123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874 |
- #include <catch2/catch.hpp>
- #include "libslic3r/Point.hpp"
- #include "libslic3r/BoundingBox.hpp"
- #include "libslic3r/Polygon.hpp"
- #include "libslic3r/Polyline.hpp"
- #include "libslic3r/Line.hpp"
- #include "libslic3r/Geometry.hpp"
- #include "libslic3r/Geometry/Circle.hpp"
- #include "libslic3r/Geometry/ConvexHull.hpp"
- #include "libslic3r/ClipperUtils.hpp"
- #include "libslic3r/ShortestPath.hpp"
- //#include <random>
- //#include "libnest2d/tools/benchmark.h"
- #include "libslic3r/SVG.hpp"
- #include "../data/prusaparts.hpp"
- #include <unordered_set>
- using namespace Slic3r;
- TEST_CASE("Line::parallel_to", "[Geometry]"){
- Line l{ { 100000, 0 }, { 0, 0 } };
- Line l2{ { 200000, 0 }, { 0, 0 } };
- REQUIRE(l.parallel_to(l));
- REQUIRE(l.parallel_to(l2));
- Line l3(l2);
- l3.rotate(0.9 * EPSILON, { 0, 0 });
- REQUIRE(l.parallel_to(l3));
- Line l4(l2);
- l4.rotate(1.1 * EPSILON, { 0, 0 });
- REQUIRE(! l.parallel_to(l4));
- // The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all.
- Line l5{ { 20000, 0 }, { 0, 0 } };
- l5.rotate(1.1 * EPSILON, { 0, 0 });
- REQUIRE(l.parallel_to(l5));
- l.rotate(1., { 0, 0 });
- Point offset{ 342876, 97636249 };
- l.translate(offset);
- l3.rotate(1., { 0, 0 });
- l3.translate(offset);
- l4.rotate(1., { 0, 0 });
- l4.translate(offset);
- REQUIRE(l.parallel_to(l3));
- REQUIRE(!l.parallel_to(l4));
- }
- TEST_CASE("Line::perpendicular_to", "[Geometry]") {
- Line l{ { 100000, 0 }, { 0, 0 } };
- Line l2{ { 0, 200000 }, { 0, 0 } };
- REQUIRE(! l.perpendicular_to(l));
- REQUIRE(l.perpendicular_to(l2));
- Line l3(l2);
- l3.rotate(0.9 * EPSILON, { 0, 0 });
- REQUIRE(l.perpendicular_to(l3));
- Line l4(l2);
- l4.rotate(1.1 * EPSILON, { 0, 0 });
- REQUIRE(! l.perpendicular_to(l4));
- // The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all.
- Line l5{ { 0, 20000 }, { 0, 0 } };
- l5.rotate(1.1 * EPSILON, { 0, 0 });
- REQUIRE(l.perpendicular_to(l5));
- l.rotate(1., { 0, 0 });
- Point offset{ 342876, 97636249 };
- l.translate(offset);
- l3.rotate(1., { 0, 0 });
- l3.translate(offset);
- l4.rotate(1., { 0, 0 });
- l4.translate(offset);
- REQUIRE(l.perpendicular_to(l3));
- REQUIRE(! l.perpendicular_to(l4));
- }
- TEST_CASE("Polygon::contains works properly", "[Geometry]"){
- // this test was failing on Windows (GH #1950)
- Slic3r::Polygon polygon(Points({
- {207802834,-57084522},
- {196528149,-37556190},
- {173626821,-25420928},
- {171285751,-21366123},
- {118673592,-21366123},
- {116332562,-25420928},
- {93431208,-37556191},
- {82156517,-57084523},
- {129714478,-84542120},
- {160244873,-84542120}
- }));
- Point point(95706562, -57294774);
- REQUIRE(polygon.contains(point));
- }
- SCENARIO("Intersections of line segments", "[Geometry]"){
- GIVEN("Integer coordinates"){
- Line line1(Point(5,15),Point(30,15));
- Line line2(Point(10,20), Point(10,10));
- THEN("The intersection is valid"){
- Point point;
- line1.intersection(line2,&point);
- REQUIRE(Point(10,15) == point);
- }
- }
- GIVEN("Scaled coordinates"){
- Line line1(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001));
- Line line2(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001));
- THEN("There is still an intersection"){
- Point point;
- REQUIRE(line1.intersection(line2,&point));
- }
- }
- }
- SCENARIO("polygon_is_convex works") {
- GIVEN("A square of dimension 10") {
- WHEN("Polygon is convex clockwise") {
- Polygon cw_square { { {0, 0}, {0,10}, {10,10}, {10,0} } };
