123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715 |
- ///|/ Copyright (c) Prusa Research 2016 - 2023 Vojtěch Bubník @bubnikv, Pavel Mikuš @Godrak, Enrico Turri @enricoturri1966, Lukáš Matěna @lukasmatena, Lukáš Hejl @hejllukas, Filip Sykala @Jony01, Tomáš Mészáros @tamasmeszaros, Vojtěch Král @vojtechkral
- ///|/ Copyright (c) SuperSlicer 2019 Remi Durand @supermerill
- ///|/ Copyright (c) Slic3r 2013 - 2016 Alessandro Ranellucci @alranel
- ///|/ Copyright (c) 2016 Mark Walker
- ///|/
- ///|/ ported from lib/Slic3r/Point.pm:
- ///|/ Copyright (c) Prusa Research 2018 Vojtěch Bubník @bubnikv
- ///|/ Copyright (c) Slic3r 2011 - 2015 Alessandro Ranellucci @alranel
- ///|/
- ///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
- ///|/
- #ifndef slic3r_Point_hpp_
- #define slic3r_Point_hpp_
- #include "libslic3r.h"
- #include <cstddef>
- #include <vector>
- #include <cmath>
- #include <string>
- #include <sstream>
- #include <unordered_map>
- #include <oneapi/tbb/scalable_allocator.h>
- #include <Eigen/Geometry>
- #include "LocalesUtils.hpp"
- namespace Slic3r {
- class BoundingBox;
- class BoundingBoxf;
- class Point;
- using Vector = Point;
- // Base template for eigen derived vectors
- template<int N, int M, class T>
- using Mat = Eigen::Matrix<T, N, M, Eigen::DontAlign, N, M>;
- template<int N, class T> using Vec = Mat<N, 1, T>;
- template<typename NumberType>
- using DynVec = Eigen::Matrix<NumberType, Eigen::Dynamic, 1>;
- // Eigen types, to replace the Slic3r's own types in the future.
- // Vector types with a fixed point coordinate base type.
- using Vec2crd = Eigen::Matrix<coord_t, 2, 1, Eigen::DontAlign>;
- using Vec3crd = Eigen::Matrix<coord_t, 3, 1, Eigen::DontAlign>;
- //using Vec2i32 = Eigen::Matrix<int, 2, 1, Eigen::DontAlign>;
- //using Vec3i = Eigen::Matrix<int, 3, 1, Eigen::DontAlign>;
- //using Vec4i = Eigen::Matrix<int, 4, 1, Eigen::DontAlign>;
- using Vec2i32 = Eigen::Matrix<int32_t, 2, 1, Eigen::DontAlign>;
- using Vec2i64 = Eigen::Matrix<int64_t, 2, 1, Eigen::DontAlign>;
- using Vec3i32 = Eigen::Matrix<int32_t, 3, 1, Eigen::DontAlign>;
- using Vec3i64 = Eigen::Matrix<int64_t, 3, 1, Eigen::DontAlign>;
- using Vec4i32 = Eigen::Matrix<int32_t, 4, 1, Eigen::DontAlign>;
- // Vector types with a double coordinate base type.
