SupportMaterial.pm 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. package Slic3r::Print::SupportMaterial;
  2. use Moo;
  3. use List::Util qw(sum min max);
  4. use Slic3r::ExtrusionPath ':roles';
  5. use Slic3r::Geometry qw(scale scaled_epsilon PI rad2deg deg2rad);
  6. use Slic3r::Geometry::Clipper qw(offset diff union union_ex intersection offset_ex offset2);
  7. use Slic3r::Surface ':types';
  8. has 'config' => (is => 'rw', required => 1);
  9. has 'flow' => (is => 'rw', required => 1);
  10. use constant DEBUG_CONTACT_ONLY => 0;
  11. # how much we extend support around the actual contact area
  12. use constant MARGIN => 1.5;
  13. # increment used to reach MARGIN in steps to avoid trespassing thin objects
  14. use constant MARGIN_STEP => MARGIN/3;
  15. sub generate {
  16. my ($self, $object) = @_;
  17. # Determine the top surfaces of the support, defined as:
  18. # contact = overhangs - clearance + margin
  19. # This method is responsible for identifying what contact surfaces
  20. # should the support material expose to the object in order to guarantee
  21. # that it will be effective, regardless of how it's built below.
  22. my ($contact, $overhang) = $self->contact_area($object);
  23. # Determine the top surfaces of the object. We need these to determine
  24. # the layer heights of support material and to clip support to the object
  25. # silhouette.
  26. my ($top) = $self->object_top($object, $contact);
  27. # We now know the upper and lower boundaries for our support material object
  28. # (@$contact_z and @$top_z), so we can generate intermediate layers.
  29. my ($support_z) = $self->support_layers_z(
  30. [ sort keys %$contact ],
  31. [ sort keys %$top ],
  32. max(map $_->height, @{$object->layers})
  33. );
  34. # If we wanted to apply some special logic to the first support layers lying on
  35. # object's top surfaces this is the place to detect them
  36. # Propagate contact layers downwards to generate interface layers
  37. my ($interface) = $self->generate_interface_layers($support_z, $contact, $top);
  38. # Propagate contact layers and interface layers downwards to generate
  39. # the main support layers.
  40. my ($base) = $self->generate_base_layers($support_z, $contact, $interface, $top);
  41. # Install support layers into object.
  42. push @{$object->support_layers}, map Slic3r::Layer::Support->new(
  43. object => $object,
  44. id => $_,
  45. height => ($_ == 0) ? $support_z->[$_] : ($support_z->[$_] - $support_z->[$_-1]),
  46. print_z => $support_z->[$_],
  47. slice_z => -1,
  48. slices => [],
  49. ), 0 .. $#$support_z;
  50. # Generate the actual toolpaths and save them into each layer.
  51. $self->generate_toolpaths($object, $overhang, $contact, $interface, $base);
  52. }
  53. sub contact_area {
  54. my ($self, $object) = @_;
  55. # if user specified a custom angle threshold, convert it to radians
  56. my $threshold_rad;
  57. if ($self->config->support_material_threshold) {
  58. $threshold_rad = deg2rad($self->config->support_material_threshold + 1); # +1 makes the threshold inclusive
  59. Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
  60. }
  61. # determine contact areas
  62. my %contact = (); # contact_z => [ polygons ]
  63. my %overhang = (); # contact_z => [ polygons ] - this stores the actual overhang supported by each contact layer
  64. for my $layer_id (1 .. $#{$object->layers}) {
  65. last if $layer_id > $self->config->raft_layers && !$self->config->support_material;
  66. my $layer = $object->layers->[$layer_id];
  67. my $lower_layer = $object->layers->[$layer_id-1];
  68. # detect overhangs and contact areas needed to support them
  69. my (@overhang, @contact) = ();
  70. foreach my $layerm (@{$layer->regions}) {
  71. my $fw = $layerm->perimeter_flow->scaled_width;
  72. my $diff;
  73. # If a threshold angle was specified, use a different logic for detecting overhangs.
