123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613 |
- #include <iostream>
- #include <vector>
- #include <unordered_map>
- #include <map>
- #include "ItsNeighborIndex.hpp"
- #include "libslic3r/Execution/ExecutionTBB.hpp"
- #include "libslic3r/Execution/ExecutionSeq.hpp"
- #include "tbb/parallel_sort.h"
- namespace Slic3r {
- FaceNeighborIndex its_create_neighbors_index_1(const indexed_triangle_set &its)
- {
- // Just to be clear what type of object are we referencing
- using FaceID = size_t;
- using VertexID = uint64_t;
- using EdgeID = uint64_t;
- constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
- struct Edge // Will contain IDs of the two facets touching this edge
- {
- FaceID first, second;
- Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
- void assign(FaceID fid)
- {
- first == UNASSIGNED ? first = fid : second = fid;
- }
- };
- // All vertex IDs will fit into this number of bits. (Used for hashing)
- const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
- assert(max_vertex_id_bits <= 32);
- std::unordered_map< EdgeID, Edge> edge_index;
- // Edge id is constructed by concatenating two vertex ids, starting with
- // the lowest in MSB
- auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) {
- if (a > b) std::swap(a, b);
- return (a << max_vertex_id_bits) + b;
- };
- // Go through all edges of all facets and mark the facets touching each edge
- for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
- const Vec3i &face = its.indices[face_id];
- EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
- e3 = hash(face(2), face(0));
- edge_index[e1].assign(face_id);
- edge_index[e2].assign(face_id);
- edge_index[e3].assign(face_id);
- }
- FaceNeighborIndex index(its.indices.size());
- // Now collect the neighbors for each facet into the final index
- for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
- const Vec3i &face = its.indices[face_id];
- EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
- e3 = hash(face(2), face(0));
- const Edge &neighs1 = edge_index[e1];
- const Edge &neighs2 = edge_index[e2];
- const Edge &neighs3 = edge_index[e3];
- std::array<size_t, 3> &neighs = index[face_id];
- neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
- neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
- neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
- }
- return index;
- }
- std::vector<Vec3i> its_create_neighbors_index_2(const indexed_triangle_set &its)
- {
- std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
- // Create a mapping from triangle edge into face.
- struct EdgeToFace {
- // Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
- int vertex_low;
- // Index of the 2nd vertex of the triangle edge.
- int vertex_high;
- // Index of a triangular face.
- int face;
- // Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
- int face_edge;
- bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
- bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
- };
- std::vector<EdgeToFace> edges_map;
- edges_map.assign(its.indices.size() * 3, EdgeToFace());
- for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
- for (int i = 0; i < 3; ++ i) {
- EdgeToFace &e2f = edges_map[facet_idx * 3 + i];
- e2f.vertex_low = its.indices[facet_idx][i];
- e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3];
- e2f.face = facet_idx;
- // 1 based indexing, to be always strictly positive.
- e2f.face_edge = i + 1;
- if (e2f.vertex_low > e2f.vertex_high) {
- // Sort the vertices
- std::swap(e2f.vertex_low, e2f.vertex_high);
- // and make the face_edge negative to indicate a flipped edge.
- e2f.face_edge = - e2f.face_edge;
- }
- }
- std::sort(edges_map.begin(), edges_map.end());
- // Assign a unique common edge id to touching triangle edges.
- int num_edges = 0;
- for (size_t i = 0; i < edges_map.size(); ++ i) {
- EdgeToFace &edge_i = edges_map[i];
- if (edge_i.face == -1)
- // This edge has been connected to some neighbor already.
- continue;
- // Unconnected edge. Find its neighbor with the correct orientation.
- size_t j;
- bool found = false;
- for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
- if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
- // Faces touching with opposite oriented edges and none of the edges is connected yet.
