123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This family of functions performs analyses on basic blocks, and instructions
- // contained within basic blocks.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/Support/CommandLine.h"
- using namespace llvm;
- // The max number of basic blocks explored during reachability analysis between
- // two basic blocks. This is kept reasonably small to limit compile time when
- // repeatedly used by clients of this analysis (such as captureTracking).
- static cl::opt<unsigned> DefaultMaxBBsToExplore(
- "dom-tree-reachability-max-bbs-to-explore", cl::Hidden,
- cl::desc("Max number of BBs to explore for reachability analysis"),
- cl::init(32));
- /// FindFunctionBackedges - Analyze the specified function to find all of the
- /// loop backedges in the function and return them. This is a relatively cheap
- /// (compared to computing dominators and loop info) analysis.
- ///
- /// The output is added to Result, as pairs of <from,to> edge info.
- void llvm::FindFunctionBackedges(const Function &F,
- SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
- const BasicBlock *BB = &F.getEntryBlock();
- if (succ_empty(BB))
- return;
- SmallPtrSet<const BasicBlock*, 8> Visited;
- SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack;
- SmallPtrSet<const BasicBlock*, 8> InStack;
- Visited.insert(BB);
- VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
- InStack.insert(BB);
- do {
- std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back();
- const BasicBlock *ParentBB = Top.first;
- const_succ_iterator &I = Top.second;
- bool FoundNew = false;
- while (I != succ_end(ParentBB)) {
- BB = *I++;
- if (Visited.insert(BB).second) {
- FoundNew = true;
- break;
- }
- // Successor is in VisitStack, it's a back edge.
- if (InStack.count(BB))
- Result.push_back(std::make_pair(ParentBB, BB));
- }
- if (FoundNew) {
- // Go down one level if there is a unvisited successor.
- InStack.insert(BB);
- VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
- } else {
- // Go up one level.
- InStack.erase(VisitStack.pop_back_val().first);
- }
- } while (!VisitStack.empty());
- }
- /// GetSuccessorNumber - Search for the specified successor of basic block BB
- /// and return its position in the terminator instruction's list of
- /// successors. It is an error to call this with a block that is not a
- /// successor.
- unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
- const BasicBlock *Succ) {
- const Instruction *Term = BB->getTerminator();
- #ifndef NDEBUG
- unsigned e = Term->getNumSuccessors();
- #endif
- for (unsigned i = 0; ; ++i) {
- assert(i != e && "Didn't find edge?");
- if (Term->getSuccessor(i) == Succ)
- return i;
- }
- }
- /// isCriticalEdge - Return true if the specified edge is a critical edge.
- /// Critical edges are edges from a block with multiple successors to a block
- /// with multiple predecessors.
- bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
- bool AllowIdenticalEdges) {
- assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
- return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges);
- }
- bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
- bool AllowIdenticalEdges) {
- assert(TI->isTerminator() && "Must be a terminator to have successors!");
- if (TI->getNumSuccessors() == 1) return false;
- assert(is_contained(predecessors(Dest), TI->getParent()) &&
- "No edge between TI's block and Dest.");
- const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
- // If there is more than one predecessor, this is a critical edge...
- assert(I != E && "No preds, but we have an edge to the block?");
- const BasicBlock *FirstPred = *I;
- ++I; // Skip one edge due to the incoming arc from TI.
- if (!AllowIdenticalEdges)
- return I != E;
- // If AllowIdenticalEdges is true, then we allow this edge to be considered
- // non-critical iff all preds come from TI's block.
- for (; I != E; ++I)
- if (*I != FirstPred)
- return true;
- return false;
- }
- // LoopInfo contains a mapping from basic block to the innermost loop. Find
- // the outermost loop in the loop nest that contains BB.
- static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
- const Loop *L = LI->getLoopFor(BB);
- return L ? L->getOutermostLoop() : nullptr;
- }
- bool llvm::isPotentiallyReachableFromMany(
- SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB,
- const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
- const LoopInfo *LI) {
- // When the stop block is unreachable, it's dominated from everywhere,
- // regardless of whether there's a path between the two blocks.
- if (DT && !DT->isReachableFromEntry(StopBB))
- DT = nullptr;
- // We can't skip directly from a block that dominates the stop block if the
- // exclusion block is potentially in between.