  74. if (defined $threshold_rad
  75. || $layer_id <= $self->config->support_material_enforce_layers + $self->config->raft_layers) {
  76. my $d = defined $threshold_rad
  77. ? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad))
  78. : 0;
  79. $diff = diff(
  80. offset([ map $_->p, @{$layerm->slices} ], -$d),
  81. [ map @$_, @{$lower_layer->slices} ],
  82. );
  83. # only enforce spacing from the object ($fw/2) if the threshold angle
  84. # is not too high: in that case, $d will be very small (as we need to catch
  85. # very short overhangs), and such contact area would be eaten by the
  86. # enforced spacing, resulting in high threshold angles to be almost ignored
  87. $diff = diff(
  88. offset($diff, $d - $fw/2),
  89. [ map @$_, @{$lower_layer->slices} ],
  90. ) if $d > $fw/2;
  91. } else {
  92. $diff = diff(
  93. offset([ map $_->p, @{$layerm->slices} ], -$fw/2),
  94. [ map @$_, @{$lower_layer->slices} ],
  95. );
  96. # collapse very tiny spots
  97. $diff = offset2($diff, -$fw/10, +$fw/10);
  98. # $diff now contains the ring or stripe comprised between the boundary of
  99. # lower slices and the centerline of the last perimeter in this overhanging layer.
  100. # Void $diff means that there's no upper perimeter whose centerline is
  101. # outside the lower slice boundary, thus no overhang
  102. }
  103. # TODO: this is the place to remove bridged areas
  104. next if !@$diff;
  105. push @overhang, @$diff; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width!
  106. # Let's define the required contact area by using a max gap of half the upper
  107. # extrusion width and extending the area according to the configured margin.
  108. # We increment the area in steps because we don't want our support to overflow
  109. # on the other side of the object (if it's very thin).
  110. {
  111. my @slices_margin = @{offset([ map @$_, @{$lower_layer->slices} ], $fw/2)};
  112. for ($fw/2, map {scale MARGIN_STEP} 1..(MARGIN / MARGIN_STEP)) {
  113. $diff = diff(
  114. offset($diff, $_),
  115. \@slices_margin,
  116. );
  117. }
  118. }
  119. push @contact, @$diff;
  120. }
  121. next if !@contact;
  122. # now apply the contact areas to the layer were they need to be made
  123. {
  124. # get the average nozzle diameter used on this layer
  125. my @nozzle_diameters = map $_->nozzle_diameter,
  126. map { $_->perimeter_flow, $_->solid_infill_flow }
  127. @{$layer->regions};
  128. my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters;
  129. my $contact_z = $layer->print_z - $nozzle_diameter * 1.5;
  130. ###$contact_z = $layer->print_z - $layer->height;
  131. # ignore this contact area if it's too low
  132. next if $contact_z < $Slic3r::Config->get_value('first_layer_height');
  133. $contact{$contact_z} = [ @contact ];
  134. $overhang{$contact_z} = [ @overhang ];
  135. if (0) {
  136. require "Slic3r/SVG.pm";
  137. Slic3r::SVG::output("contact_" . $contact_z . ".svg",
  138. expolygons => union_ex(\@contact),
  139. red_expolygons => \@overhang,
  140. );
  141. }
  142. }
  143. }
  144. return (\%contact, \%overhang);
  145. }
  146. sub object_top {
  147. my ($self, $object, $contact) = @_;
  148. # find object top surfaces
  149. # we'll use them to clip our support and detect where does it stick
  150. my %top = (); # print_z => [ expolygons ]
  151. my $projection = [];
  152. foreach my $layer (reverse @{$object->layers}) {
  153. if (my @top = map @{$_->slices->filter_by_type(S_TYPE_TOP)}, @{$layer->regions}) {
  154. # compute projection of the contact areas above this top layer
  155. # first add all the 'new' contact areas to the current projection
  156. # ('new' means all the areas that are lower than the last top layer
  157. # we considered)
  158. my $min_top = min(keys %top) // max(keys %$contact);
  159. # use <= instead of just < because otherwise we'd ignore any contact regions
  160. # having the same Z of top layers
  161. push @$projection, map @{$contact->{$_}}, grep { $_ > $layer->print_z && $_ <= $min_top } keys %$contact;
  162. # now find whether any projection falls onto this top surface
  163. my $touching = intersection($projection, [ map $_->p, @top ]);
  164. if (@$touching) {
  165. # grow top surfaces so that interface and support generation are generated
  166. # with some spacing from object - it looks we don't need the actual
  167. # top shapes so this can be done here
  168. $top{ $layer->print_z } = offset($touching, $self->flow->scaled_spacing);