- THEN("it is not convex") {
- REQUIRE(! polygon_is_convex(cw_square));
- }
- }
- WHEN("Polygon is convex counter-clockwise") {
- Polygon ccw_square { { {0, 0}, {10,0}, {10,10}, {0,10} } };
- THEN("it is convex") {
- REQUIRE(polygon_is_convex(ccw_square));
- }
- }
- }
- GIVEN("A concave polygon") {
- Polygon concave = { {0,0}, {10,0}, {10,10}, {0,10}, {0,6}, {4,6}, {4,4}, {0,4} };
- THEN("It is not convex") {
- REQUIRE(! polygon_is_convex(concave));
- }
- }
- }
- TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){
- Slic3r::Polyline polyline;
- polyline.points = Points({Point(0, 0), Point(10, 0), Point(20, 0)});
- REQUIRE(polyline.lines().at(0).a == Point(0,0));
- REQUIRE(polyline.lines().at(0).b == Point(10,0));
- REQUIRE(polyline.lines().at(1).a == Point(10,0));
- REQUIRE(polyline.lines().at(1).b == Point(20,0));
- }
- TEST_CASE("Splitting a Polygon generates a polyline correctly", "[Geometry]"){
- Slic3r::Polygon polygon(Points({Point(0, 0), Point(10, 0), Point(5, 5)}));
- Slic3r::Polyline split = polygon.split_at_index(1);
- REQUIRE(split.points[0]==Point(10,0));
- REQUIRE(split.points[1]==Point(5,5));
- REQUIRE(split.points[2]==Point(0,0));
- REQUIRE(split.points[3]==Point(10,0));
- }
- SCENARIO("BoundingBox", "[Geometry]") {
- WHEN("Bounding boxes are scaled") {
- BoundingBox bb(Points({Point(0, 1), Point(10, 2), Point(20, 2)}));
- bb.scale(2);
- REQUIRE(bb.min == Point(0,2));
- REQUIRE(bb.max == Point(40,4));
- }
- WHEN("BoundingBox constructed from points") {
- BoundingBox bb(Points{ {100,200}, {100, 200}, {500, -600} });
- THEN("minimum is correct") {
- REQUIRE(bb.min == Point{100,-600});
- }
- THEN("maximum is correct") {
- REQUIRE(bb.max == Point{500,200});
- }
- }
- WHEN("BoundingBox constructed from a single point") {
- BoundingBox bb;
- bb.merge({10, 10});
- THEN("minimum equals to the only defined point") {
- REQUIRE(bb.min == Point{10,10});
- }
- THEN("maximum equals to the only defined point") {
- REQUIRE(bb.max == Point{10,10});
- }
- }
- }
- TEST_CASE("Offseting a line generates a polygon correctly", "[Geometry]"){
- Slic3r::Polyline tmp = { Point(10,10), Point(20,10) };
- Slic3r::Polygon area = offset(tmp,5).at(0);
- REQUIRE(area.area() == Slic3r::Polygon(Points({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area());
- }
- SCENARIO("Circle Fit, 3 points", "[Geometry]") {
- WHEN("Three points make a circle") {
- double s1 = scaled<double>(1.);
- THEN("circle_center(): A center point { 0, 0 } is returned") {
- Vec2d center = Geometry::circle_center(Vec2d{ s1, 0. }, Vec2d{ 0, s1 }, Vec2d{ -s1, 0. }, SCALED_EPSILON);
- REQUIRE(is_approx(center, Vec2d(0, 0)));
- }
- THEN("circle_center(): A center point { 0, 0 } is returned for points in reverse") {
- Vec2d center = Geometry::circle_center(Vec2d{ -s1, 0. }, Vec2d{ 0, s1 }, Vec2d{ s1, 0. }, SCALED_EPSILON);
- REQUIRE(is_approx(center, Vec2d(0, 0)));
- }
- THEN("try_circle_center(): A center point { 0, 0 } is returned") {
- std::optional<Vec2d> center = Geometry::try_circle_center(Vec2d{ s1, 0. }, Vec2d{ 0, s1 }, Vec2d{ -s1, 0. }, SCALED_EPSILON);
- REQUIRE(center);
- REQUIRE(is_approx(*center, Vec2d(0, 0)));
- }
- THEN("try_circle_center(): A center point { 0, 0 } is returned for points in reverse") {
- std::optional<Vec2d> center = Geometry::try_circle_center(Vec2d{ -s1, 0. }, Vec2d{ 0, s1 }, Vec2d{ s1, 0. }, SCALED_EPSILON);
- REQUIRE(center);
- REQUIRE(is_approx(*center, Vec2d(0, 0)));
- }
- }
- WHEN("Three points are collinear") {