- using Vec2f = Eigen::Matrix<float, 2, 1, Eigen::DontAlign>;
- using Vec3f = Eigen::Matrix<float, 3, 1, Eigen::DontAlign>;
- using Vec4f = Eigen::Matrix<float, 4, 1, Eigen::DontAlign>;
- using Vec2d = Eigen::Matrix<double, 2, 1, Eigen::DontAlign>;
- using Vec3d = Eigen::Matrix<double, 3, 1, Eigen::DontAlign>;
- using Vec4d = Eigen::Matrix<double, 4, 1, Eigen::DontAlign>;
- template<typename BaseType>
- using PointsAllocator = tbb::scalable_allocator<BaseType>;
- //using PointsAllocator = std::allocator<BaseType>;
- using Points = std::vector<Point, PointsAllocator<Point>>;
- using PointPtrs = std::vector<Point*>;
- using PointConstPtrs = std::vector<const Point*>;
- using Points3 = std::vector<Vec3crd>;
- using Pointfs = std::vector<Vec2d>;
- using Vec2ds = std::vector<Vec2d>;
- using Pointf3s = std::vector<Vec3d>;
- // for storing product
- using P2 = Eigen::Matrix<Coord2, 2, 1, Eigen::DontAlign>;
- using VecOfPoints = std::vector<Points, PointsAllocator<Points>>;
- using Matrix2f = Eigen::Matrix<float, 2, 2, Eigen::DontAlign>;
- using Matrix2d = Eigen::Matrix<double, 2, 2, Eigen::DontAlign>;
- using Matrix3f = Eigen::Matrix<float, 3, 3, Eigen::DontAlign>;
- using Matrix3d = Eigen::Matrix<double, 3, 3, Eigen::DontAlign>;
- using Matrix4f = Eigen::Matrix<float, 4, 4, Eigen::DontAlign>;
- using Matrix4d = Eigen::Matrix<double, 4, 4, Eigen::DontAlign>;
- template<int N, class T>
- using Transform = Eigen::Transform<float, N, Eigen::Affine, Eigen::DontAlign>;
- using Transform2f = Eigen::Transform<float, 2, Eigen::Affine, Eigen::DontAlign>;
- using Transform2d = Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign>;
- using Transform3f = Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign>;
- using Transform3d = Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign>;
- // I don't know why Eigen::Transform::Identity() return a const object...
- template<int N, class T> Transform<N, T> identity() { return Transform<N, T>::Identity(); }
- inline const auto &identity3f = identity<3, float>;
- inline const auto &identity3d = identity<3, double>;
- inline coordf_t dot(const Vec2d &v1, const Vec2d &v2) { return v1.x() * v2.x() + v1.y() * v2.y(); }
- inline coordf_t dot(const Vec2d &v) { return v.x() * v.x() + v.y() * v.y(); }
- inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs.x() < rhs.x() || (lhs.x() == rhs.x() && lhs.y() < rhs.y()); }
- // Cross product of two 2D vectors.
- // None of the vectors may be of int32_t type as the result would overflow.
- template<typename Derived, typename Derived2>
- inline typename Derived::Scalar cross2(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2)
- {
- static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
- static_assert(Derived2::IsVectorAtCompileTime && int(Derived2::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
- static_assert(! std::is_same<typename Derived::Scalar, int32_t>::value, "cross2(): Scalar type must not be int32_t, otherwise the cross product would overflow.");
- static_assert(std::is_same<typename Derived::Scalar, typename Derived2::Scalar>::value, "cross2(): Scalar types of 1st and 2nd operand must be equal.");
- return v1.x() * v2.y() - v1.y() * v2.x();
- }
- // cross2 that use double as intermediate values, to avoid overflow of int types.
- template<typename Derived, typename Derived2>
- inline typename Derived::Scalar cross2_double(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2)
- {
- static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
- static_assert(Derived2::IsVectorAtCompileTime && int(Derived2::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
- static_assert(! std::is_same<typename Derived::Scalar, int32_t>::value, "cross2(): Scalar type must not be int32_t, otherwise the cross product would overflow.");
- static_assert(std::is_same<typename Derived::Scalar, typename Derived2::Scalar>::value, "cross2(): Scalar types of 1st and 2nd operand must be equal.");
- return Derived::Scalar(double(v1.x()) * double(v2.y()) - double(v1.y()) * double(v2.x()));
- }
- // 2D vector perpendicular to the argument.
- template<typename Derived>
- inline Eigen::Matrix<typename Derived::Scalar, 2, 1, Eigen::DontAlign> perp(const Eigen::MatrixBase<Derived> &v)
- {
- static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "perp(): parameter is not a 2D vector");
- return { - v.y(), v.x() };
- }
- #if _DEBUG
- inline double ccw_angle_old_test(const Vec2crd &me, const Vec2crd &p1, const Vec2crd &p2)
- {
- //FIXME this calculates an atan2 twice! Project one vector into the other!
