gouraud_light.vs 1.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. #version 110
  2. #define INTENSITY_CORRECTION 0.6
  3. // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
  4. const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
  5. #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
  6. #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
  7. #define LIGHT_TOP_SHININESS 20.0
  8. // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
  9. const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
  10. #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
  11. #define INTENSITY_AMBIENT 0.3
  12. uniform mat4 view_model_matrix;
  13. uniform mat4 projection_matrix;
  14. uniform mat3 view_normal_matrix;
  15. attribute vec3 v_position;
  16. attribute vec3 v_normal;
  17. // x = tainted, y = specular;
  18. varying vec2 intensity;
  19. void main()
  20. {
  21. // First transform the normal into camera space and normalize the result.
  22. vec3 normal = normalize(view_normal_matrix * v_normal);
  23. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
  24. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
  25. float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
  26. intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
  27. vec4 position = view_model_matrix * vec4(v_position, 1.0);
  28. intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
  29. // Perform the same lighting calculation for the 2nd light source (no specular applied).
  30. NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
  31. intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
  32. gl_Position = projection_matrix * position;
  33. }