- double s1 = scaled<double>(1.);
- THEN("circle_center(): A center point { 2, 0 } is returned") {
- Vec2d center = Geometry::circle_center(Vec2d{ s1, 0. }, Vec2d{ 2. * s1, 0. }, Vec2d{ 3. * s1, 0. }, SCALED_EPSILON);
- REQUIRE(is_approx(center, Vec2d(2. * s1, 0)));
- }
- THEN("try_circle_center(): Fails for collinear points") {
- std::optional<Vec2d> center = Geometry::try_circle_center(Vec2d{ s1, 0. }, Vec2d{ 2. * s1, 0. }, Vec2d{ 3. * s1, 0. }, SCALED_EPSILON);
- REQUIRE(! center);
- }
- }
- }
- SCENARIO("Circle Fit, TaubinFit with Newton's method", "[Geometry]") {
- GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
- Vec2d expected_center(-6, 0);
- Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
- std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
- WHEN("Circle fit is called on the entire array") {
- Vec2d result_center(0,0);
- result_center = Geometry::circle_center_taubin_newton(sample);
- THEN("A center point of -6,0 is returned.") {
- REQUIRE(is_approx(result_center, expected_center));
- }
- }
- WHEN("Circle fit is called on the first four points") {
- Vec2d result_center(0,0);
- result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
- THEN("A center point of -6,0 is returned.") {
- REQUIRE(is_approx(result_center, expected_center));
- }
- }
- WHEN("Circle fit is called on the middle four points") {
- Vec2d result_center(0,0);
- result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
- THEN("A center point of -6,0 is returned.") {
- REQUIRE(is_approx(result_center, expected_center));
- }
- }
- }
- GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
- Vec2d expected_center(-3, 9);
- Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524),
- Vec2d(0, 6.0),
- Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
- std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
- WHEN("Circle fit is called on the entire array") {
- Vec2d result_center(0,0);
- result_center = Geometry::circle_center_taubin_newton(sample);
- THEN("A center point of 3,9 is returned.") {
- REQUIRE(is_approx(result_center, expected_center));
- }
- }
- WHEN("Circle fit is called on the first four points") {
- Vec2d result_center(0,0);
- result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
- THEN("A center point of 3,9 is returned.") {
- REQUIRE(is_approx(result_center, expected_center));
- }
- }
- WHEN("Circle fit is called on the middle four points") {
- Vec2d result_center(0,0);
- result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
- THEN("A center point of 3,9 is returned.") {
- REQUIRE(is_approx(result_center, expected_center));
- }
- }
- }
- GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") {
- Point expected_center { Point::new_scale(-3, 9)};
- Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524),
- Point::new_scale(0, 6.0),
- Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)};
- std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;});
- WHEN("Circle fit is called on the entire array") {
- Point result_center(0,0);
- result_center = Geometry::circle_center_taubin_newton(sample);
- THEN("A center point of scaled 3,9 is returned.") {
- REQUIRE(is_approx(result_center, expected_center));
- }
- }
- WHEN("Circle fit is called on the first four points") {
- Point result_center(0,0);
- result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
- THEN("A center point of scaled 3,9 is returned.") {
- REQUIRE(is_approx(result_center, expected_center));
- }
- }