- double angle = atan2(p1.x() - (me).x(), p1.y() - (me).y())
- - atan2(p2.x() - (me).x(), p2.y() - (me).y());
- // we only want to return only positive angles
- return angle <= 0 ? angle + 2*PI : angle;
- }
- #endif
- inline double abs_angle(double rad) {
- return rad <= 0 ? rad + 2 * PI : rad;
- }
- // Angle from v1 to v2, returning double atan2(y, x) normalized to <-PI, PI>.
- // By rotating v1 by this angle in the CCW direction, you get the direction of v2
- // This rotation is CCW if the angle is >0.
- template<typename Derived, typename Derived2>
- inline double angle_ccw(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2) {
- static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "angle(): first parameter is not a 2D vector");
- static_assert(Derived2::IsVectorAtCompileTime && int(Derived2::SizeAtCompileTime) == 2, "angle(): second parameter is not a 2D vector");
- auto v1d = v1.template cast<double>();
- auto v2d = v2.template cast<double>();
- return atan2(cross2(v1d, v2d), v1d.dot(v2d));
- }
- template<typename Derived>
- Eigen::Matrix<typename Derived::Scalar, 2, 1, Eigen::DontAlign> to_2d(const Eigen::MatrixBase<Derived> &ptN) {
- static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) >= 3, "to_2d(): first parameter is not a 3D or higher dimensional vector");
- return ptN.template head<2>();
- }
- template<typename Derived>
- inline Eigen::Matrix<typename Derived::Scalar, 3, 1, Eigen::DontAlign> to_3d(const Eigen::MatrixBase<Derived> &pt, const typename Derived::Scalar z) {
- static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "to_3d(): first parameter is not a 2D vector");
- return { pt.x(), pt.y(), z };
- }
- inline Vec2d unscale(coord_t x, coord_t y) { return Vec2d(unscaled(x), unscaled(y)); }
- inline Vec2d unscale(const Vec2crd &pt) { return Vec2d(unscaled(pt.x()), unscaled(pt.y())); }
- inline Vec2d unscale(const Vec2d &pt) { return Vec2d(unscaled(pt.x()), unscaled(pt.y())); }
- inline Vec3d unscale(coord_t x, coord_t y, coord_t z) { return Vec3d(unscaled(x), unscaled(y), unscaled(z)); }
- inline Vec3d unscale(const Vec3crd &pt) { return Vec3d(unscaled(pt.x()), unscaled(pt.y()), unscaled(pt.z())); }
- inline Vec3d unscale(const Vec3d &pt) { return Vec3d(unscaled(pt.x()), unscaled(pt.y()), unscaled(pt.z())); }
- inline std::string to_string(const Vec2crd &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + "]"; }
- inline std::string to_string(const Vec2d &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + "]"; }
- inline std::string to_string(const Vec3crd &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + ", " + float_to_string_decimal_point(pt.z()) + "]"; }
- inline std::string to_string(const Vec3d &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + ", " + float_to_string_decimal_point(pt.z()) + "]"; }
- std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t);
- Pointf3s transform(const Pointf3s& points, const Transform3d& t);
- /// <summary>
- /// Check whether transformation matrix contains odd number of mirroring.
