123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578 |
- package Slic3r::Geometry;
- use strict;
- use warnings;
- require Exporter;
- our @ISA = qw(Exporter);
- our @EXPORT_OK = qw(
- PI epsilon slope line_atan lines_parallel three_points_aligned
- line_point_belongs_to_segment points_coincide distance_between_points
- line_length midpoint point_in_polygon point_in_segment segment_in_segment
- point_is_on_left_of_segment polyline_lines polygon_lines nearest_point
- point_along_segment polygon_segment_having_point polygon_has_subsegment
- polygon_has_vertex polyline_length can_connect_points deg2rad rad2deg
- rotate_points move_points remove_coinciding_points clip_segment_polygon
- sum_vectors multiply_vector subtract_vectors dot perp polygon_points_visibility
- line_intersection bounding_box bounding_box_intersect
- clip_segment_complex_polygon longest_segment angle3points
- );
- use Slic3r::Geometry::DouglasPeucker ();
- use XXX;
- use constant PI => 4 * atan2(1, 1);
- use constant A => 0;
- use constant B => 1;
- use constant X => 0;
- use constant Y => 1;
- our $parallel_degrees_limit = abs(deg2rad(3));
- our $epsilon = 1E-4;
- sub epsilon () { $epsilon }
- sub slope {
- my ($line) = @_;
- return undef if abs($line->[B][X] - $line->[A][X]) < epsilon; # line is vertical
- return ($line->[B][Y] - $line->[A][Y]) / ($line->[B][X] - $line->[A][X]);
- }
- sub line_atan {
- my ($line) = @_;
- return atan2($line->[B][Y] - $line->[A][Y], $line->[B][X] - $line->[A][X]);
- }
- sub lines_parallel {
- my ($line1, $line2) = @_;
-
- return abs(line_atan($line1) - line_atan($line2)) < $parallel_degrees_limit;
- }
- sub three_points_aligned {
- my ($p1, $p2, $p3) = @_;
- return lines_parallel([$p1, $p2], [$p2, $p3]);
- }
- # this subroutine checks whether a given point may belong to a given
- # segment given the hypothesis that it belongs to the line containing
- # the segment
- sub line_point_belongs_to_segment {
- my ($point, $segment) = @_;
-
- #printf " checking whether %f,%f may belong to segment %f,%f - %f,%f\n",
- # @$point, map @$_, @$segment;
-
- my @segment_extents = (
- [ sort { $a <=> $b } map $_->[X], @$segment ],
- [ sort { $a <=> $b } map $_->[Y], @$segment ],
- );
-
- return 0 if $point->[X] < ($segment_extents[X][0] - epsilon) || $point->[X] > ($segment_extents[X][1] + epsilon);
- return 0 if $point->[Y] < ($segment_extents[Y][0] - epsilon) || $point->[Y] > ($segment_extents[Y][1] + epsilon);
- return 1;
- }
- sub points_coincide {
- my ($p1, $p2) = @_;
- return 1 if abs($p2->[X] - $p1->[X]) < epsilon && abs($p2->[Y] - $p1->[Y]) < epsilon;
- return 0;
- }
- sub distance_between_points {
- my ($p1, $p2) = @_;
- return sqrt((($p1->[X] - $p2->[X])**2) + ($p1->[Y] - $p2->[Y])**2);
- }
- sub line_length {
- my ($line) = @_;
- return distance_between_points(@$line[A, B]);
- }
- sub longest_segment {
- my (@lines) = @_;
-
- my ($longest, $maxlength);
- foreach my $line (@lines) {
- my $line_length = line_length($line);
- if (!defined $longest || $line_length > $maxlength) {
- $longest = $line;
- $maxlength = $line_length;
- }
- }
- return $longest;
- }
- sub midpoint {
- my ($line) = @_;
- return [ ($line->[B][X] + $line->[A][X]) / 2, ($line->[B][Y] + $line->[A][Y]) / 2 ];
- }
- sub point_in_polygon {
- my ($point, $polygon) = @_;
-
- my ($x, $y) = @$point;
- my @xy = map @$_, @$polygon;
-
- # Derived from the comp.graphics.algorithms FAQ,
- # courtesy of Wm. Randolph Franklin
- my $n = @xy / 2; # Number of points in polygon
- my @i = map { 2*$_ } 0..(@xy/2); # The even indices of @xy
- my @x = map { $xy[$_] } @i; # Even indices: x-coordinates
- my @y = map { $xy[$_ + 1] } @i; # Odd indices: y-coordinates
-
- my ($i, $j);
- my $side = 0; # 0 = outside; 1 = inside
- for ($i = 0, $j = $n - 1; $i < $n; $j = $i++) {
- if (
- # If the y is between the (y-) borders...