- WHEN("Circle fit is called on the middle four points") {
- Point result_center(0,0);
- result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
- THEN("A center point of scaled 3,9 is returned.") {
- REQUIRE(is_approx(result_center, expected_center));
- }
- }
- }
- }
- SCENARIO("Circle Fit, least squares by decomposition or by solving normal equation", "[Geometry]") {
- auto test_circle_fit = [](const Geometry::Circled &circle, const Vec2d ¢er, const double radius) {
- THEN("A center point matches.") {
- REQUIRE(is_approx(circle.center, center));
- }
- THEN("Radius matches") {
- REQUIRE(is_approx(circle.radius, radius));
- }
- };
- GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
- const Vec2d expected_center(-6., 0.);
- const double expected_radius = 6.;
- Vec2ds sample{Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
- std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d &a) { return a + expected_center; });
- WHEN("Circle fit is called on the entire array, least squares SVD") {
- test_circle_fit(Geometry::circle_linear_least_squares_svd(sample), expected_center, expected_radius);
- }
- WHEN("Circle fit is called on the first four points, least squares SVD") {
- test_circle_fit(Geometry::circle_linear_least_squares_svd(Vec2ds(sample.cbegin(), sample.cbegin() + 4)), expected_center, expected_radius);
- }
- WHEN("Circle fit is called on the middle four points, least squares SVD") {
- test_circle_fit(Geometry::circle_linear_least_squares_svd(Vec2ds(sample.cbegin() + 2, sample.cbegin() + 6)), expected_center, expected_radius);
- }
- WHEN("Circle fit is called on the entire array, least squares QR decomposition") {
- test_circle_fit(Geometry::circle_linear_least_squares_qr(sample), expected_center, expected_radius);
- }
- WHEN("Circle fit is called on the first four points, least squares QR decomposition") {
- test_circle_fit(Geometry::circle_linear_least_squares_qr(Vec2ds(sample.cbegin(), sample.cbegin() + 4)), expected_center, expected_radius);
- }
- WHEN("Circle fit is called on the middle four points, least squares QR decomposition") {
- test_circle_fit(Geometry::circle_linear_least_squares_qr(Vec2ds(sample.cbegin() + 2, sample.cbegin() + 6)), expected_center, expected_radius);
- }
- WHEN("Circle fit is called on the entire array, least squares by normal equations") {
- test_circle_fit(Geometry::circle_linear_least_squares_normal(sample), expected_center, expected_radius);
- }
- WHEN("Circle fit is called on the first four points, least squares by normal equations") {
- test_circle_fit(Geometry::circle_linear_least_squares_normal(Vec2ds(sample.cbegin(), sample.cbegin() + 4)), expected_center, expected_radius);
- }
- WHEN("Circle fit is called on the middle four points, least squares by normal equations") {
- test_circle_fit(Geometry::circle_linear_least_squares_normal(Vec2ds(sample.cbegin() + 2, sample.cbegin() + 6)), expected_center, expected_radius);
- }
- }
- }
- TEST_CASE("smallest_enclosing_circle_welzl", "[Geometry]") {
- // Some random points in plane.
- Points pts {
- { 89243, 4359 }, { 763465, 59687 }, { 3245, 734987 }, { 2459867, 987634 }, { 759866, 67843982 }, { 9754687, 9834658 }, { 87235089, 743984373 },
- { 65874456, 2987546 }, { 98234524, 657654873 }, { 786243598, 287934765 }, { 824356, 734265 }, { 82576449, 7864534 }, { 7826345, 3984765 }
- };
- const auto c = Slic3r::Geometry::smallest_enclosing_circle_welzl(pts);
- // The radius returned is inflated by SCALED_EPSILON, thus all points should be inside.
