123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- #include <catch2/catch.hpp>
- #include <libslic3r/libslic3r.h>
- #include <libslic3r/Algorithm/RegionExpansion.hpp>
- #include <libslic3r/ClipperUtils.hpp>
- #include <libslic3r/ExPolygon.hpp>
- #include <libslic3r/Polygon.hpp>
- #include <libslic3r/SVG.cpp>
- using namespace Slic3r;
- //#define DEBUG_TEMP_DIR "d:\\temp\\"
- SCENARIO("Region expansion basics", "[RegionExpansion]") {
- static constexpr const coord_t ten = scaled<coord_t>(10.);
- GIVEN("two touching squares") {
- Polygon square1{ { 1 * ten, 1 * ten }, { 2 * ten, 1 * ten }, { 2 * ten, 2 * ten }, { 1 * ten, 2 * ten } };
- Polygon square2{ { 2 * ten, 1 * ten }, { 3 * ten, 1 * ten }, { 3 * ten, 2 * ten }, { 2 * ten, 2 * ten } };
- Polygon square3{ { 1 * ten, 2 * ten }, { 2 * ten, 2 * ten }, { 2 * ten, 3 * ten }, { 1 * ten, 3 * ten } };
- static constexpr const float expansion = scaled<float>(1.);
- auto test_expansion = [](const Polygon &src, const Polygon &boundary) {
- std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{src} }, { ExPolygon{boundary} },
- expansion,
- scaled<float>(0.3), // expansion step
- 5); // max num steps
- THEN("Single anchor is produced") {
- REQUIRE(expanded.size() == 1);
- }
- THEN("The area of the anchor is 10mm2") {
- REQUIRE(area(expanded.front()) == Approx(expansion * ten));
- }
- };
- WHEN("second square expanded into the first square (to left)") {
- test_expansion(square2, square1);
- }
- WHEN("first square expanded into the second square (to right)") {
- test_expansion(square1, square2);
- }
- WHEN("third square expanded into the first square (down)") {
- test_expansion(square3, square1);
- }
- WHEN("first square expanded into the third square (up)") {
- test_expansion(square1, square3);
- }
- }
- GIVEN("simple bridge") {
- Polygon square1{ { 1 * ten, 1 * ten }, { 2 * ten, 1 * ten }, { 2 * ten, 2 * ten }, { 1 * ten, 2 * ten } };
- Polygon square2{ { 2 * ten, 1 * ten }, { 3 * ten, 1 * ten }, { 3 * ten, 2 * ten }, { 2 * ten, 2 * ten } };
- Polygon square3{ { 3 * ten, 1 * ten }, { 4 * ten, 1 * ten }, { 4 * ten, 2 * ten }, { 3 * ten, 2 * ten } };
- WHEN("expanded") {
- static constexpr const float expansion = scaled<float>(1.);
- std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{square2} }, { ExPolygon{square1}, ExPolygon{square3} },
- expansion,
- scaled<float>(0.3), // expansion step
- 5); // max num steps
- THEN("Two anchors are produced") {
- REQUIRE(expanded.size() == 1);
- REQUIRE(expanded.front().size() == 2);
- }
- THEN("The area of each anchor is 10mm2") {
- REQUIRE(area(expanded.front().front()) == Approx(expansion * ten));
- REQUIRE(area(expanded.front().back()) == Approx(expansion * ten));
- }
- }
- WHEN("fully expanded") {
- static constexpr const float expansion = scaled<float>(10.1);
- std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{square2} }, { ExPolygon{square1}, ExPolygon{square3} },
- expansion,
- scaled<float>(2.3), // expansion step
- 5); // max num steps
- THEN("Two anchors are produced") {
- REQUIRE(expanded.size() == 1);
- REQUIRE(expanded.front().size() == 2);
- }
- THEN("The area of each anchor is 100mm2") {
- REQUIRE(area(expanded.front().front()) == Approx(sqr<double>(ten)));
- REQUIRE(area(expanded.front().back()) == Approx(sqr<double>(ten)));
- }
- }
- }
- GIVEN("two bridges") {
- Polygon left_support { { 1 * ten, 1 * ten }, { 2 * ten, 1 * ten }, { 2 * ten, 4 * ten }, { 1 * ten, 4 * ten } };
- Polygon right_support { { 3 * ten, 1 * ten }, { 4 * ten, 1 * ten }, { 4 * ten, 4 * ten }, { 3 * ten, 4 * ten } };
- Polygon bottom_bridge { { 2 * ten, 1 * ten }, { 3 * ten, 1 * ten }, { 3 * ten, 2 * ten }, { 2 * ten, 2 * ten } };
- Polygon top_bridge { { 2 * ten, 3 * ten }, { 3 * ten, 3 * ten }, { 3 * ten, 4 * ten }, { 2 * ten, 4 * ten } };
- WHEN("expanded") {
- static constexpr const float expansion = scaled<float>(1.);
- std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{bottom_bridge}, ExPolygon{top_bridge} }, { ExPolygon{left_support}, ExPolygon{right_support} },
- expansion,
- scaled<float>(0.3), // expansion step
- 5); // max num steps
- #if 0
- SVG::export_expolygons(DEBUG_TEMP_DIR "two_bridges-out.svg",