- /// NOTE: In code is sometime function named is_left_handed
- /// </summary>
- /// <param name="transform">Transformation to check</param>
- /// <returns>Is positive determinant</returns>
- inline bool has_reflection(const Transform3d &transform) { return transform.matrix().determinant() < 0; }
- /// <summary>
- /// Getter on base of transformation matrix
- /// </summary>
- /// <param name="index">column index</param>
- /// <param name="transform">source transformation</param>
- /// <returns>Base of transformation matrix</returns>
- inline const Vec3d get_base(unsigned index, const Transform3d &transform) { return transform.linear().col(index); }
- inline const Vec3d get_x_base(const Transform3d &transform) { return get_base(0, transform); }
- inline const Vec3d get_y_base(const Transform3d &transform) { return get_base(1, transform); }
- inline const Vec3d get_z_base(const Transform3d &transform) { return get_base(2, transform); }
- inline const Vec3d get_base(unsigned index, const Transform3d::LinearPart &transform) { return transform.col(index); }
- inline const Vec3d get_x_base(const Transform3d::LinearPart &transform) { return get_base(0, transform); }
- inline const Vec3d get_y_base(const Transform3d::LinearPart &transform) { return get_base(1, transform); }
- inline const Vec3d get_z_base(const Transform3d::LinearPart &transform) { return get_base(2, transform); }
- template<int N, class T> using Vec = Eigen::Matrix<T, N, 1, Eigen::DontAlign, N, 1>;
- class Point : public Vec2crd
- {
- public:
- using coord_type = coord_t;
- Point() : Vec2crd(0, 0) {}
- Point(int32_t x, int32_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
- Point(int64_t x, int32_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
- Point(int32_t x, int64_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
- Point(int64_t x, int64_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
- Point(double x, double y) : Vec2crd(coord_t(std::round(x)), coord_t(std::round(y))) {}
- Point(const Point &rhs) { *this = rhs; }
- explicit Point(const Vec2d& rhs) : Vec2crd(coord_t(std::round(rhs.x())), coord_t(std::round(rhs.y()))) {}
- // This constructor allows you to construct Point from Eigen expressions
- // This constructor has to be implicit (non-explicit) to allow implicit conversion from Eigen expressions.
- template<typename OtherDerived>
- Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
- static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
- static Point new_scale(const Point &p) { return Point(scale_t(p.x()), scale_t(p.y())); }
- template<typename OtherDerived>
- static Point new_scale(const Eigen::MatrixBase<OtherDerived> &v) { return Point(scale_t(v.x()), scale_t(v.y())); }
- // This method allows you to assign Eigen expressions to MyVectorType
- template<typename OtherDerived>
- Point& operator=(const Eigen::MatrixBase<OtherDerived> &other)
- {
- this->Vec2crd::operator=(other);
- return *this;
- }
- Point& operator+=(const Point& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
- Point& operator-=(const Point& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
- Point& operator*=(const double &rhs) { this->x() = coord_t(this->x() * rhs); this->y() = coord_t(this->y() * rhs); return *this; }
- //Point operator*(const double &rhs) const { return Point(this->x() * rhs, this->y() * rhs); } //already exist outside
- void rotate(double angle) { this->rotate(std::cos(angle), std::sin(angle)); }
- void rotate(double cos_a, double sin_a) {
- double cur_x = (double)this->x();
- double cur_y = (double)this->y();
- this->x() = (coord_t)round(cos_a * cur_x - sin_a * cur_y);
- this->y() = (coord_t)round(cos_a * cur_y + sin_a * cur_x);
- }
- void rotate(double angle, const Point ¢er);
- Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
- Point rotated(double cos_a, double sin_a) const { Point res(*this); res.rotate(cos_a, sin_a); return res; }
- Point rotated(double angle, const Point ¢er) const { Point res(*this); res.rotate(angle, center); return res; }
- Point projection_onto(const Point &line_pa, const Point &line_pb) const;
- Point interpolate(const double percent, const Point &p) const;
- coordf_t distance_to(const Point &point) const { return (point - *this).cast<coordf_t>().norm(); }