- bool all_inside = std::all_of(pts.begin(), pts.end(), [c](const Point &pt){ return c.contains(pt.cast<double>()); });
- auto c2(c);
- c2.radius -= SCALED_EPSILON * 2.1;
- auto num_on_boundary = std::count_if(pts.begin(), pts.end(), [c2](const Point& pt) { return ! c2.contains(pt.cast<double>(), SCALED_EPSILON); });
- REQUIRE(all_inside);
- REQUIRE(num_on_boundary == 3);
- }
- SCENARIO("Path chaining", "[Geometry]") {
- GIVEN("A path") {
- Points points = { Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0) };
- THEN("Chained with no diagonals (thus 26 units long)") {
- // if chain_points() works correctly, these points should be joined with no diagonal paths
- std::vector<Points::size_type> indices = chain_points(points);
- for (Points::size_type i = 0; i + 1 < indices.size(); ++ i) {
- double dist = (points.at(indices.at(i)).cast<double>() - points.at(indices.at(i+1)).cast<double>()).norm();
- REQUIRE(std::abs(dist-26) <= EPSILON);
- }
- }
- }
- GIVEN("Gyroid infill end points") {
- Polylines polylines = {
- { {28122608, 3221037}, {27919139, 56036027} },
- { {33642863, 3400772}, {30875220, 56450360} },
- { {34579315, 3599827}, {35049758, 55971572} },
- { {26483070, 3374004}, {23971830, 55763598} },
- { {38931405, 4678879}, {38740053, 55077714} },
- { {20311895, 5015778}, {20079051, 54551952} },
- { {16463068, 6773342}, {18823514, 53992958} },
- { {44433771, 7424951}, {42629462, 53346059} },
- { {15697614, 7329492}, {15350896, 52089991} },
- { {48085792, 10147132}, {46435427, 50792118} },
- { {48828819, 10972330}, {49126582, 48368374} },
- { {9654526, 12656711}, {10264020, 47691584} },
- { {5726905, 18648632}, {8070762, 45082416} },
- { {54818187, 39579970}, {52974912, 43271272} },
- { {4464342, 37371742}, {5027890, 39106220} },
- { {54139746, 18417661}, {55177987, 38472580} },
- { {56527590, 32058461}, {56316456, 34067185} },
- { {3303988, 29215290}, {3569863, 32985633} },
- { {56255666, 25025857}, {56478310, 27144087} },
- { {4300034, 22805361}, {3667946, 25752601} },
- { {8266122, 14250611}, {6244813, 17751595} },
- { {12177955, 9886741}, {10703348, 11491900} }
- };
- Polylines chained = chain_polylines(polylines);
- THEN("Chained taking the shortest path") {
- double connection_length = 0.;
- for (size_t i = 1; i < chained.size(); ++i) {
- const Polyline &pl1 = chained[i - 1];
- const Polyline &pl2 = chained[i];
- connection_length += (pl2.first_point() - pl1.last_point()).cast<double>().norm();
- }
- REQUIRE(connection_length < 85206000.);
- }
- }
- GIVEN("Loop pieces") {
- Point a { 2185796, 19058485 };
- Point b { 3957902, 18149382 };
- Point c { 2912841, 18790564 };
- Point d { 2831848, 18832390 };
- Point e { 3179601, 18627769 };
- Point f { 3137952, 18653370 };
- Polylines polylines = { { a, b },
- { c, d },
- { e, f },
- { d, a },
- { f, c },
- { b, e } };
- Polylines chained = chain_polylines(polylines, &a);
- THEN("Connected without a gap") {
- for (size_t i = 0; i < chained.size(); ++i) {
- const Polyline &pl1 = (i == 0) ? chained.back() : chained[i - 1];
- const Polyline &pl2 = chained[i];
- REQUIRE(pl1.points.back() == pl2.points.front());
- }
- }
- }
- }
- SCENARIO("Line distances", "[Geometry]"){
- GIVEN("A line"){
- Line line(Point(0, 0), Point(20, 0));
- THEN("Points on the line segment have 0 distance"){
- REQUIRE(line.distance_to(Point(0, 0)) == 0);
- REQUIRE(line.distance_to(Point(20, 0)) == 0);
- REQUIRE(line.distance_to(Point(10, 0)) == 0);
-
- }
- THEN("Points off the line have the appropriate distance"){
- REQUIRE(line.distance_to(Point(10, 10)) == 10);
- REQUIRE(line.distance_to(Point(50, 0)) == 30);
- }
- }
- }
- SCENARIO("Calculating angles", "[Geometry]")
- {
- GIVEN(("Vectors 30 degrees apart"))
- {
- std::vector<std::pair<Point, Point>> pts {
- { {1000, 0}, { 866, 500 } },
- { { 866, 500 }, { 500, 866 } },
- { { 500, 866 }, { 0, 1000 } },
- { { -500, 866 }, { -866, 500 } }
- };