- ($y[$i] <= $y && $y < $y[$j]) || ($y[$j] <= $y && $y < $y[$i])
- and
- # ...the (x,y) to infinity line crosses the edge
- # from the ith point to the jth point...
- ($x < ($x[$j] - $x[$i]) * ($y - $y[$i]) / ($y[$j] - $y[$i]) + $x[$i])
- ) {
- $side = not $side; # Jump the fence
- }
- }
-
- # if point is not in polygon, let's check whether it belongs to the contour
- if (!$side && 0) {
- return 1 if polygon_segment_having_point($polygon, $point);
- }
-
- return $side;
- }
- sub point_in_segment {
- my ($point, $line) = @_;
-
- my ($x, $y) = @$point;
- my @line_x = sort { $a <=> $b } $line->[A][X], $line->[B][X];
- my @line_y = sort { $a <=> $b } $line->[A][Y], $line->[B][Y];
-
- # check whether the point is in the segment bounding box
- return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon)
- && $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon);
-
- # if line is vertical, check whether point's X is the same as the line
- if ($line->[A][X] == $line->[B][X]) {
- return 1 if abs($x - $line->[A][X]) < epsilon;
- }
-
- # calculate the Y in line at X of the point
- my $y3 = $line->[A][Y] + ($line->[B][Y] - $line->[A][Y])
- * ($x - $line->[A][X]) / ($line->[B][X] - $line->[A][X]);
- return abs($y3 - $y) < epsilon ? 1 : 0;
- }
- sub segment_in_segment {
- my ($needle, $haystack) = @_;
-
- # a segment is contained in another segment if its endpoints are contained
- return point_in_segment($needle->[A], $haystack) && point_in_segment($needle->[B], $haystack);
- }
- sub point_is_on_left_of_segment {
- my ($point, $line) = @_;
-
- return (($line->[B][X] - $line->[A][X])*($point->[Y] - $line->[A][Y])
- - ($line->[B][Y] - $line->[A][Y])*($point->[X] - $line->[A][X])) > 0;
- }
- sub polyline_lines {
- my ($polygon) = @_;
-
- my @lines = ();
- my $last_point;
- foreach my $point (@$polygon) {
- push @lines, [ $last_point, $point ] if $last_point;
- $last_point = $point;
- }
-
- return @lines;
- }
- sub polygon_lines {
- my ($polygon) = @_;
- return polyline_lines([ @$polygon, $polygon->[0] ]);
- }
- sub nearest_point {
- my ($point, $points) = @_;
-
- my ($nearest_point, $distance);
- foreach my $p (@$points) {
- my $d = distance_between_points($point, $p);
- if (!defined $distance || $d < $distance) {
- $nearest_point = $p;
- $distance = $d;
- return $p if $distance < epsilon;
- }
- }
- return $nearest_point;
- }
- # given a segment $p1-$p2, get the point at $distance from $p1 along segment
- sub point_along_segment {
- my ($p1, $p2, $distance) = @_;
-
- my $point = [ @$p1 ];
-
- my $line_length = sqrt( (($p2->[X] - $p1->[X])**2) + (($p2->[Y] - $p1->[Y])**2) );
- for (X, Y) {
- if ($p1->[$_] != $p2->[$_]) {
- $point->[$_] = $p1->[$_] + ($p2->[$_] - $p1->[$_]) * $distance / $line_length;
- }
- }
-
- return $point;
- }
- # given a $polygon, return the (first) segment having $point
- sub polygon_segment_having_point {
- my ($polygon, $point) = @_;
-
- foreach my $line (polygon_lines($polygon)) {
- return $line if point_in_segment($point, $line);
- }
- return undef;
- }
