storage_number.h 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. // SPDX-License-Identifier: GPL-3.0-or-later
  2. #ifndef NETDATA_STORAGE_NUMBER_H
  3. #define NETDATA_STORAGE_NUMBER_H 1
  4. #include <math.h>
  5. #include "../libnetdata.h"
  6. #ifdef NETDATA_WITH_LONG_DOUBLE
  7. typedef long double NETDATA_DOUBLE;
  8. #define NETDATA_DOUBLE_FORMAT "%0.7Lf"
  9. #define NETDATA_DOUBLE_FORMAT_ZERO "%0.0Lf"
  10. #define NETDATA_DOUBLE_FORMAT_AUTO "%Lf"
  11. #define NETDATA_DOUBLE_MODIFIER "Lf"
  12. #define NETDATA_DOUBLE_FORMAT_G "%0.19Le"
  13. #define NETDATA_DOUBLE_MAX LDBL_MAX
  14. #define strtondd(s, endptr) strtold(s, endptr)
  15. #define powndd(x, y) powl(x, y)
  16. #define llrintndd(x) llrintl(x)
  17. #define roundndd(x) roundl(x)
  18. #define sqrtndd(x) sqrtl(x)
  19. #define copysignndd(x, y) copysignl(x, y)
  20. #define modfndd(x, y) modfl(x, y)
  21. #define fabsndd(x) fabsl(x)
  22. #define floorndd(x) floorl(x)
  23. #define ceilndd(x) ceill(x)
  24. #define log10ndd(x) log10l(x)
  25. #else // NETDATA_WITH_LONG_DOUBLE
  26. typedef double NETDATA_DOUBLE;
  27. #define NETDATA_DOUBLE_FORMAT "%0.7f"
  28. #define NETDATA_DOUBLE_FORMAT_ZERO "%0.0f"
  29. #define NETDATA_DOUBLE_FORMAT_AUTO "%f"
  30. #define NETDATA_DOUBLE_MODIFIER "f"
  31. #define NETDATA_DOUBLE_FORMAT_G "%0.19e"
  32. #define NETDATA_DOUBLE_MAX DBL_MAX
  33. #define strtondd(s, endptr) strtod(s, endptr)
  34. #define powndd(x, y) pow(x, y)
  35. #define llrintndd(x) llrint(x)
  36. #define roundndd(x) round(x)
  37. #define sqrtndd(x) sqrt(x)
  38. #define copysignndd(x, y) copysign(x, y)
  39. #define modfndd(x, y) modf(x, y)
  40. #define fabsndd(x) fabs(x)
  41. #define floorndd(x) floor(x)
  42. #define ceilndd(x) ceil(x)
  43. #define log10ndd(x) log10(x)
  44. #endif // NETDATA_WITH_LONG_DOUBLE
  45. typedef long long collected_number;
  46. #define COLLECTED_NUMBER_FORMAT "%lld"
  47. #define epsilonndd (NETDATA_DOUBLE)0.0000001
  48. #define considered_equal_ndd(a, b) (fabsndd((a) - (b)) < epsilonndd)
  49. #if defined(HAVE_ISFINITE) || defined(isfinite)
  50. // The isfinite() macro shall determine whether its argument has a
  51. // finite value (zero, subnormal, or normal, and not infinite or NaN).
  52. #define netdata_double_isnumber(a) (isfinite(a))
  53. #elif defined(HAVE_FINITE) || defined(finite)
  54. #define netdata_double_isnumber(a) (finite(a))
  55. #else
  56. #define netdata_double_isnumber(a) (fpclassify(a) != FP_NAN && fpclassify(a) != FP_INFINITE)
  57. #endif
  58. #define netdata_double_is_zero(a) (!netdata_double_isnumber(a) || considered_equal_ndd(a, 0.0))
  59. #define netdata_double_is_nonzero(a) (!netdata_double_is_zero(a))
  60. typedef uint32_t storage_number;
  61. typedef struct storage_number_tier1 {
  62. float sum_value;
  63. float min_value;
  64. float max_value;
  65. uint16_t count;
  66. uint16_t anomaly_count;
  67. } storage_number_tier1_t;
  68. #define STORAGE_NUMBER_FORMAT "%u"
  69. typedef enum {
  70. SN_FLAG_NONE = 0,
  71. SN_FLAG_NOT_ANOMALOUS = (1 << 24), // the anomaly bit of the value (0:anomalous, 1:not anomalous)
  72. SN_FLAG_RESET = (1 << 25), // the value has been overflown
  73. SN_FLAG_NOT_EXISTS_MUL100 = (1 << 26), // very large value (multiplier is 100 instead of 10)
  74. SN_FLAG_MULTIPLY = (1 << 30), // multiply, else divide
  75. SN_FLAG_NEGATIVE = (1 << 31), // negative, else positive
  76. } SN_FLAGS;
  77. #define SN_USER_FLAGS (SN_FLAG_NOT_ANOMALOUS | SN_FLAG_RESET)
  78. // default flags for all storage numbers
  79. // anomaly bit is reversed, so we set it by default
  80. #define SN_DEFAULT_FLAGS SN_FLAG_NOT_ANOMALOUS
  81. // When the calculated number is zero and the value is anomalous (ie. it's bit
  82. // is zero) we want to return a storage_number representation that is
  83. // different from the empty slot. We achieve this by mapping zero to
  84. // SN_EXISTS_100. Unpacking the SN_EXISTS_100 value will return zero because
  85. // its fraction field (as well as its exponent factor field) will be zero.