- THEN("Angle detected is 30 degrees")
- {
- for (auto &p : pts)
- REQUIRE(is_approx(angle(p.first, p.second), M_PI / 6.));
- }
- }
- GIVEN(("Vectors 30 degrees apart"))
- {
- std::vector<std::pair<Point, Point>> pts {
- { { 866, 500 }, {1000, 0} },
- { { 500, 866 }, { 866, 500 } },
- { { 0, 1000 }, { 500, 866 } },
- { { -866, 500 }, { -500, 866 } }
- };
- THEN("Angle detected is -30 degrees")
- {
- for (auto &p : pts)
- REQUIRE(is_approx(angle(p.first, p.second), - M_PI / 6.));
- }
- }
- }
- SCENARIO("Polygon convex/concave detection", "[Geometry]"){
- static constexpr const double angle_threshold = M_PI / 3.;
- GIVEN(("A Square with dimension 100")){
- auto square = Slic3r::Polygon /*new_scale*/(Points({
- Point(100,100),
- Point(200,100),
- Point(200,200),
- Point(100,200)}));
- THEN("It has 4 convex points counterclockwise"){
- REQUIRE(square.concave_points(angle_threshold).size() == 0);
- REQUIRE(square.convex_points(angle_threshold).size() == 4);
- }
- THEN("It has 4 concave points clockwise"){
- square.make_clockwise();
- REQUIRE(square.concave_points(angle_threshold).size() == 4);
- REQUIRE(square.convex_points(angle_threshold).size() == 0);
- }
- }
- GIVEN("A Square with an extra colinearvertex"){
- auto square = Slic3r::Polygon /*new_scale*/(Points({
- Point(150,100),
- Point(200,100),
- Point(200,200),
- Point(100,200),
- Point(100,100)}));
- THEN("It has 4 convex points counterclockwise"){
- REQUIRE(square.concave_points(angle_threshold).size() == 0);
- REQUIRE(square.convex_points(angle_threshold).size() == 4);
- }
- }
- GIVEN("A Square with an extra collinear vertex in different order"){
- auto square = Slic3r::Polygon /*new_scale*/(Points({
- Point(200,200),
- Point(100,200),
- Point(100,100),
- Point(150,100),
- Point(200,100)}));
- THEN("It has 4 convex points counterclockwise"){
- REQUIRE(square.concave_points(angle_threshold).size() == 0);
- REQUIRE(square.convex_points(angle_threshold).size() == 4);
- }
- }
- GIVEN("A triangle"){
- auto triangle = Slic3r::Polygon(Points({
- Point(16000170,26257364),
- Point(714223,461012),
- Point(31286371,461008)
- }));
- THEN("it has three convex vertices"){
- REQUIRE(triangle.concave_points(angle_threshold).size() == 0);
- REQUIRE(triangle.convex_points(angle_threshold).size() == 3);
- }
- }
- GIVEN("A triangle with an extra collinear point"){
- auto triangle = Slic3r::Polygon(Points({
- Point(16000170,26257364),
- Point(714223,461012),
- Point(20000000,461012),
- Point(31286371,461012)
- }));
- THEN("it has three convex vertices"){
- REQUIRE(triangle.concave_points(angle_threshold).size() == 0);
- REQUIRE(triangle.convex_points(angle_threshold).size() == 3);
- }
- }
- GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){
- // Two concave vertices of this polygon have angle = PI*4/3, so this test fails
- // if epsilon is not used.
- auto polygon = Slic3r::Polygon(Points({
- Point(60246458,14802768),Point(64477191,12360001),
- Point(63727343,11060995),Point(64086449,10853608),
- Point(66393722,14850069),Point(66034704,15057334),
- Point(65284646,13758387),Point(61053864,16200839),
- Point(69200258,30310849),Point(62172547,42483120),
- Point(61137680,41850279),Point(67799985,30310848),
- Point(51399866,1905506),Point(38092663,1905506),
- Point(38092663,692699),Point(52100125,692699)
- }));
- THEN("the correct number of points are detected"){
- REQUIRE(polygon.concave_points(angle_threshold).size() == 6);
- REQUIRE(polygon.convex_points(angle_threshold).size() == 10);
- }
- }
- }
- TEST_CASE("Triangle Simplification does not result in less than 3 points", "[Geometry]"){
- auto triangle = Slic3r::Polygon(Points({
- Point(16000170,26257364), Point(714223,461012), Point(31286371,461008)
- }));
- REQUIRE(triangle.simplify(250000).at(0).points.size() == 3);
- }
- SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){
- GIVEN(("square")){
