sla_print_tests.cpp 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230
  1. #include <unordered_set>
  2. #include <unordered_map>
  3. #include <random>
  4. #include "sla_test_utils.hpp"
  5. namespace {
  6. const char *const BELOW_PAD_TEST_OBJECTS[] = {
  7. "20mm_cube.obj",
  8. "V.obj",
  9. };
  10. const char *const AROUND_PAD_TEST_OBJECTS[] = {
  11. "20mm_cube.obj",
  12. "V.obj",
  13. "frog_legs.obj",
  14. "cube_with_concave_hole_enlarged.obj",
  15. };
  16. const char *const SUPPORT_TEST_MODELS[] = {
  17. "cube_with_concave_hole_enlarged_standing.obj",
  18. "A_upsidedown.obj",
  19. "extruder_idler.obj"
  20. };
  21. } // namespace
  22. TEST_CASE("Pillar pairhash should be unique", "[SLASupportGeneration]") {
  23. test_pairhash<int, int>();
  24. test_pairhash<int, long>();
  25. test_pairhash<unsigned, unsigned>();
  26. test_pairhash<unsigned, unsigned long>();
  27. }
  28. TEST_CASE("Support point generator should be deterministic if seeded",
  29. "[SLASupportGeneration], [SLAPointGen]") {
  30. TriangleMesh mesh = load_model("A_upsidedown.obj");
  31. sla::EigenMesh3D emesh{mesh};
  32. sla::SupportConfig supportcfg;
  33. sla::SupportPointGenerator::Config autogencfg;
  34. autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
  35. sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}};
  36. TriangleMeshSlicer slicer{&mesh};
  37. auto bb = mesh.bounding_box();
  38. double zmin = bb.min.z();
  39. double zmax = bb.max.z();
  40. double gnd = zmin - supportcfg.object_elevation_mm;
  41. auto layer_h = 0.05f;
  42. auto slicegrid = grid(float(gnd), float(zmax), layer_h);
  43. std::vector<ExPolygons> slices;
  44. slicer.slice(slicegrid, SlicingMode::Regular, CLOSING_RADIUS, &slices, []{});
  45. point_gen.seed(0);
  46. point_gen.execute(slices, slicegrid);
  47. auto get_chksum = [](const std::vector<sla::SupportPoint> &pts){
  48. long long chksum = 0;
  49. for (auto &pt : pts) {
  50. auto p = scaled(pt.pos);
  51. chksum += p.x() + p.y() + p.z();
  52. }
  53. return chksum;
  54. };
  55. long long checksum = get_chksum(point_gen.output());
  56. size_t ptnum = point_gen.output().size();
  57. REQUIRE(point_gen.output().size() > 0);
  58. for (int i = 0; i < 20; ++i) {
  59. point_gen.output().clear();
  60. point_gen.seed(0);
  61. point_gen.execute(slices, slicegrid);
  62. REQUIRE(point_gen.output().size() == ptnum);
  63. REQUIRE(checksum == get_chksum(point_gen.output()));
  64. }
  65. }
  66. TEST_CASE("Flat pad geometry is valid", "[SLASupportGeneration]") {
  67. sla::PadConfig padcfg;
  68. // Disable wings
  69. padcfg.wall_height_mm = .0;
  70. for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
  71. }
  72. TEST_CASE("WingedPadGeometryIsValid", "[SLASupportGeneration]") {
  73. sla::PadConfig padcfg;
  74. // Add some wings to the pad to test the cavity
  75. padcfg.wall_height_mm = 1.;
  76. for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
  77. }
  78. TEST_CASE("FlatPadAroundObjectIsValid", "[SLASupportGeneration]") {
  79. sla::PadConfig padcfg;
  80. // Add some wings to the pad to test the cavity
  81. padcfg.wall_height_mm = 0.;
  82. // padcfg.embed_object.stick_stride_mm = 0.;
  83. padcfg.embed_object.enabled = true;
  84. padcfg.embed_object.everywhere = true;
  85. for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
  86. }
  87. TEST_CASE("WingedPadAroundObjectIsValid", "[SLASupportGeneration]") {
  88. sla::PadConfig padcfg;
  89. // Add some wings to the pad to test the cavity
  90. padcfg.wall_height_mm = 1.;
  91. padcfg.embed_object.enabled = true;
  92. padcfg.embed_object.everywhere = true;
  93. for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