- # return true if the given segment is contained in any edge of the polygon
- sub polygon_has_subsegment {
- my ($polygon, $segment) = @_;
- foreach my $line (polygon_lines($polygon)) {
- return 1 if segment_in_segment($segment, $line);
- }
- return 0;
- }
- sub polygon_has_vertex {
- my ($polygon, $point) = @_;
- foreach my $p (@$polygon) {
- return 1 if points_coincide($p, $point);
- }
- return 0;
- }
- sub polyline_length {
- my ($polyline) = @_;
- my $length = 0;
- $length += line_length($_) for polygon_lines($polyline);
- return $length;
- }
- sub can_connect_points {
- my ($p1, $p2, $polygons) = @_;
-
- # check that the two points are visible from each other
- return 0 if grep !polygon_points_visibility($_, $p1, $p2), @$polygons;
-
- # get segment where $p1 lies
- my $p1_segment;
- for (@$polygons) {
- $p1_segment = polygon_segment_having_point($_, $p1);
- last if $p1_segment;
- }
-
- # defensive programming, this shouldn't happen
- if (!$p1_segment) {
- die sprintf "Point %f,%f wasn't found in polygon contour or holes!", @$p1;
- }
-
- # check whether $p2 is internal or external (internal = on the left)
- return point_is_on_left_of_segment($p2, $p1_segment)
- || point_in_segment($p2, $p1_segment);
- }
- sub deg2rad {
- my ($degrees) = @_;
- return PI() * $degrees / 180;
- }
- sub rad2deg {
- my ($rad) = @_;
- return $rad / PI() * 180;
- }
- sub rotate_points {
- my ($radians, $center, @points) = @_;
- $center ||= [0,0];
- return map {
- [
- $center->[X] + cos($radians) * ($_->[X] - $center->[X]) - sin($radians) * ($_->[Y] - $center->[Y]),
- $center->[Y] + cos($radians) * ($_->[Y] - $center->[Y]) + sin($radians) * ($_->[X] - $center->[X]),
- ]
- } @points;
- }
- sub move_points {
- my ($shift, @points) = @_;
- return map [ $shift->[X] + $_->[X], $shift->[Y] + $_->[Y] ], @points;
- }
- # preserves order
- sub remove_coinciding_points {
- my ($points) = @_;
-
- my %p = map { sprintf('%f,%f', @$_) => "$_" } @$points;
- %p = reverse %p;
- @$points = grep $p{"$_"}, @$points;
- }
- # implementation of Liang-Barsky algorithm
- # polygon must be convex and ccw
- sub clip_segment_polygon {
- my ($line, $polygon) = @_;
-
- if (@$line == 1) {
- # the segment is a point, check for inclusion
- return point_in_polygon($line, $polygon);
- }
-
- my @V = (@$polygon, $polygon->[0]);
- my $tE = 0; # the maximum entering segment parameter
- my $tL = 1; # the minimum entering segment parameter
- my $dS = subtract_vectors($line->[B], $line->[A]); # the segment direction vector
-
- for (my $i = 0; $i < $#V; $i++) { # process polygon edge V[i]V[Vi+1]
- my $e = subtract_vectors($V[$i+1], $V[$i]);
- my $N = perp($e, subtract_vectors($line->[A], $V[$i]));
- my $D = -perp($e, $dS);
- if (abs($D) < epsilon) { # $line is nearly parallel to this edge
- ($N < 0) ? return : next; # P0 outside this edge ? $line is outside : $line cannot cross edge, thus ignoring
- }
-
- my $t = $N / $D;
- if ($D < 0) { # $line is entering across this edge
- if ($t > $tE) { # new max $tE
- $tE = $t;
- return if $tE > $tL; # $line enters after leaving polygon?