- found = true;
- break;
- }
- if (! found) {
- //FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
- // admesh can assign the same edge ID to more than two facets (which is
- // still topologically correct), so we have to search for a duplicate of
- // this edge too in case it was already seen in this orientation
- for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
- if (edges_map[j].face != -1) {
- // Faces touching with equally oriented edges and none of the edges is connected yet.
- found = true;
- break;
- }
- }
- // Assign an edge index to the 1st face.
- // out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
- if (found) {
- EdgeToFace &edge_j = edges_map[j];
- out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face;
- out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face;
- // Mark the edge as connected.
- edge_j.face = -1;
- }
- ++ num_edges;
- }
- return out;
- }
- std::vector<Vec3i> its_create_neighbors_index_3(const indexed_triangle_set &its)
- {
- std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
- // Create a mapping from triangle edge into face.
- struct EdgeToFace {
- // Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
- int vertex_low;
- // Index of the 2nd vertex of the triangle edge.
- int vertex_high;
- // Index of a triangular face.
- int face;
- // Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
- int face_edge;
- bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
- bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
- };
- std::vector<EdgeToFace> edges_map;
- edges_map.assign(its.indices.size() * 3, EdgeToFace());
- for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
- for (int i = 0; i < 3; ++ i) {
- EdgeToFace &e2f = edges_map[facet_idx * 3 + i];
- e2f.vertex_low = its.indices[facet_idx][i];
- e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3];
- e2f.face = facet_idx;
- // 1 based indexing, to be always strictly positive.
- e2f.face_edge = i + 1;
- if (e2f.vertex_low > e2f.vertex_high) {
- // Sort the vertices
- std::swap(e2f.vertex_low, e2f.vertex_high);
- // and make the face_edge negative to indicate a flipped edge.
- e2f.face_edge = - e2f.face_edge;
- }
- }
- tbb::parallel_sort(edges_map.begin(), edges_map.end());
- // Assign a unique common edge id to touching triangle edges.
- int num_edges = 0;
- for (size_t i = 0; i < edges_map.size(); ++ i) {
- EdgeToFace &edge_i = edges_map[i];
- if (edge_i.face == -1)
- // This edge has been connected to some neighbor already.
- continue;
- // Unconnected edge. Find its neighbor with the correct orientation.
- size_t j;
- bool found = false;
- for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
- if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
- // Faces touching with opposite oriented edges and none of the edges is connected yet.
- found = true;
- break;
- }
- if (! found) {
- //FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
- // admesh can assign the same edge ID to more than two facets (which is
- // still topologically correct), so we have to search for a duplicate of
- // this edge too in case it was already seen in this orientation
- for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
- if (edges_map[j].face != -1) {
- // Faces touching with equally oriented edges and none of the edges is connected yet.
- found = true;
- break;
- }
- }
- // Assign an edge index to the 1st face.
- // out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
- if (found) {
- EdgeToFace &edge_j = edges_map[j];
- out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face;
- out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face;
- // Mark the edge as connected.