  169. }
  170. # remove the areas that touched from the projection that will continue on
  171. # next, lower, top surfaces
  172. $projection = diff($projection, $touching);
  173. }
  174. }
  175. return \%top;
  176. }
  177. sub support_layers_z {
  178. my ($self, $contact_z, $top_z, $max_object_layer_height) = @_;
  179. # quick table to check whether a given Z is a top surface
  180. my %top = map { $_ => 1 } @$top_z;
  181. # determine layer height for any non-contact layer
  182. # we use max() to prevent many ultra-thin layers to be inserted in case
  183. # layer_height > nozzle_diameter * 0.75
  184. my $nozzle_diameter = $self->flow->nozzle_diameter;
  185. my $support_material_height = max($max_object_layer_height, $nozzle_diameter * 0.75);
  186. my @z = sort { $a <=> $b } @$contact_z, @$top_z, (map $_ + $nozzle_diameter, @$top_z);
  187. # enforce first layer height
  188. my $first_layer_height = $self->config->get_value('first_layer_height');
  189. shift @z while @z && $z[0] <= $first_layer_height;
  190. unshift @z, $first_layer_height;
  191. for (my $i = $#z; $i >= 0; $i--) {
  192. my $target_height = $support_material_height;
  193. if ($i > 0 && $top{ $z[$i-1] }) {
  194. $target_height = $nozzle_diameter;
  195. }
  196. # enforce first layer height
  197. if (($i == 0 && $z[$i] > $target_height + $first_layer_height)
  198. || ($z[$i] - $z[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
  199. splice @z, $i, 0, ($z[$i] - $target_height);
  200. $i++;
  201. }
  202. }
  203. # remove duplicates and make sure all 0.x values have the leading 0
  204. {
  205. my %sl = map { 1 * $_ => 1 } @z;
  206. @z = sort { $a <=> $b } keys %sl;
  207. }
  208. return \@z;
  209. }
  210. sub generate_interface_layers {
  211. my ($self, $support_z, $contact, $top) = @_;
  212. # let's now generate interface layers below contact areas
  213. my %interface = (); # layer_id => [ polygons ]
  214. my $interface_layers = $self->config->support_material_interface_layers;
  215. for my $layer_id (0 .. $#$support_z) {
  216. my $z = $support_z->[$layer_id];
  217. my $this = $contact->{$z} // next;
  218. # count contact layer as interface layer
  219. for (my $i = $layer_id-1; $i >= 0 && $i > $layer_id-$interface_layers; $i--) {
  220. $z = $support_z->[$i];
  221. my @overlapping_layers = $self->overlapping_layers($i, $support_z);
  222. my @overlapping_z = map $support_z->[$_], @overlapping_layers;
  223. # Compute interface area on this layer as diff of upper contact area
  224. # (or upper interface area) and layer slices.
  225. # This diff is responsible of the contact between support material and
  226. # the top surfaces of the object. We should probably offset the top
  227. # surfaces vertically before performing the diff, but this needs
  228. # investigation.
  229. $this = $interface{$i} = diff(
  230. [
  231. @$this, # clipped projection of the current contact regions
  232. @{ $interface{$i} || [] }, # interface regions already applied to this layer
  233. ],
  234. [
  235. (map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z), # top slices on this layer
  236. (map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z), # contact regions on this layer
  237. ],
  238. 1,
  239. );
  240. }
  241. }
  242. return \%interface;
  243. }
  244. sub generate_base_layers {
  245. my ($self, $support_z, $contact, $interface, $top) = @_;
  246. # let's now generate support layers under interface layers
  247. my $base = {}; # layer_id => [ polygons ]
  248. {
  249. for my $i (reverse 0 .. $#$support_z-1) {
  250. my $z = $support_z->[$i];
  251. my @overlapping_layers = $self->overlapping_layers($i, $support_z);
  252. my @overlapping_z = map $support_z->[$_], @overlapping_layers;
  253. # in case we have no interface layers, look at upper contact
  254. my @upper_contact = ();
  255. if ($self->config->support_material_interface_layers == 0) {
  256. @upper_contact = @{ $contact->{$support_z->[$i+1]} || [] };
  257. }
  258. $base->{$i} = diff(
  259. [
  260. @{ $base->{$i+1} || [] }, # support regions on upper layer
  261. @{ $interface->{$i+1} || [] }, # interface regions on upper layer
  262. @upper_contact, # contact regions on upper layer
  263. ],
  264. [
  265. (map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z), # top slices on this layer
  266. (map @$_, map $interface->{$_}, grep exists $interface->{$_}, @overlapping_layers), # interface regions on this layer