- }
- } else { # $line is leaving across this edge
- if ($t < $tL) { # new min $tL
- $tL = $t;
- return if $tL < $tE; # $line leaves before entering polygon?
- }
- }
- }
-
- # $tE <= $tL implies that there is a valid intersection subsegment
- return [
- sum_vectors($line->[A], multiply_vector($dS, $tE)), # = P(tE) = point where S enters polygon
- sum_vectors($line->[A], multiply_vector($dS, $tL)), # = P(tE) = point where S enters polygon
- ];
- }
- sub sum_vectors {
- my ($v1, $v2) = @_;
- return [ $v1->[X] + $v2->[X], $v1->[Y] + $v2->[Y] ];
- }
- sub multiply_vector {
- my ($line, $scalar) = @_;
- return [ $line->[X] * $scalar, $line->[Y] * $scalar ];
- }
- sub subtract_vectors {
- my ($line2, $line1) = @_;
- return [ $line2->[X] - $line1->[X], $line2->[Y] - $line1->[Y] ];
- }
- # 2D dot product
- sub dot {
- my ($u, $v) = @_;
- return $u->[X] * $v->[X] + $u->[Y] * $v->[Y];
- }
- # 2D perp product
- sub perp {
- my ($u, $v) = @_;
- return $u->[X] * $v->[Y] - $u->[Y] * $v->[X];
- }
- sub polygon_points_visibility {
- my ($polygon, $p1, $p2) = @_;
-
- my $our_line = [ $p1, $p2 ];
- foreach my $line (polygon_lines($polygon)) {
- my $intersection = line_intersection($our_line, $line, 1) or next;
- next if grep points_coincide($intersection, $_), $p1, $p2;
- return 0;
- }
-
- return 1;
- }
- sub line_intersection {
- my ($line1, $line2, $require_crossing) = @_;
- $require_crossing ||= 0;
-
- my $intersection = _line_intersection(map @$_, @$line1, @$line2);
- return (ref $intersection && $intersection->[1] == $require_crossing)
- ? $intersection->[0]
- : undef;
- }
- sub _line_intersection {
- my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 );
- if ( @_ == 8 ) {
- ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ) = @_;
- # The bounding boxes chop the lines into line segments.
- # bounding_box() is defined later in this chapter.
- my @box_a = bounding_box([ [$x0, $y0], [$x1, $y1] ]);
- my @box_b = bounding_box([ [$x2, $y2], [$x3, $y3] ]);
-
- # Take this test away and the line segments are
- # turned into lines going from infinite to another.
- # bounding_box_intersect() defined later in this chapter.
- return "out of bounding box" unless bounding_box_intersect( 2, @box_a, @box_b );
- }
- elsif ( @_ == 4 ) { # The parametric form.
- $x0 = $x2 = 0;
- ( $y0, $y2 ) = @_[ 1, 3 ];
- # Need to multiply by 'enough' to get 'far enough'.
- my $abs_y0 = abs $y0;
- my $abs_y2 = abs $y2;
- my $enough = 10 * ( $abs_y0 > $abs_y2 ? $abs_y0 : $abs_y2 );
- $x1 = $x3 = $enough;
- $y1 = $_[0] * $x1 + $y0;
- $y3 = $_[2] * $x2 + $y2;
- }
- my ($x, $y); # The as-yet-undetermined intersection point.
- my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences
- my $dx10 = $x1 - $x0; # between the points P and Q.
- my $dy32 = $y3 - $y2;
- my $dx32 = $x3 - $x2;
- my $dy10z = abs( $dy10 ) < epsilon; # Is the difference $dy10 "zero"?
- my $dx10z = abs( $dx10 ) < epsilon;
- my $dy32z = abs( $dy32 ) < epsilon;
- my $dx32z = abs( $dx32 ) < epsilon;
- my $dyx10; # The slopes.
- my $dyx32;
- $dyx10 = $dy10 / $dx10 unless $dx10z;
- $dyx32 = $dy32 / $dx32 unless $dx32z;
- # Now we know all differences and the slopes;
- # we can detect horizontal/vertical special cases.