- if (ExclusionSet && !ExclusionSet->empty())
- DT = nullptr;
- // Normally any block in a loop is reachable from any other block in a loop,
- // however excluded blocks might partition the body of a loop to make that
- // untrue.
- SmallPtrSet<const Loop *, 8> LoopsWithHoles;
- if (LI && ExclusionSet) {
- for (auto *BB : *ExclusionSet) {
- if (const Loop *L = getOutermostLoop(LI, BB))
- LoopsWithHoles.insert(L);
- }
- }
- const Loop *StopLoop = LI ? getOutermostLoop(LI, StopBB) : nullptr;
- unsigned Limit = DefaultMaxBBsToExplore;
- SmallPtrSet<const BasicBlock*, 32> Visited;
- do {
- BasicBlock *BB = Worklist.pop_back_val();
- if (!Visited.insert(BB).second)
- continue;
- if (BB == StopBB)
- return true;
- if (ExclusionSet && ExclusionSet->count(BB))
- continue;
- if (DT && DT->dominates(BB, StopBB))
- return true;
- const Loop *Outer = nullptr;
- if (LI) {
- Outer = getOutermostLoop(LI, BB);
- // If we're in a loop with a hole, not all blocks in the loop are
- // reachable from all other blocks. That implies we can't simply jump to
- // the loop's exit blocks, as that exit might need to pass through an
- // excluded block. Clear Outer so we process BB's successors.
- if (LoopsWithHoles.count(Outer))
- Outer = nullptr;
- if (StopLoop && Outer == StopLoop)
- return true;
- }
- if (!--Limit) {
- // We haven't been able to prove it one way or the other. Conservatively
- // answer true -- that there is potentially a path.
- return true;
- }
- if (Outer) {
- // All blocks in a single loop are reachable from all other blocks. From
- // any of these blocks, we can skip directly to the exits of the loop,
- // ignoring any other blocks inside the loop body.
- Outer->getExitBlocks(Worklist);
- } else {
- Worklist.append(succ_begin(BB), succ_end(BB));
- }
- } while (!Worklist.empty());
- // We have exhausted all possible paths and are certain that 'To' can not be
- // reached from 'From'.
- return false;
- }
- bool llvm::isPotentiallyReachable(
- const BasicBlock *A, const BasicBlock *B,
- const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
- const LoopInfo *LI) {
- assert(A->getParent() == B->getParent() &&
- "This analysis is function-local!");
- if (DT) {
- if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(B))
- return false;
- if (!ExclusionSet || ExclusionSet->empty()) {
- if (A->isEntryBlock() && DT->isReachableFromEntry(B))
- return true;
- if (B->isEntryBlock() && DT->isReachableFromEntry(A))
- return false;
- }
- }
- SmallVector<BasicBlock*, 32> Worklist;
- Worklist.push_back(const_cast<BasicBlock*>(A));
- return isPotentiallyReachableFromMany(Worklist, B, ExclusionSet, DT, LI);
- }
- bool llvm::isPotentiallyReachable(
- const Instruction *A, const Instruction *B,
- const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
- const LoopInfo *LI) {
- assert(A->getParent()->getParent() == B->getParent()->getParent() &&
- "This analysis is function-local!");
- if (A->getParent() == B->getParent()) {
- // The same block case is special because it's the only time we're looking
- // within a single block to see which instruction comes first. Once we
- // start looking at multiple blocks, the first instruction of the block is
- // reachable, so we only need to determine reachability between whole
- // blocks.
- BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
- // If the block is in a loop then we can reach any instruction in the block
- // from any other instruction in the block by going around a backedge.
- if (LI && LI->getLoopFor(BB) != nullptr)
- return true;
- // If A comes before B, then B is definitively reachable from A.
- if (A == B || A->comesBefore(B))
- return true;
- // Can't be in a loop if it's the entry block -- the entry block may not
- // have predecessors.
- if (BB->isEntryBlock())
- return false;
- // Otherwise, continue doing the normal per-BB CFG walk.
- SmallVector<BasicBlock*, 32> Worklist;
- Worklist.append(succ_begin(BB), succ_end(BB));
- if (Worklist.empty()) {
- // We've proven that there's no path!
- return false;
- }
- return isPotentiallyReachableFromMany(Worklist, B->getParent(),
- ExclusionSet, DT, LI);
- }
- return isPotentiallyReachable(
- A->getParent(), B->getParent(), ExclusionSet, DT, LI);
- }
|