variable_layer_height.vs 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. #version 110
  2. #define INTENSITY_CORRECTION 0.6
  3. const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
  4. #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
  5. #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
  6. #define LIGHT_TOP_SHININESS 20.0
  7. const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
  8. #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
  9. //#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
  10. //#define LIGHT_FRONT_SHININESS 5.0
  11. #define INTENSITY_AMBIENT 0.3
  12. uniform mat4 volume_world_matrix;
  13. // x = tainted, y = specular;
  14. varying vec2 intensity;
  15. varying float object_z;
  16. void main()
  17. {
  18. // First transform the normal into camera space and normalize the result.
  19. vec3 normal = normalize(gl_NormalMatrix * gl_Normal);
  20. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
  21. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
  22. float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
  23. intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
  24. intensity.y = 0.0;
  25. if (NdotL > 0.0)
  26. intensity.y += LIGHT_TOP_SPECULAR * pow(max(dot(normal, reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
  27. // Perform the same lighting calculation for the 2nd light source (no specular)
  28. NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
  29. intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
  30. // Scaled to widths of the Z texture.
  31. object_z = (volume_world_matrix * gl_Vertex).z;
  32. gl_Position = ftransform();
  33. }