- coordf_t distance_to_square(const Point &point) const {
- coordf_t dx = double(point.x() - this->x());
- coordf_t dy = double(point.y() - this->y());
- return dx*dx + dy*dy;
- }
- bool coincides_with(const Point &point) const { return this->x() == point.x() && this->y() == point.y(); }
- bool coincides_with_epsilon(const Point &point) const {
- return std::abs(this->x() - point.x()) < SCALED_EPSILON/2 && std::abs(this->y() - point.y()) < SCALED_EPSILON/2;
- }
- };
- inline bool operator<(const Point &l, const Point &r)
- {
- return l.x() < r.x() || (l.x() == r.x() && l.y() < r.y());
- }
- inline Point operator* (const Point& l, const double &r)
- {
- return {coord_t(l.x() * r), coord_t(l.y() * r)};
- }
- inline bool is_approx(const Point &p1, const Point &p2, coord_t epsilon = coord_t(SCALED_EPSILON))
- {
- Point d = (p2 - p1).cwiseAbs();
- return d.x() < epsilon && d.y() < epsilon;
- }
- inline bool is_approx(const Vec2f &p1, const Vec2f &p2, float epsilon = float(EPSILON))
- {
- Vec2f d = (p2 - p1).cwiseAbs();
- return d.x() < epsilon && d.y() < epsilon;
- }
- inline bool is_approx(const Vec2d &p1, const Vec2d &p2, double epsilon = EPSILON)
- {
- Vec2d d = (p2 - p1).cwiseAbs();
- return d.x() < epsilon && d.y() < epsilon;
- }
- inline bool is_approx(const Vec3f &p1, const Vec3f &p2, float epsilon = float(EPSILON))
- {
- Vec3f d = (p2 - p1).cwiseAbs();
- return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
- }
- inline bool is_approx(const Vec3d &p1, const Vec3d &p2, double epsilon = EPSILON)
- {
- Vec3d d = (p2 - p1).cwiseAbs();
- return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
- }
- inline Point lerp(const Point &a, const Point &b, double t)
- {
- assert((t >= -EPSILON) && (t <= 1. + EPSILON));
- return ((1. - t) * a.cast<double>() + t * b.cast<double>()).cast<coord_t>();
- }
- // if IncludeBoundary, then a bounding box is defined even for a single point.
- // otherwise a bounding box is only defined if it has a positive area.
- template<bool IncludeBoundary = false>
- BoundingBox get_extents(const Points &pts);
- extern template BoundingBox get_extents<false>(const Points &pts);
- extern template BoundingBox get_extents<true>(const Points &pts);
- // if IncludeBoundary, then a bounding box is defined even for a single point.
- // otherwise a bounding box is only defined if it has a positive area.
- template<bool IncludeBoundary = false>
- BoundingBox get_extents(const VecOfPoints &pts);
- extern template BoundingBox get_extents<false>(const VecOfPoints &pts);
- extern template BoundingBox get_extents<true>(const VecOfPoints &pts);
- BoundingBoxf get_extents(const std::vector<Vec2d> &pts);
- int nearest_point_index(const Points &points, const Point &pt);
- inline std::pair<Point, bool> nearest_point(const Points &points, const Point &pt)
- {
- int idx = nearest_point_index(points, pt);
- return idx == -1 ? std::make_pair(Point(), false) : std::make_pair(points[idx], true);
- }
- // Test for duplicate points in a vector of points.
- // The points are copied, sorted and checked for duplicates globally.
- bool has_duplicate_points(Points &&pts);
- inline bool has_duplicate_points(const Points &pts)
- {
- Points cpy = pts;
- return has_duplicate_points(std::move(cpy));
- }
- // Test for duplicate points in a vector of points.
- // Only successive points are checked for equality.
- inline bool has_duplicate_successive_points(const Points &pts)
- {
- for (size_t i = 1; i < pts.size(); ++ i)
- if (pts[i - 1] == pts[i])
- return true;
- return false;
- }
- // Test for duplicate points in a vector of points.
- // Only successive points are checked for equality. Additionally, first and last points are compared for equality.
- inline bool has_duplicate_successive_points_closed(const Points &pts)
- {
- return has_duplicate_successive_points(pts) || (pts.size() >= 2 && pts.front() == pts.back());
- }
- // Collect adjecent(duplicit points)
- Points collect_duplicates(Points pts /* Copy */);
- inline bool shorter_then(const Point& p0, const coord_t len)
- {
- if (p0.x() > len || p0.x() < -len)
- return false;
- if (p0.y() > len || p0.y() < -len)
- return false;
- return p0.cast<int64_t>().squaredNorm() <= Slic3r::sqr(int64_t(len));
- }
- namespace int128 {
- // Exact orientation predicate,
- // returns +1: CCW, 0: collinear, -1: CW.