- edge_j.face = -1;
- }
- ++ num_edges;
- }
- return out;
- }
- FaceNeighborIndex its_create_neighbors_index_4(const indexed_triangle_set &its)
- {
- // Just to be clear what type of object are we referencing
- using FaceID = size_t;
- using VertexID = uint64_t;
- using EdgeID = uint64_t;
- constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
- struct Edge // Will contain IDs of the two facets touching this edge
- {
- FaceID first, second;
- Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
- void assign(FaceID fid)
- {
- first == UNASSIGNED ? first = fid : second = fid;
- }
- };
- Benchmark bm;
- bm.start();
- // All vertex IDs will fit into this number of bits. (Used for hashing)
- // const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
- // assert(max_vertex_id_bits <= 32);
- const uint64_t Vn = its.vertices.size();
- // const uint64_t Fn = 3 * its.indices.size();
- // double MaxQ = double(Vn) * (Vn + 1) / Fn;
- // const uint64_t Nq = MaxQ < 0 ? 0 : std::ceil(std::log2(MaxQ));
- // const uint64_t Nr = std::ceil(std::log2(std::min(Vn * (Vn + 1), Fn)));
- // const uint64_t Nfn = std::ceil(std::log2(Fn));
- //// const uint64_t max_edge_ids = (uint64_t(1) << (Nq + Nr));
- // const uint64_t max_edge_ids = MaxQ * Fn + (std::min(Vn * (Vn + 1), Fn)); //(uint64_t(1) << Nfn);
- const uint64_t Fn = 3 * its.indices.size();
- std::vector< Edge > edge_index(3 * Fn);
- // Edge id is constructed by concatenating two vertex ids, starting with
- // the lowest in MSB
- auto hash = [Vn, Fn /*, Nr*/] (VertexID a, VertexID b) {
- if (a > b) std::swap(a, b);
- uint64_t C = Vn * a + b;
- uint64_t Q = C / Fn, R = C % Fn;
- return Q * Fn + R;
- };
- // Go through all edges of all facets and mark the facets touching each edge
- for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
- const Vec3i &face = its.indices[face_id];
- EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
- e3 = hash(face(2), face(0));
- edge_index[e1].assign(face_id);
- edge_index[e2].assign(face_id);
- edge_index[e3].assign(face_id);
- }
- FaceNeighborIndex index(its.indices.size());
- // Now collect the neighbors for each facet into the final index
- for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
- const Vec3i &face = its.indices[face_id];
- EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
- e3 = hash(face(2), face(0));
- const Edge &neighs1 = edge_index[e1];
- const Edge &neighs2 = edge_index[e2];
- const Edge &neighs3 = edge_index[e3];
- std::array<size_t, 3> &neighs = index[face_id];
- neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
- neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
- neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
- }
- bm.stop();
- std::cout << "Creating neighbor index took: " << bm.getElapsedSec() << " seconds." << std::endl;
- return index;
- }
- // Create an index of faces belonging to each vertex. The returned vector can
- // be indexed with vertex indices and contains a list of face indices for each
- // vertex.
- std::vector<std::vector<size_t>> create_vertex_faces_index(const indexed_triangle_set &its)
- {
- std::vector<std::vector<size_t>> index;
- if (! its.vertices.empty()) {
- size_t res = its.indices.size() / its.vertices.size();
- index.assign(its.vertices.size(), reserve_vector<size_t>(res));
- for (size_t fi = 0; fi < its.indices.size(); ++fi) {
- auto &face = its.indices[fi];
- index[face(0)].emplace_back(fi);
- index[face(1)].emplace_back(fi);
- index[face(2)].emplace_back(fi);
- }
- }
- return index;
- }
- //static int get_vertex_index(size_t vertex_index, const stl_triangle_vertex_indices &triangle_indices) {
- // if (vertex_index == triangle_indices[0]) return 0;
- // if (vertex_index == triangle_indices[1]) return 1;
- // if (vertex_index == triangle_indices[2]) return 2;
- // return -1;
- //}
- //static Vec2crd get_edge_indices(int edge_index, const stl_triangle_vertex_indices &triangle_indices)
- //{
- // int next_edge_index = (edge_index == 2) ? 0 : edge_index + 1;
- // coord_t vi0 = triangle_indices[edge_index];
- // coord_t vi1 = triangle_indices[next_edge_index];
- // return Vec2crd(vi0, vi1);
- //}
- static std::vector<std::vector<size_t>> create_vertex_faces_index(
