mm_gouraud.fs 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. #version 110
  2. #define INTENSITY_CORRECTION 0.6
  3. // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
  4. const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
  5. #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
  6. #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
  7. #define LIGHT_TOP_SHININESS 20.0
  8. // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
  9. const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
  10. #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
  11. #define INTENSITY_AMBIENT 0.3
  12. const vec3 ZERO = vec3(0.0, 0.0, 0.0);
  13. const float EPSILON = 0.0001;
  14. //BBS: add grey and orange
  15. //const vec3 GREY = vec3(0.9, 0.9, 0.9);
  16. const vec3 ORANGE = vec3(0.8, 0.4, 0.0);
  17. uniform vec4 uniform_color;
  18. varying vec3 clipping_planes_dots;
  19. varying vec4 model_pos;
  20. uniform bool volume_mirrored;
  21. struct SlopeDetection
  22. {
  23. bool actived;
  24. float normal_z;
  25. mat3 volume_world_normal_matrix;
  26. };
  27. uniform SlopeDetection slope;
  28. void main()
  29. {
  30. if (any(lessThan(clipping_planes_dots, ZERO)))
  31. discard;
  32. vec3 color = uniform_color.rgb;
  33. float alpha = uniform_color.a;
  34. vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
  35. #ifdef FLIP_TRIANGLE_NORMALS
  36. triangle_normal = -triangle_normal;
  37. #endif
  38. vec3 transformed_normal = normalize(slope.volume_world_normal_matrix * triangle_normal);
  39. if (slope.actived && transformed_normal.z < slope.normal_z - EPSILON) {
  40. //color = vec3(0.7, 0.7, 1.0);
  41. color = color * 0.5 + ORANGE * 0.5;
  42. alpha = 1.0;
  43. }
  44. if (volume_mirrored)
  45. triangle_normal = -triangle_normal;
  46. // First transform the normal into camera space and normalize the result.
  47. vec3 eye_normal = normalize(gl_NormalMatrix * triangle_normal);
  48. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
  49. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
  50. float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
  51. // x = diffuse, y = specular;
  52. vec2 intensity = vec2(0.0, 0.0);
  53. intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
  54. vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
  55. intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
  56. // Perform the same lighting calculation for the 2nd light source (no specular applied).
  57. NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
  58. intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
  59. gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
  60. }