- int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3);
- // Exact orientation predicate,
- // returns +1: CCW, 0: collinear, -1: CW.
- int cross(const Vec2crd &v1, const Vec2crd &v2);
- }
- // To be used by std::unordered_map, std::unordered_multimap and friends.
- struct PointHash {
- size_t operator()(const Vec2crd &pt) const noexcept {
- return coord_t((89 * 31 + int64_t(pt.x())) * 31 + pt.y());
- }
- };
- // A generic class to search for a closest Point in a given radius.
- // It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
- // The PointAccessor has to return const Point*.
- // If a nullptr is returned, it is ignored by the query.
- template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
- {
- public:
- ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) :
- m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
- {
- // Resolution of a grid, twice the search radius + some epsilon.
- coord_t gridres = 2 * m_search_radius + 4;
- m_grid_resolution = gridres;
- assert(m_grid_resolution > 0);
- assert(m_grid_resolution < (coord_t(1) << 30));
- // Compute m_grid_log2 = log2(m_grid_resolution)
- if (m_grid_resolution > 32767) {
- m_grid_resolution >>= 16;
- m_grid_log2 += 16;
- }
- if (m_grid_resolution > 127) {
- m_grid_resolution >>= 8;
- m_grid_log2 += 8;
- }
- if (m_grid_resolution > 7) {
- m_grid_resolution >>= 4;
- m_grid_log2 += 4;
- }
- if (m_grid_resolution > 1) {
- m_grid_resolution >>= 2;
- m_grid_log2 += 2;
- }
- if (m_grid_resolution > 0)
- ++ m_grid_log2;
- m_grid_resolution = ((coord_t)1) << m_grid_log2;
- assert(m_grid_resolution >= gridres);
- assert(gridres > m_grid_resolution / 2);
- }
- void insert(const ValueType &value) {
- const Vec2crd *pt = m_point_accessor(value);
- if (pt != nullptr)
- m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
- }
- void insert(ValueType &&value) {
- const Vec2crd *pt = m_point_accessor(value);
- if (pt != nullptr)
- m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
- }
- // Erase a data point equal to value. (ValueType has to declare the operator==).
- // Returns true if the data point equal to value was found and removed.
- bool erase(const ValueType &value) {
- const Point *pt = m_point_accessor(value);
- if (pt != nullptr) {
- // Range of fragment starts around grid_corner, close to pt.
- auto range = m_map.equal_range(Point((*pt).x()>>m_grid_log2, (*pt).y()>>m_grid_log2));
- // Remove the first item.
- for (auto it = range.first; it != range.second; ++ it) {
- if (it->second == value) {
- m_map.erase(it);
- return true;
- }
- }
- }
- return false;
- }
- // Return a pair of <ValueType*, distance_squared>
- std::pair<const ValueType*, double> find(const Vec2crd &pt) {
- // Iterate over 4 closest grid cells around pt,
- // find the closest start point inside these cells to pt.
- const ValueType *value_min = nullptr;
- double dist_min = std::numeric_limits<double>::max();
- // Round pt to a closest grid_cell corner.
- Vec2crd grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
- // For four neighbors of grid_corner:
- for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
- for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
- // Range of fragment starts around grid_corner, close to pt.
- auto range = m_map.equal_range(Vec2crd(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
- // Find the map entry closest to pt.
- for (auto it = range.first; it != range.second; ++it) {
- const ValueType &value = it->second;
- const Vec2crd *pt2 = m_point_accessor(value);
- if (pt2 != nullptr) {
- const double d2 = (pt - *pt2).cast<double>().squaredNorm();
- if (d2 < dist_min) {
- dist_min = d2;
- value_min = &value;
- }
- }
- }
- }
- }
- return (value_min != nullptr && dist_min < coordf_t(m_search_radius) * coordf_t(m_search_radius)) ?
- std::make_pair(value_min, dist_min) :
- std::make_pair(nullptr, std::numeric_limits<double>::max());
- }
- // Returns all pairs of values and squared distances.