- Slic3r::Points points { { 100, 100 }, {100, 200 }, { 200, 200 }, { 200, 100 }, { 150, 150 } };
- Slic3r::Polygon hull = Slic3r::Geometry::convex_hull(points);
- SECTION("convex hull returns the correct number of points") { REQUIRE(hull.points.size() == 4); }
- }
- SECTION("arrange returns expected number of positions") {
- Pointfs positions;
- Slic3r::Geometry::arrange(4, Vec2d(20, 20), 5, nullptr, positions);
- REQUIRE(positions.size() == 4);
- }
- SECTION("directions_parallel") {
- REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, 0));
- REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, 0));
- REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, M_PI / 180));
- REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, M_PI / 180));
- REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, M_PI, 0));
- REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180));
- }
- }
- TEST_CASE("Convex polygon intersection on two disjoint squares", "[Geometry][Rotcalip]") {
- Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
- A.scale(1. / SCALING_FACTOR);
- Polygon B = A;
- B.translate(20 / SCALING_FACTOR, 0);
- bool is_inters = Geometry::convex_polygons_intersect(A, B);
- REQUIRE(is_inters == false);
- }
- TEST_CASE("Convex polygon intersection on two intersecting squares", "[Geometry][Rotcalip]") {
- Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
- A.scale(1. / SCALING_FACTOR);
- Polygon B = A;
- B.translate(5 / SCALING_FACTOR, 5 / SCALING_FACTOR);
- bool is_inters = Geometry::convex_polygons_intersect(A, B);
- REQUIRE(is_inters == true);
- }
- TEST_CASE("Convex polygon intersection on two squares touching one edge", "[Geometry][Rotcalip]") {
- Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
- A.scale(1. / SCALING_FACTOR);
- Polygon B = A;
- B.translate(10 / SCALING_FACTOR, 0);
- bool is_inters = Geometry::convex_polygons_intersect(A, B);
- REQUIRE(is_inters == false);
- }
- TEST_CASE("Convex polygon intersection on two squares touching one vertex", "[Geometry][Rotcalip]") {
- Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
- A.scale(1. / SCALING_FACTOR);
- Polygon B = A;
- B.translate(10 / SCALING_FACTOR, 10 / SCALING_FACTOR);
- SVG svg{std::string("one_vertex_touch") + ".svg"};
- svg.draw(A, "blue");
- svg.draw(B, "green");
- svg.Close();
- bool is_inters = Geometry::convex_polygons_intersect(A, B);
- REQUIRE(is_inters == false);
- }
- TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][Rotcalip]") {
- Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
- A.scale(1. / SCALING_FACTOR);
- Polygon B = A;
- bool is_inters = Geometry::convex_polygons_intersect(A, B);
- REQUIRE(is_inters == true);
- }
- //// Only for benchmarking
- //static Polygon gen_convex_poly(std::mt19937_64 &rg, size_t point_cnt)
- //{
- // std::uniform_int_distribution<coord_t> dist(0, 100);
- // Polygon out;
- // out.points.reserve(point_cnt);
- // coord_t tr = dist(rg) * 2 / SCALING_FACTOR;
- // for (size_t i = 0; i < point_cnt; ++i)
- // out.points.emplace_back(tr + dist(rg) / SCALING_FACTOR,
- // tr + dist(rg) / SCALING_FACTOR);
- // return Geometry::convex_hull(out.points);
- //}
- //TEST_CASE("Convex polygon intersection test on random polygons", "[Geometry]") {
- // constexpr size_t TEST_CNT = 1000;
- // constexpr size_t POINT_CNT = 1000;
- // auto seed = std::random_device{}();
- //// unsigned long seed = 2525634386;
- // std::mt19937_64 rg{seed};
- // Benchmark bench;
- // auto tests = reserve_vector<std::pair<Polygon, Polygon>>(TEST_CNT);
- // auto results = reserve_vector<bool>(TEST_CNT);
- // auto expects = reserve_vector<bool>(TEST_CNT);
- // for (size_t i = 0; i < TEST_CNT; ++i) {
- // tests.emplace_back(gen_convex_poly(rg, POINT_CNT), gen_convex_poly(rg, POINT_CNT));
- // }
- // bench.start();
- // for (const auto &test : tests)
- // results.emplace_back(Geometry::convex_polygons_intersect(test.first, test.second));