- const std::vector<stl_triangle_vertex_indices>& indices, size_t count_vertices)
- {
- if (count_vertices == 0) return {};
- std::vector<std::vector<size_t>> index;
- size_t res = indices.size() / count_vertices;
- index.assign(count_vertices, reserve_vector<size_t>(res));
- for (size_t fi = 0; fi < indices.size(); ++fi) {
- auto &face = indices[fi];
- index[face(0)].emplace_back(fi);
- index[face(1)].emplace_back(fi);
- index[face(2)].emplace_back(fi);
- }
- return index;
- }
- std::vector<Vec3crd> its_create_neighbors_index_5(const indexed_triangle_set &its)
- {
- const std::vector<stl_triangle_vertex_indices> &indices = its.indices;
- size_t vertices_size = its.vertices.size();
- if (indices.empty() || vertices_size == 0) return {};
- std::vector<std::vector<size_t>> vertex_triangles = create_vertex_faces_index(indices, vertices_size);
- coord_t no_value = -1;
- std::vector<Vec3crd> neighbors(indices.size(), Vec3crd(no_value, no_value, no_value));
- for (const stl_triangle_vertex_indices& triangle_indices : indices) {
- coord_t index = &triangle_indices - &indices.front();
- Vec3crd& neighbor = neighbors[index];
- for (int edge_index = 0; edge_index < 3; ++edge_index) {
- // check if done
- coord_t& neighbor_edge = neighbor[edge_index];
- if (neighbor_edge != no_value) continue;
- Vec2crd edge_indices = get_edge_indices(edge_index, triangle_indices);
- // IMPROVE: use same vector for 2 sides of triangle
- const std::vector<size_t> &faces = vertex_triangles[edge_indices[0]];
- for (const size_t &face : faces) {
- if (face <= index) continue;
- const stl_triangle_vertex_indices &face_indices = indices[face];
- int vertex_index = get_vertex_index(edge_indices[1], face_indices);
- // NOT Contain second vertex?
- if (vertex_index < 0) continue;
- // Has NOT oposit direction?
- if (edge_indices[0] != face_indices[(vertex_index + 1) % 3]) continue;
- neighbor_edge = face;
- neighbors[face][vertex_index] = index;
- break;
- }
- // must be paired
- assert(neighbor_edge != no_value);
- }
- }
- return neighbors;
- }
- std::vector<std::array<size_t, 3>> its_create_neighbors_index_6(const indexed_triangle_set &its)
- {
- constexpr auto UNASSIGNED_EDGE = std::numeric_limits<uint64_t>::max();
- constexpr auto UNASSIGNED_FACE = std::numeric_limits<size_t>::max();
- struct Edge
- {
- uint64_t id = UNASSIGNED_EDGE;
- size_t face_id = UNASSIGNED_FACE;
- bool operator < (const Edge &e) const { return id < e.id; }
- };
- const size_t facenum = its.indices.size();
- // All vertex IDs will fit into this number of bits. (Used for hashing)
- const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
- assert(max_vertex_id_bits <= 32);
- // Edge id is constructed by concatenating two vertex ids, starting with
- // the lowest in MSB
- auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) {
- if (a > b) std::swap(a, b);
- return (a << max_vertex_id_bits) + b;
- };
- std::vector<Edge> edge_map(3 * facenum);
- // Go through all edges of all facets and mark the facets touching each edge
- for (size_t face_id = 0; face_id < facenum; ++face_id) {
- const Vec3i &face = its.indices[face_id];
- edge_map[face_id * 3] = {hash(face(0), face(1)), face_id};
- edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id};
- edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id};
- }
- std::sort(edge_map.begin(), edge_map.end());
- std::vector<std::array<size_t, 3>> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE});
- auto add_neighbor = [](std::array<size_t, 3> &slot, size_t face_id) {
- if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; }
- if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; }
- if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; }
- };
- for (auto it = edge_map.begin(); it != edge_map.end();) {
- size_t face_id = it->face_id;
- uint64_t edge_id = it->id;
- while (++it != edge_map.end() && (it->id == edge_id)) {
- size_t other_face_id = it->face_id;
- add_neighbor(out[other_face_id], face_id);
- add_neighbor(out[face_id], other_face_id);
- }
- }
- return out;
- }
- std::vector<std::array<size_t, 3>> its_create_neighbors_index_7(const indexed_triangle_set &its)
- {
- constexpr auto UNASSIGNED_EDGE = std::numeric_limits<uint64_t>::max();
