gouraud.vs 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. #version 110
  2. #define INTENSITY_CORRECTION 0.6
  3. // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
  4. const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
  5. #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
  6. #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
  7. #define LIGHT_TOP_SHININESS 20.0
  8. // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
  9. const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
  10. #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
  11. //#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
  12. //#define LIGHT_FRONT_SHININESS 5.0
  13. #define INTENSITY_AMBIENT 0.3
  14. const vec3 ZERO = vec3(0.0, 0.0, 0.0);
  15. struct SlopeDetection
  16. {
  17. bool actived;
  18. float normal_z;
  19. mat3 volume_world_normal_matrix;
  20. };
  21. uniform mat4 volume_world_matrix;
  22. uniform SlopeDetection slope;
  23. // Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
  24. uniform vec2 z_range;
  25. // Clipping plane - general orientation. Used by the SLA gizmo.
  26. uniform vec4 clipping_plane;
  27. // x = diffuse, y = specular;
  28. varying vec2 intensity;
  29. varying vec3 clipping_planes_dots;
  30. varying vec4 model_pos;
  31. varying vec4 world_pos;
  32. varying float world_normal_z;
  33. varying vec3 eye_normal;
  34. void main()
  35. {
  36. // First transform the normal into camera space and normalize the result.
  37. eye_normal = normalize(gl_NormalMatrix * gl_Normal);
  38. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
  39. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
  40. float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
  41. intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
  42. vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
  43. intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
  44. // Perform the same lighting calculation for the 2nd light source (no specular applied).
  45. NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
  46. intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
  47. model_pos = gl_Vertex;
  48. // Point in homogenous coordinates.
  49. world_pos = volume_world_matrix * gl_Vertex;
  50. // z component of normal vector in world coordinate used for slope shading
  51. world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0;
  52. gl_Position = ftransform();
  53. // Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
  54. clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
  55. }