegatedV = visitImpl(V, Depth); // And cache the (real) result for the future. NegationsCache[V] = NegatedV; return NegatedV; } [[nodiscard]] std::optional Negator::run(Value *Root) { Value *Negated = negate(Root, /*Depth=*/0); if (!Negated) { // We must cleanup newly-inserted instructions, to avoid any potential // endless combine looping. for (Instruction *I : llvm::reverse(NewInstructions)) I->eraseFromParent(); return std::nullopt; } return std::make_pair(ArrayRef(NewInstructions), Negated); } [[nodiscard]] Value *Negator::Negate(bool LHSIsZero, Value *Root, InstCombinerImpl &IC) { ++NegatorTotalNegationsAttempted; LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root << "\n"); if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter)) return nullptr; Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(), IC.getDominatorTree(), LHSIsZero); std::optional Res = N.run(Root); if (!Res) { // Negation failed. LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root << "\n"); return nullptr; } LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root << "\n NEW: " << *Res->second << "\n"); ++NegatorNumTreesNegated; // We must temporarily unset the 'current' insertion point and DebugLoc of the // InstCombine's IRBuilder so that it won't interfere with the ones we have // already specified when producing negated instructions. InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); IC.Builder.ClearInsertionPoint(); IC.Builder.SetCurrentDebugLocation(DebugLoc()); // And finally, we must add newly-created instructions into the InstCombine's // worklist (in a proper order!) so it can attempt to combine them. LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size() << " instrs to InstCombine\n"); NegatorMaxInstructionsCreated.updateMax(Res->first.size()); NegatorNumInstructionsNegatedSuccess += Res->first.size(); // They are in def-use order, so nothing fancy, just insert them in order. for (Instruction *I : Res->first) IC.Builder.Insert(I, I->getName()); // And return the new root. return Res->second; }