  94. }
  95. TEST_CASE("ElevatedSupportGeometryIsValid", "[SLASupportGeneration]") {
  96. sla::SupportConfig supportcfg;
  97. supportcfg.object_elevation_mm = 5.;
  98. for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname);
  99. }
  100. TEST_CASE("FloorSupportGeometryIsValid", "[SLASupportGeneration]") {
  101. sla::SupportConfig supportcfg;
  102. supportcfg.object_elevation_mm = 0;
  103. for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg);
  104. }
  105. TEST_CASE("ElevatedSupportsDoNotPierceModel", "[SLASupportGeneration]") {
  106. sla::SupportConfig supportcfg;
  107. for (auto fname : SUPPORT_TEST_MODELS)
  108. test_support_model_collision(fname, supportcfg);
  109. }
  110. TEST_CASE("FloorSupportsDoNotPierceModel", "[SLASupportGeneration]") {
  111. sla::SupportConfig supportcfg;
  112. supportcfg.object_elevation_mm = 0;
  113. for (auto fname : SUPPORT_TEST_MODELS)
  114. test_support_model_collision(fname, supportcfg);
  115. }
  116. TEST_CASE("InitializedRasterShouldBeNONEmpty", "[SLARasterOutput]") {
  117. // Default Prusa SL1 display parameters
  118. sla::RasterBase::Resolution res{2560, 1440};
  119. sla::RasterBase::PixelDim pixdim{120. / res.width_px, 68. / res.height_px};
  120. sla::RasterGrayscaleAAGammaPower raster(res, pixdim, {}, 1.);
  121. REQUIRE(raster.resolution().width_px == res.width_px);
  122. REQUIRE(raster.resolution().height_px == res.height_px);
  123. REQUIRE(raster.pixel_dimensions().w_mm == Approx(pixdim.w_mm));
  124. REQUIRE(raster.pixel_dimensions().h_mm == Approx(pixdim.h_mm));
  125. }
  126. TEST_CASE("MirroringShouldBeCorrect", "[SLARasterOutput]") {
  127. sla::RasterBase::TMirroring mirrorings[] = {sla::RasterBase::NoMirror,
  128. sla::RasterBase::MirrorX,
  129. sla::RasterBase::MirrorY,
  130. sla::RasterBase::MirrorXY};
  131. sla::RasterBase::Orientation orientations[] =
  132. {sla::RasterBase::roLandscape, sla::RasterBase::roPortrait};
  133. for (auto orientation : orientations)
  134. for (auto &mirror : mirrorings)
  135. check_raster_transformations(orientation, mirror);
  136. }
  137. TEST_CASE("RasterizedPolygonAreaShouldMatch", "[SLARasterOutput]") {
  138. double disp_w = 120., disp_h = 68.;
  139. sla::RasterBase::Resolution res{2560, 1440};
  140. sla::RasterBase::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
  141. double gamma = 1.;
  142. sla::RasterGrayscaleAAGammaPower raster(res, pixdim, {}, gamma);
  143. auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
  144. ExPolygon poly = square_with_hole(10.);
  145. poly.translate(bb.center().x(), bb.center().y());
  146. raster.draw(poly);
  147. double a = poly.area() / (scaled<double>(1.) * scaled(1.));
  148. double ra = raster_white_area(raster);
  149. double diff = std::abs(a - ra);
  150. REQUIRE(diff <= predict_error(poly, pixdim));
  151. raster.clear();
  152. poly = square_with_hole(60.);
  153. poly.translate(bb.center().x(), bb.center().y());
  154. raster.draw(poly);
  155. a = poly.area() / (scaled<double>(1.) * scaled(1.));
  156. ra = raster_white_area(raster);
  157. diff = std::abs(a - ra);
  158. REQUIRE(diff <= predict_error(poly, pixdim));
  159. sla::RasterGrayscaleAA raster0(res, pixdim, {}, [](double) { return 0.; });
  160. REQUIRE(raster_pxsum(raster0) == 0);
  161. raster0.draw(poly);
  162. ra = raster_white_area(raster);
  163. REQUIRE(raster_pxsum(raster0) == 0);
  164. }
  165. TEST_CASE("Triangle mesh conversions should be correct", "[SLAConversions]")
  166. {
  167. sla::Contour3D cntr;
  168. {
  169. std::fstream infile{"extruder_idler_quads.obj", std::ios::in};
  170. cntr.from_obj(infile);
  171. }
  172. }