  267. (map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z), # contact regions on this layer
  268. ],
  269. 1,
  270. );
  271. }
  272. }
  273. return $base;
  274. }
  275. sub generate_toolpaths {
  276. my ($self, $object, $overhang, $contact, $interface, $base) = @_;
  277. my $flow = $self->flow;
  278. # shape of contact area
  279. my $contact_loops = 1;
  280. my $circle_radius = 1.5 * $flow->scaled_width;
  281. my $circle_distance = 3 * $circle_radius;
  282. my $circle = Slic3r::Polygon->new(map [ $circle_radius * cos $_, $circle_radius * sin $_ ],
  283. (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0));
  284. Slic3r::debugf "Generating patterns\n";
  285. # prepare fillers
  286. my $pattern = $self->config->support_material_pattern;
  287. my @angles = ($self->config->support_material_angle);
  288. if ($pattern eq 'rectilinear-grid') {
  289. $pattern = 'rectilinear';
  290. push @angles, $angles[0] + 90;
  291. }
  292. my %fillers = (
  293. interface => $object->fill_maker->filler('rectilinear'),
  294. support => $object->fill_maker->filler($pattern),
  295. );
  296. my $interface_angle = $self->config->support_material_angle + 90;
  297. my $interface_spacing = $self->config->support_material_interface_spacing + $flow->spacing;
  298. my $interface_density = $interface_spacing == 0 ? 1 : $flow->spacing / $interface_spacing;
  299. my $support_spacing = $self->config->support_material_spacing + $flow->spacing;
  300. my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing;
  301. my $process_layer = sub {
  302. my ($layer_id) = @_;
  303. my $layer = $object->support_layers->[$layer_id];
  304. my $z = $layer->print_z;
  305. my $overhang = $overhang->{$z} || [];
  306. my $contact = $contact->{$z} || [];
  307. my $interface = $interface->{$layer_id} || [];
  308. my $base = $base->{$layer_id} || [];
  309. if (DEBUG_CONTACT_ONLY) {
  310. $interface = [];
  311. $base = [];
  312. }
  313. if (0) {
  314. require "Slic3r/SVG.pm";
  315. Slic3r::SVG::output("layer_" . $z . ".svg",
  316. red_expolygons => union_ex($contact),
  317. green_expolygons => union_ex($interface),
  318. );
  319. }
  320. # islands
  321. $layer->support_islands->append(@{union_ex([ @$interface, @$base, @$contact ])});
  322. # contact
  323. my $contact_infill = [];
  324. if ($self->config->support_material_interface_layers == 0) {
  325. # if no interface layers were requested we treat the contact layer
  326. # exactly as a generic base layer
  327. push @$base, @$contact;
  328. } elsif (@$contact && $contact_loops > 0) {
  329. # generate the outermost loop
  330. my @loops0 = ();
  331. {
  332. # find centerline of the external loop of the contours
  333. my @external_loops = @{offset($contact, -$flow->scaled_width/2)};
  334. # only consider the loops facing the overhang
  335. {
  336. my $overhang_with_margin = offset_ex($overhang, +$flow->scaled_width/2);
  337. @external_loops = grep {
  338. @{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection(
  339. [ map $_->pp, @$overhang_with_margin ],
  340. [ $_->split_at_first_point->pp ],
  341. ) }
  342. } @external_loops;
  343. }
  344. # apply a pattern to the loop
  345. my @positions = map Slic3r::Polygon->new(@$_)->split_at_first_point->regular_points($circle_distance), @external_loops;
  346. @loops0 = @{diff(
  347. [ @external_loops ],
  348. [ map { my $c = $circle->clone; $c->translate(@$_); $c } @positions ],
  349. )};
  350. }
  351. # make more loops
  352. my @loops = @loops0;
  353. for my $i (2..$contact_loops) {
  354. my $d = ($i-1) * $flow->scaled_spacing;
  355. push @loops, @{offset2(\@loops0, -$d -0.5*$flow->scaled_spacing, +0.5*$flow->scaled_spacing)};
  356. }
  357. # clip such loops to the side oriented towards the object
  358. @loops = map Slic3r::Polyline->new(@$_),
  359. @{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection(
  360. [ map $_->pp, @{offset_ex($overhang, +scale MARGIN)} ],
  361. [ map $_->split_at_first_point->pp, @loops ],
  362. ) };
  363. # add the contact infill area to the interface area
  364. # note that growing loops by $circle_radius ensures no tiny
  365. # extrusions are left inside the circles; however it creates
  366. # a very large gap between loops and contact_infill, so maybe another
  367. # solution should be found to achieve both goals
  368. $contact_infill = diff(
  369. $contact,