- # E.g., slope = 0 means a horizontal line.
- unless ( defined $dyx10 or defined $dyx32 ) {
- return "parallel vertical";
- }
- elsif ( $dy10z and not $dy32z ) { # First line horizontal.
- $y = $y0;
- $x = $x2 + ( $y - $y2 ) * $dx32 / $dy32;
- }
- elsif ( not $dy10z and $dy32z ) { # Second line horizontal.
- $y = $y2;
- $x = $x0 + ( $y - $y0 ) * $dx10 / $dy10;
- }
- elsif ( $dx10z and not $dx32z ) { # First line vertical.
- $x = $x0;
- $y = $y2 + $dyx32 * ( $x - $x2 );
- }
- elsif ( not $dx10z and $dx32z ) { # Second line vertical.
- $x = $x2;
- $y = $y0 + $dyx10 * ( $x - $x0 );
- }
- elsif ( abs( $dyx10 - $dyx32 ) < epsilon ) {
- # The slopes are suspiciously close to each other.
- # Either we have parallel collinear or just parallel lines.
- # The bounding box checks have already weeded the cases
- # "parallel horizontal" and "parallel vertical" away.
- my $ya = $y0 - $dyx10 * $x0;
- my $yb = $y2 - $dyx32 * $x2;
- return "parallel collinear" if abs( $ya - $yb ) < epsilon;
- return "parallel";
- }
- else {
- # None of the special cases matched.
- # We have a "honest" line intersection.
- $x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32);
- $y = $y0 + $dyx10 * ($x - $x0);
- }
- my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1);
- my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1);
- return [[$x, $y], $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1];
- }
- # 2D
- sub bounding_box {
- my ($points) = @_;
-
- my @x = sort { $a <=> $b } map $_->[X], @$points;
- my @y = sort { $a <=> $b } map $_->[Y], @$points;
-
- return ($x[0], $y[0], $x[-1], $y[-1]);
- }
- # bounding_box_intersect($d, @a, @b)
- # Return true if the given bounding boxes @a and @b intersect
- # in $d dimensions. Used by line_intersection().
- sub bounding_box_intersect {
- my ( $d, @bb ) = @_; # Number of dimensions and box coordinates.
- my @aa = splice( @bb, 0, 2 * $d ); # The first box.
- # (@bb is the second one.)
-
- # Must intersect in all dimensions.
- for ( my $i_min = 0; $i_min < $d; $i_min++ ) {
- my $i_max = $i_min + $d; # The index for the maximum.
- return 0 if ( $aa[ $i_max ] + epsilon ) < $bb[ $i_min ];
- return 0 if ( $bb[ $i_max ] + epsilon ) < $aa[ $i_min ];
- }
-
- return 1;
- }
- sub clip_segment_complex_polygon {
- my ($line, $polygons) = @_;
-
- my @intersections = grep $_, map line_intersection($line, $_, 1),
- map polygon_lines($_), @$polygons or return ();
-
- # this is not very elegant, however it works
- @intersections = sort { sprintf("%020f,%020f", @$a) cmp sprintf("%020f,%020f", @$b) } @intersections;
-
- shift(@intersections) if !grep(point_in_polygon($intersections[0], $_), @$polygons)
- && !grep(polygon_segment_having_point($_, $intersections[0]), @$polygons);
-
- # defensive programming
- ###die "Invalid intersections" if @intersections % 2 != 0;
-
- my @lines = ();
- while (@intersections) {
- # skip tangent points
- my @points = map shift @intersections, 1..2;
- next if !$points[1];
- next if points_coincide(@points);
- push @lines, [ @points ];
- }
- return [@lines];
- }
- sub angle3points {
- my ($p1, $p2, $p3) = @_;
- # p1 is the center
-
- my $angle = atan2($p2->[X] - $p1->[X], $p2->[Y] - $p1->[Y])
- - atan2($p3->[X] - $p1->[X], $p3->[Y] - $p1->[Y]);
-
- # we only want to return only positive angles
- return $angle <= 0 ? $angle + 2*PI() : $angle;
- }
- 1;
|