  86. #define SN_EMPTY_SLOT SN_FLAG_NOT_EXISTS_MUL100
  87. // checks
  88. #define does_storage_number_exist(value) (((storage_number)(value)) != SN_EMPTY_SLOT)
  89. #define did_storage_number_reset(value) ((((storage_number)(value)) & SN_FLAG_RESET))
  90. #define is_storage_number_anomalous(value) (does_storage_number_exist(value) && !(((storage_number)(value)) & SN_FLAG_NOT_ANOMALOUS))
  91. storage_number pack_storage_number(NETDATA_DOUBLE value, SN_FLAGS flags) __attribute__((const));
  92. static inline NETDATA_DOUBLE unpack_storage_number(storage_number value) __attribute__((const));
  93. // sign div/mul <--- multiplier / divider ---> 10/100 RESET EXISTS VALUE
  94. #define STORAGE_NUMBER_POSITIVE_MAX_RAW (storage_number)( (0U << 31) | (1U << 30) | (1U << 29) | (1U << 28) | (1U << 27) | (1U << 26) | (0U << 25) | (1U << 24) | 0x00ffffff )
  95. #define STORAGE_NUMBER_POSITIVE_MIN_RAW (storage_number)( (0U << 31) | (0U << 30) | (1U << 29) | (1U << 28) | (1U << 27) | (0U << 26) | (0U << 25) | (1U << 24) | 0x00000001 )
  96. #define STORAGE_NUMBER_NEGATIVE_MAX_RAW (storage_number)( (1U << 31) | (0U << 30) | (1U << 29) | (1U << 28) | (1U << 27) | (0U << 26) | (0U << 25) | (1U << 24) | 0x00000001 )
  97. #define STORAGE_NUMBER_NEGATIVE_MIN_RAW (storage_number)( (1U << 31) | (1U << 30) | (1U << 29) | (1U << 28) | (1U << 27) | (1U << 26) | (0U << 25) | (1U << 24) | 0x00ffffff )
  98. // accepted accuracy loss
  99. #define ACCURACY_LOSS_ACCEPTED_PERCENT 0.0001
  100. #define accuracy_loss(t1, t2) (((t1) == (t2) || (t1) == 0.0 || (t2) == 0.0) ? 0.0 : (100.0 - (((t1) > (t2)) ? ((t2) * 100.0 / (t1) ) : ((t1) * 100.0 / (t2)))))
  101. // Maximum acceptable rate of increase for counters. With a rate of 10% netdata can safely detect overflows with a
  102. // period of at least every other 10 samples.
  103. #define MAX_INCREMENTAL_PERCENT_RATE 10
  104. static inline NETDATA_DOUBLE unpack_storage_number(storage_number value) {
  105. extern NETDATA_DOUBLE unpack_storage_number_lut10x[4 * 8];
  106. if(unlikely(value == SN_EMPTY_SLOT))
  107. return NAN;
  108. int sign = 1, exp = 0;
  109. int factor = 0;
  110. // bit 32 = 0:positive, 1:negative
  111. if(unlikely(value & SN_FLAG_NEGATIVE))
  112. sign = -1;
  113. // bit 31 = 0:divide, 1:multiply
  114. if(unlikely(value & SN_FLAG_MULTIPLY))
  115. exp = 1;
  116. // bit 27 SN_FLAG_NOT_EXISTS_MUL100
  117. if(unlikely(value & SN_FLAG_NOT_EXISTS_MUL100))
  118. factor = 1;
  119. // bit 26 SN_FLAG_RESET
  120. // bit 25 SN_FLAG_NOT_ANOMALOUS
  121. // bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total)
  122. int mul = (int)((value & ((1U<<29)|(1U<<28)|(1U<<27))) >> 27);
  123. // bit 24 to bit 1 = the value, so remove all other bits
  124. value ^= value & ((1U <<31)|(1U <<30)|(1U <<29)|(1U <<28)|(1U <<27)|(1U <<26)|(1U <<25)|(1U<<24));
  125. NETDATA_DOUBLE n = value;
  126. // fprintf(stderr, "UNPACK: %08X, sign = %d, exp = %d, mul = %d, factor = %d, n = " CALCULATED_NUMBER_FORMAT "\n", value, sign, exp, mul, factor, n);
  127. return sign * unpack_storage_number_lut10x[(factor * 16) + (exp * 8) + mul] * n;
  128. }
  129. // all these prefixes should use characters that are not allowed in the numbers they represent
  130. #define HEX_PREFIX "0x" // we check 2 characters when parsing
  131. #define IEEE754_UINT64_B64_PREFIX "#" // we check the 1st character during parsing
  132. #define IEEE754_DOUBLE_B64_PREFIX "@" // we check the 1st character during parsing
  133. #define IEEE754_DOUBLE_HEX_PREFIX "%" // we check the 1st character during parsing
  134. bool is_system_ieee754_double(void);
  135. #endif /* NETDATA_STORAGE_NUMBER_H */