  370. [ map $_->grow($circle_radius*1.1), @loops ],
  371. );
  372. # transform loops into ExtrusionPath objects
  373. @loops = map Slic3r::ExtrusionPath->new(
  374. polyline => $_,
  375. role => EXTR_ROLE_SUPPORTMATERIAL,
  376. flow_spacing => $flow->spacing,
  377. ), @loops;
  378. $layer->support_interface_fills->append(@loops);
  379. }
  380. # interface and contact infill
  381. if (@$interface || @$contact_infill) {
  382. $fillers{interface}->angle($interface_angle);
  383. # join regions by offsetting them to ensure they're merged
  384. $interface = offset([ @$interface, @$contact_infill ], scaled_epsilon);
  385. # turn base support into interface when it's contained in our holes
  386. # (this way we get wider interface anchoring)
  387. {
  388. my @p = @$interface;
  389. @$interface = ();
  390. foreach my $p (@p) {
  391. if ($p->is_clockwise) {
  392. my $p2 = $p->clone;
  393. $p2->make_counter_clockwise;
  394. next if !@{diff([$p2], $base, 1)};
  395. }
  396. push @$interface, $p;
  397. }
  398. }
  399. $base = diff($base, $interface);
  400. my @paths = ();
  401. foreach my $expolygon (@{union_ex($interface)}) {
  402. my ($params, @p) = $fillers{interface}->fill_surface(
  403. Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
  404. density => $interface_density,
  405. flow_spacing => $flow->spacing,
  406. complete => 1,
  407. );
  408. push @paths, map Slic3r::ExtrusionPath->new(
  409. polyline => Slic3r::Polyline->new(@$_),
  410. role => EXTR_ROLE_SUPPORTMATERIAL,
  411. height => undef,
  412. flow_spacing => $params->{flow_spacing},
  413. ), @p;
  414. }
  415. $layer->support_interface_fills->append(@paths);
  416. }
  417. # support or flange
  418. if (@$base) {
  419. my $filler = $fillers{support};
  420. $filler->angle($angles[ ($layer_id) % @angles ]);
  421. my $density = $support_density;
  422. my $flow_spacing = $flow->spacing;
  423. # TODO: use offset2_ex()
  424. my $to_infill = union_ex($base, 1);
  425. my @paths = ();
  426. # base flange
  427. if ($layer_id == 0) {
  428. $filler = $fillers{interface};
  429. $filler->angle($self->config->support_material_angle + 90);
  430. $density = 0.5;
  431. $flow_spacing = $object->print->first_layer_support_material_flow->spacing;
  432. } else {
  433. # draw a perimeter all around support infill
  434. # TODO: use brim ordering algorithm
  435. push @paths, map Slic3r::ExtrusionPath->new(
  436. polyline => $_->split_at_first_point,
  437. role => EXTR_ROLE_SUPPORTMATERIAL,
  438. height => undef,
  439. flow_spacing => $flow->spacing,
  440. ), map @$_, @$to_infill;
  441. # TODO: use offset2_ex()
  442. $to_infill = offset_ex([ map @$_, @$to_infill ], -$flow->scaled_spacing);
  443. }
  444. foreach my $expolygon (@$to_infill) {
  445. my ($params, @p) = $filler->fill_surface(
  446. Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
  447. density => $density,
  448. flow_spacing => $flow_spacing,
  449. complete => 1,
  450. );
  451. push @paths, map Slic3r::ExtrusionPath->new(
  452. polyline => Slic3r::Polyline->new(@$_),
  453. role => EXTR_ROLE_SUPPORTMATERIAL,
  454. height => undef,
  455. flow_spacing => $params->{flow_spacing},
  456. ), @p;
  457. }
  458. $layer->support_fills->append(@paths);
  459. }
  460. if (0) {
  461. require "Slic3r/SVG.pm";
  462. Slic3r::SVG::output("islands_" . $z . ".svg",
  463. red_expolygons => union_ex($contact),
  464. green_expolygons => union_ex($interface),
  465. green_polylines => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ],
  466. polylines => [ map $_->unpack->polyline, @{$layer->support_fills} ],
  467. );
  468. }
  469. };
  470. Slic3r::parallelize(
  471. items => [ 0 .. $#{$object->support_layers} ],
  472. thread_cb => sub {
  473. my $q = shift;
  474. while (defined (my $layer_id = $q->dequeue)) {
  475. $process_layer->($layer_id);
  476. }
  477. },
  478. no_threads_cb => sub {
  479. $process_layer->($_) for 0 .. $#{$object->support_layers};
  480. },
  481. );
  482. }
  483. # this method returns the indices of the layers overlapping with the given one
  484. sub overlapping_layers {
  485. my ($self, $i, $support_z) = @_;
  486. my $zmax = $support_z->[$i];
  487. my $zmin = ($i == 0) ? 0 : $support_z->[$i-1];
  488. return grep {
  489. my $zmax2 = $support_z->[$_];
  490. my $zmin2 = ($_ == 0) ? 0 : $support_z->[$_-1];
  491. $zmax > $zmin2 && $zmin < $zmax2;
  492. } 0..$#$support_z;
  493. }
  494. 1;