- // bench.stop();
- // std::cout << "Test time: " << bench.getElapsedSec() << std::endl;
- // bench.start();
- // for (const auto &test : tests)
- // expects.emplace_back(!intersection(test.first, test.second).empty());
- // bench.stop();
- // std::cout << "Clipper time: " << bench.getElapsedSec() << std::endl;
- // REQUIRE(results.size() == expects.size());
- // auto seedstr = std::to_string(seed);
- // for (size_t i = 0; i < results.size(); ++i) {
- // // std::cout << expects[i] << " ";
- // if (results[i] != expects[i]) {
- // SVG svg{std::string("fail_seed") + seedstr + "_" + std::to_string(i) + ".svg"};
- // svg.draw(tests[i].first, "blue");
- // svg.draw(tests[i].second, "green");
- // svg.Close();
- // // std::cout << std::endl;
- // }
- // REQUIRE(results[i] == expects[i]);
- // }
- // std::cout << std::endl;
- //}
- struct Pair
- {
- size_t first, second;
- bool operator==(const Pair &b) const { return first == b.first && second == b.second; }
- };
- template<> struct std::hash<Pair> {
- size_t operator()(const Pair &c) const
- {
- return c.first * PRUSA_PART_POLYGONS.size() + c.second;
- }
- };
- TEST_CASE("Convex polygon intersection test prusa polygons", "[Geometry][Rotcalip]") {
- // Overlap of the same polygon should always be an intersection
- for (size_t i = 0; i < PRUSA_PART_POLYGONS.size(); ++i) {
- Polygon P = PRUSA_PART_POLYGONS[i];
- P = Geometry::convex_hull(P.points);
- bool res = Geometry::convex_polygons_intersect(P, P);
- if (!res) {
- SVG svg{std::string("fail_self") + std::to_string(i) + ".svg"};
- svg.draw(P, "green");
- svg.Close();
- }
- REQUIRE(res == true);
- }
- std::unordered_set<Pair> combos;
- for (size_t i = 0; i < PRUSA_PART_POLYGONS.size(); ++i) {
- for (size_t j = 0; j < PRUSA_PART_POLYGONS.size(); ++j) {
- if (i != j) {
- size_t a = std::min(i, j), b = std::max(i, j);
- combos.insert(Pair{a, b});
- }
- }
- }
- // All disjoint
- for (const auto &combo : combos) {
- Polygon A = PRUSA_PART_POLYGONS[combo.first], B = PRUSA_PART_POLYGONS[combo.second];
- A = Geometry::convex_hull(A.points);
- B = Geometry::convex_hull(B.points);
- auto bba = A.bounding_box();
- auto bbb = B.bounding_box();
- A.translate(-bba.center());
- B.translate(-bbb.center());
- B.translate(bba.size() + bbb.size());
- bool res = Geometry::convex_polygons_intersect(A, B);
- bool ref = !intersection(A, B).empty();
- if (res != ref) {
- SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"};
- svg.draw(A, "blue");
- svg.draw(B, "green");
- svg.Close();
- }
- REQUIRE(res == ref);
- }
- // All intersecting
- for (const auto &combo : combos) {
- Polygon A = PRUSA_PART_POLYGONS[combo.first], B = PRUSA_PART_POLYGONS[combo.second];
- A = Geometry::convex_hull(A.points);
- B = Geometry::convex_hull(B.points);
- auto bba = A.bounding_box();
- auto bbb = B.bounding_box();
- A.translate(-bba.center());
- B.translate(-bbb.center());
- bool res = Geometry::convex_polygons_intersect(A, B);
- bool ref = !intersection(A, B).empty();
- if (res != ref) {
- SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"};
- svg.draw(A, "blue");
- svg.draw(B, "green");
- svg.Close();
- }
- REQUIRE(res == ref);
- }
- }
- TEST_CASE("Euler angles roundtrip", "[Geometry]") {
- std::vector<Vec3d> euler_angles_vec = {{M_PI/2., -M_PI, 0.},
- {M_PI, -M_PI, 0.},
- {M_PI, -M_PI, 2*M_PI},
- {0., 0., M_PI},
- {M_PI, M_PI/2., 0.},
- {0.2, 0.3, -0.5}};
- // Also include all combinations of zero and +-pi/2:
- for (double x : {0., M_PI/2., -M_PI/2.})
- for (double y : {0., M_PI/2., -M_PI/2.})
- for (double z : {0., M_PI/2., -M_PI/2.})
- euler_angles_vec.emplace_back(x, y, z);
- for (Vec3d& euler_angles : euler_angles_vec) {
- Transform3d trafo1 = Geometry::rotation_transform(euler_angles);
- euler_angles = Geometry::extract_rotation(trafo1);
- Transform3d trafo2 = Geometry::rotation_transform(euler_angles);
- REQUIRE(trafo1.isApprox(trafo2));
- }
- }
|