- std::vector<std::pair<const ValueType*, double>> find_all(const Vec2crd &pt) {
- // Iterate over 4 closest grid cells around pt,
- // Round pt to a closest grid_cell corner.
- Vec2crd grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
- // For four neighbors of grid_corner:
- std::vector<std::pair<const ValueType*, double>> out;
- const double r2 = double(m_search_radius) * m_search_radius;
- for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
- for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
- // Range of fragment starts around grid_corner, close to pt.
- auto range = m_map.equal_range(Vec2crd(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
- // Find the map entry closest to pt.
- for (auto it = range.first; it != range.second; ++it) {
- const ValueType &value = it->second;
- const Vec2crd *pt2 = m_point_accessor(value);
- if (pt2 != nullptr) {
- const double d2 = (pt - *pt2).cast<double>().squaredNorm();
- if (d2 <= r2)
- out.emplace_back(&value, d2);
- }
- }
- }
- }
- return out;
- }
- private:
- using map_type = typename std::unordered_multimap<Vec2crd, ValueType, PointHash>;
- PointAccessor m_point_accessor;
- map_type m_map;
- coord_t m_search_radius;
- coord_t m_grid_resolution;
- coord_t m_grid_log2;
- };
- std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf);
- // /////////////////////////////////////////////////////////////////////////////
- // Type safe conversions to and from scaled and unscaled coordinates
- // /////////////////////////////////////////////////////////////////////////////
- // Semantics are the following:
- // Upscaling (scaled()): only from floating point types (or Vec) to either
- // floating point or integer 'scaled coord' coordinates.
- // Downscaling (unscaled()): from arithmetic (or Vec) to floating point only
- // Conversion definition from unscaled to floating point scaled
- template<class Tout,
- class Tin,
- class = FloatingOnly<Tin>>
- inline constexpr FloatingOnly<Tout> scaled(const Tin &v) noexcept
- {
- return Tout(v / Tin(SCALING_FACTOR));
- }
- // Conversion definition from unscaled to integer 'scaled coord'.
- // TODO: is the rounding necessary? Here it is commented out to show that
- // it can be different for integers but it does not have to be. Using
- // std::round means loosing noexcept and constexpr modifiers
- template<class Tout = coord_t, class Tin, class = FloatingOnly<Tin>>
- inline constexpr ScaledCoordOnly<Tout> scaled(const Tin &v) noexcept
- {
- //return static_cast<Tout>(std::round(v / SCALING_FACTOR));
- return Tout(v / Tin(SCALING_FACTOR));
- }
- // Conversion for Eigen vectors (N dimensional points)
- template<class Tout = coord_t,
- class Tin,
- int N,
- class = FloatingOnly<Tin>,
- int...EigenArgs>
- inline Eigen::Matrix<ArithmeticOnly<Tout>, N, EigenArgs...>
- scaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v)
- {
- return (v / SCALING_FACTOR).template cast<Tout>();
- }
- // Conversion from arithmetic scaled type to floating point unscaled
- template<class Tout = double,
- class Tin,
- class = ArithmeticOnly<Tin>,
- class = FloatingOnly<Tout>>
- inline constexpr Tout unscaled(const Tin &v) noexcept
- {
- return Tout(v) * Tout(SCALING_FACTOR);
- }
- // Unscaling for Eigen vectors. Input base type can be arithmetic, output base
- // type can only be floating point.
- template<class Tout = double,
- class Tin,
- int N,
- class = ArithmeticOnly<Tin>,
- class = FloatingOnly<Tout>,
- int...EigenArgs>
- inline constexpr Eigen::Matrix<Tout, N, EigenArgs...>
- unscaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v) noexcept
- {
- return v.template cast<Tout>() * Tout(SCALING_FACTOR);
- }
- // Align a coordinate to a grid. The coordinate may be negative,
- // the aligned value will never be bigger than the original one.
- inline coord_t align_to_grid(const coord_t coord, const coord_t spacing) {
- // Current C++ standard defines the result of integer division to be rounded to zero,
- // for both positive and negative numbers. Here we want to round down for negative
- // numbers as well.