- constexpr auto UNASSIGNED_FACE = std::numeric_limits<size_t>::max();
- struct Edge
- {
- uint64_t id = UNASSIGNED_EDGE;
- size_t face_id = UNASSIGNED_FACE;
- bool operator < (const Edge &e) const { return id < e.id; }
- };
- const size_t facenum = its.indices.size();
- // All vertex IDs will fit into this number of bits. (Used for hashing)
- const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
- assert(max_vertex_id_bits <= 32);
- // Edge id is constructed by concatenating two vertex ids, starting with
- // the lowest in MSB
- auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) {
- if (a > b) std::swap(a, b);
- return (a << max_vertex_id_bits) + b;
- };
- std::vector<Edge> edge_map(3 * facenum);
- // Go through all edges of all facets and mark the facets touching each edge
- for (size_t face_id = 0; face_id < facenum; ++face_id) {
- const Vec3i &face = its.indices[face_id];
- edge_map[face_id * 3] = {hash(face(0), face(1)), face_id};
- edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id};
- edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id};
- }
- tbb::parallel_sort(edge_map.begin(), edge_map.end());
- std::vector<std::array<size_t, 3>> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE});
- auto add_neighbor = [](std::array<size_t, 3> &slot, size_t face_id) {
- if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; }
- if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; }
- if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; }
- };
- for (auto it = edge_map.begin(); it != edge_map.end();) {
- size_t face_id = it->face_id;
- uint64_t edge_id = it->id;
- while (++it != edge_map.end() && (it->id == edge_id)) {
- size_t other_face_id = it->face_id;
- add_neighbor(out[other_face_id], face_id);
- add_neighbor(out[face_id], other_face_id);
- }
- }
- return out;
- }
- FaceNeighborIndex its_create_neighbors_index_8(const indexed_triangle_set &its)
- {
- // Just to be clear what type of object are we referencing
- using FaceID = size_t;
- using VertexID = uint64_t;
- using EdgeID = uint64_t;
- constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
- struct Edge // Will contain IDs of the two facets touching this edge
- {
- FaceID first, second;
- Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
- void assign(FaceID fid)
- {
- first == UNASSIGNED ? first = fid : second = fid;
- }
- };
- // All vertex IDs will fit into this number of bits. (Used for hashing)
- const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
- assert(max_vertex_id_bits <= 32);
- std::map< EdgeID, Edge > edge_index;
- // Edge id is constructed by concatenating two vertex ids, starting with
- // the lowest in MSB
- auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) {
- if (a > b) std::swap(a, b);
- return (a << max_vertex_id_bits) + b;
- };
- // Go through all edges of all facets and mark the facets touching each edge
- for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
- const Vec3i &face = its.indices[face_id];
- EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
- e3 = hash(face(2), face(0));
- edge_index[e1].assign(face_id);
- edge_index[e2].assign(face_id);
- edge_index[e3].assign(face_id);
- }
- FaceNeighborIndex index(its.indices.size());
- // Now collect the neighbors for each facet into the final index
- for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
- const Vec3i &face = its.indices[face_id];
- EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
- e3 = hash(face(2), face(0));
- const Edge &neighs1 = edge_index[e1];
- const Edge &neighs2 = edge_index[e2];
- const Edge &neighs3 = edge_index[e3];
- std::array<size_t, 3> &neighs = index[face_id];
- neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
- neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
- neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
- }
- return index;
- }
- std::vector<Vec3crd> its_create_neighbors_index_9(const indexed_triangle_set &its)
- {
- return create_face_neighbors_index(ex_seq, its);
- }
- std::vector<Vec3i> its_create_neighbors_index_10(const indexed_triangle_set &its)
- {
- return create_face_neighbors_index(ex_tbb, its);
- }
- } // namespace Slic3r
|