- { { { { ExPolygon{left_support}, ExPolygon{right_support} } }, { "supports", "orange", 0.5f } },
- { { { ExPolygon{bottom_bridge}, ExPolygon{top_bridge} } }, { "bridges", "blue", 0.5f } },
- { { union_ex(union_(expanded.front(), expanded.back())) }, { "expanded", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
- #endif
- THEN("Two anchors are produced for each bridge") {
- REQUIRE(expanded.size() == 2);
- REQUIRE(expanded.front().size() == 2);
- REQUIRE(expanded.back().size() == 2);
- }
- THEN("The area of each anchor is 10mm2") {
- double a = expansion * ten + M_PI * sqr(expansion) / 4;
- double eps = sqr(scaled<double>(0.1));
- REQUIRE(is_approx(area(expanded.front().front()), a, eps));
- REQUIRE(is_approx(area(expanded.front().back()), a, eps));
- REQUIRE(is_approx(area(expanded.back().front()), a, eps));
- REQUIRE(is_approx(area(expanded.back().back()), a, eps));
- }
- }
- }
- GIVEN("rectangle with rhombic cut-out") {
- double diag = 1 * ten * sqrt(2.) / 4.;
- Polygon square_with_rhombic_cutout{ { 0, 0 }, { 1 * ten, 0 }, { ten / 2, ten / 2 }, { 1 * ten, 1 * ten }, { 0, 1 * ten } };
- Polygon rhombic { { ten / 2, ten / 2 }, { 3 * ten / 4, ten / 4 }, { 1 * ten, ten / 2 }, { 3 * ten / 4, 3 * ten / 4 } };
- WHEN("expanded") {
- static constexpr const float expansion = scaled<float>(1.);
- std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{rhombic} }, { ExPolygon{square_with_rhombic_cutout} },
- expansion,
- scaled<float>(0.1), // expansion step
- 11); // max num steps
- #if 0
- SVG::export_expolygons(DEBUG_TEMP_DIR "rectangle_with_rhombic_cut-out.svg",
- { { { { ExPolygon{square_with_rhombic_cutout} } }, { "square_with_rhombic_cutout", "orange", 0.5f } },
- { { { ExPolygon{rhombic} } }, { "rhombic", "blue", 0.5f } },
- { { union_ex(expanded.front()) }, { "bridges", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
- #endif
- THEN("Single anchor is produced") {
- REQUIRE(expanded.size() == 1);
- }
- THEN("The area of anchor is correct") {
- double area_calculated = area(expanded.front());
- double area_expected = 2. * diag * expansion + M_PI * sqr(expansion) * 0.75;
- REQUIRE(is_approx(area_expected, area_calculated, sqr(scaled<double>(0.2))));
- }
- }
- WHEN("extra expanded") {
- static constexpr const float expansion = scaled<float>(2.5);
- std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{rhombic} }, { ExPolygon{square_with_rhombic_cutout} },
- expansion,
- scaled<float>(0.25), // expansion step
- 11); // max num steps
- #if 0
- SVG::export_expolygons(DEBUG_TEMP_DIR "rectangle_with_rhombic_cut-out2.svg",
- { { { { ExPolygon{square_with_rhombic_cutout} } }, { "square_with_rhombic_cutout", "orange", 0.5f } },
- { { { ExPolygon{rhombic} } }, { "rhombic", "blue", 0.5f } },
- { { union_ex(expanded.front()) }, { "bridges", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
- #endif
- THEN("Single anchor is produced") {
- REQUIRE(expanded.size() == 1);
- }
- THEN("The area of anchor is correct") {
- double area_calculated = area(expanded.front());
- double area_expected = 2. * diag * expansion + M_PI * sqr(expansion) * 0.75;
- REQUIRE(is_approx(area_expected, area_calculated, sqr(scaled<double>(0.3))));
- }
- }
- }
- GIVEN("square with two holes") {
- Polygon outer{ { 0, 0 }, { 3 * ten, 0 }, { 3 * ten, 5 * ten }, { 0, 5 * ten } };
- Polygon hole1{ { 1 * ten, 1 * ten }, { 1 * ten, 2 * ten }, { 2 * ten, 2 * ten }, { 2 * ten, 1 * ten } };
- Polygon hole2{ { 1 * ten, 3 * ten }, { 1 * ten, 4 * ten }, { 2 * ten, 4 * ten }, { 2 * ten, 3 * ten } };
- ExPolygon boundary(outer);
- boundary.holes = { hole1, hole2 };
- Polygon anchor{ { -1 * ten, coord_t(1.5 * ten) }, { 0 * ten, coord_t(1.5 * ten) }, { 0, coord_t(3.5 * ten) }, { -1 * ten, coord_t(3.5 * ten) } };
- WHEN("expanded") {
- static constexpr const float expansion = scaled<float>(5.);
- std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{anchor} }, { boundary },
- expansion,
- scaled<float>(0.4), // expansion step
- 15); // max num steps
- #if 0
- SVG::export_expolygons(DEBUG_TEMP_DIR "square_with_two_holes-out.svg",
- { { { { ExPolygon{anchor} } }, { "anchor", "orange", 0.5f } },