- coord_t aligned = (coord < 0) ?
- ((coord - spacing + 1) / spacing) * spacing :
- (coord / spacing) * spacing;
- assert(aligned <= coord);
- return aligned;
- }
- inline Point align_to_grid(Point coord, Point spacing)
- { return Point(align_to_grid(coord.x(), spacing.x()), align_to_grid(coord.y(), spacing.y())); }
- inline coord_t align_to_grid(coord_t coord, coord_t spacing, coord_t base)
- { return base + align_to_grid(coord - base, spacing); }
- inline Point align_to_grid(Point coord, Point spacing, Point base)
- { return Point(align_to_grid(coord.x(), spacing.x(), base.x()), align_to_grid(coord.y(), spacing.y(), base.y())); }
- // MinMaxLimits
- template<typename T> struct MinMax { T min; T max;};
- template<typename T>
- static bool apply(std::optional<T> &val, const MinMax<T> &limit) {
- if (!val.has_value()) return false;
- return apply<T>(*val, limit);
- }
- template<typename T>
- static bool apply(T &val, const MinMax<T> &limit)
- {
- if (val > limit.max) {
- val = limit.max;
- return true;
- }
- if (val < limit.min) {
- val = limit.min;
- return true;
- }
- return false;
- }
- } // namespace Slic3r
- // start Boost
- #include <boost/version.hpp>
- #include <boost/polygon/polygon.hpp>
- namespace boost { namespace polygon {
- template <>
- struct geometry_concept<Slic3r::Point> { using type = point_concept; };
-
- template <>
- struct point_traits<Slic3r::Point> {
- using coordinate_type = coord_t;
-
- static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
- return static_cast<coordinate_type>(point((orient == HORIZONTAL) ? 0 : 1));
- }
- };
-
- template <>
- struct point_mutable_traits<Slic3r::Point> {
- using coordinate_type = coord_t;
- static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
- point((orient == HORIZONTAL) ? 0 : 1) = value;
- }
- static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
- return Slic3r::Point(x_value, y_value);
- }
- };
- } }
- // end Boost
- #include <cereal/cereal.hpp>
- // Serialization through the Cereal library
- namespace cereal {
- // template<class Archive> void serialize(Archive& archive, Slic3r::Vec2crd &v) { archive(v.x(), v.y()); }
- // template<class Archive> void serialize(Archive& archive, Slic3r::Vec3crd &v) { archive(v.x(), v.y(), v.z()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i32 &v) { archive(v.x(), v.y()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i32 &v) { archive(v.x(), v.y(), v.z()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i64 &v) { archive(v.x(), v.y()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i64 &v) { archive(v.x(), v.y(), v.z()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec2f &v) { archive(v.x(), v.y()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec3f &v) { archive(v.x(), v.y(), v.z()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec2d &v) { archive(v.x(), v.y()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec3d &v) { archive(v.x(), v.y(), v.z()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Matrix4d &m){ archive(binary_data(m.data(), 4*4*sizeof(double))); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Matrix2f &m){ archive(binary_data(m.data(), 2*2*sizeof(float))); }
-
- // Eigen Transformation serialization
- template<class Archive, class T, int N> inline void serialize(Archive& archive, Eigen::Transform<T, N, Eigen::Affine, Eigen::DontAlign>& t){ archive(t.matrix()); }
- }
- // To be able to use Vec<> and Mat<> in range based for loops:
- namespace Eigen {
- template<class T, int N, int M>
- T* begin(Slic3r::Mat<N, M, T> &mat) { return mat.data(); }
- template<class T, int N, int M>
- T* end(Slic3r::Mat<N, M, T> &mat) { return mat.data() + N * M; }
- template<class T, int N, int M>
- const T* begin(const Slic3r::Mat<N, M, T> &mat) { return mat.data(); }
- template<class T, int N, int M>
- const T* end(const Slic3r::Mat<N, M, T> &mat) { return mat.data() + N * M; }
- } // namespace Eigen
- #endif
|