- { { { boundary } }, { "boundary", "blue", 0.5f } },
- { { union_ex(expanded.front()) }, { "expanded", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
- #endif
- THEN("The anchor expands into a single region") {
- REQUIRE(expanded.size() == 1);
- REQUIRE(expanded.front().size() == 1);
- }
- THEN("The area of anchor is correct") {
- double area_calculated = area(expanded.front());
- double area_expected = double(expansion) * 2. * double(ten) + M_PI * sqr(expansion) * 0.5;
- REQUIRE(is_approx(area_expected, area_calculated, sqr(scaled<double>(0.45))));
- }
- }
- WHEN("expanded even more") {
- static constexpr const float expansion = scaled<float>(25.);
- std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{anchor} }, { boundary },
- expansion,
- scaled<float>(2.), // expansion step
- 15); // max num steps
- #if 0
- SVG::export_expolygons(DEBUG_TEMP_DIR "square_with_two_holes-expanded2-out.svg",
- { { { { ExPolygon{anchor} } }, { "anchor", "orange", 0.5f } },
- { { { boundary } }, { "boundary", "blue", 0.5f } },
- { { union_ex(expanded.front()) }, { "expanded", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
- #endif
- THEN("The anchor expands into a single region") {
- REQUIRE(expanded.size() == 1);
- REQUIRE(expanded.front().size() == 1);
- }
- }
- WHEN("expanded yet even more") {
- static constexpr const float expansion = scaled<float>(28.);
- std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{anchor} }, { boundary },
- expansion,
- scaled<float>(2.), // expansion step
- 20); // max num steps
- #if 0
- SVG::export_expolygons(DEBUG_TEMP_DIR "square_with_two_holes-expanded3-out.svg",
- { { { { ExPolygon{anchor} } }, { "anchor", "orange", 0.5f } },
- { { { boundary } }, { "boundary", "blue", 0.5f } },
- { { union_ex(expanded.front()) }, { "expanded", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
- #endif
- THEN("The anchor expands into a single region with two holes") {
- REQUIRE(expanded.size() == 1);
- REQUIRE(expanded.front().size() == 3);
- }
- }
- WHEN("expanded fully") {
- static constexpr const float expansion = scaled<float>(35.);
- std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{anchor} }, { boundary },
- expansion,
- scaled<float>(2.), // expansion step
- 25); // max num steps
- #if 0
- SVG::export_expolygons(DEBUG_TEMP_DIR "square_with_two_holes-expanded_fully-out.svg",
- { { { { ExPolygon{anchor} } }, { "anchor", "orange", 0.5f } },
- { { { boundary } }, { "boundary", "blue", 0.5f } },
- { { union_ex(expanded.front()) }, { "expanded", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
- #endif
- THEN("The anchor expands into a single region with two holes, fully covering the boundary") {
- REQUIRE(expanded.size() == 1);
- REQUIRE(expanded.front().size() == 3);
- REQUIRE(area(expanded.front()) == Approx(area(boundary)));
- }
- }
- }
- GIVEN("square with hole, hole edge anchored") {
- Polygon outer{ { -1 * ten, -1 * ten }, { 2 * ten, -1 * ten }, { 2 * ten, 2 * ten }, { -1 * ten, 2 * ten } };
- Polygon hole { { 0, ten }, { ten, ten }, { ten, 0 }, { 0, 0 } };
- Polygon anchor{ { 0, 0 }, { ten, 0 }, { ten, ten }, { 0, ten } };
- ExPolygon boundary(outer);
- boundary.holes = { hole };
- WHEN("expanded") {
- static constexpr const float expansion = scaled<float>(5.);
- std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{anchor} }, { boundary },
- expansion,
- scaled<float>(0.4), // expansion step
- 15); // max num steps
- #if 0
- SVG::export_expolygons(DEBUG_TEMP_DIR "square_with_hole_anchored-out.svg",
- { { { { ExPolygon{anchor} } }, { "anchor", "orange", 0.5f } },
- { { { boundary } }, { "boundary", "blue", 0.5f } },
- { { union_ex(expanded.front()) }, { "expanded", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
- #endif
- THEN("The anchor expands into a single region with a hole") {
- REQUIRE(expanded.size() == 1);
- REQUIRE(expanded.front().size() == 2);
- }
- THEN("The area of anchor is correct") {
- double area_calculated = area(expanded.front());
- double area_expected = double(expansion) * 4. * double(ten) + M_PI * sqr(expansion);
- REQUIRE(is_approx(area_expected, area_calculated, sqr(scaled<double>(0.6))));
- }
- }
- }
- }
|