1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- #version 140
- #define INTENSITY_CORRECTION 0.6
- // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
- const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
- #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
- #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
- #define LIGHT_TOP_SHININESS 20.0
- // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
- const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
- #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
- #define INTENSITY_AMBIENT 0.3
- uniform mat4 view_model_matrix;
- uniform mat4 projection_matrix;
- uniform mat3 view_normal_matrix;
- in vec3 v_position;
- in vec3 v_normal;
- // x = tainted, y = specular;
- out vec2 intensity;
- out vec3 world_position;
- void main()
- {
- // First transform the normal into camera space and normalize the result.
- vec3 normal = normalize(view_normal_matrix * v_normal);
-
- // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
- // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
- float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
- intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
- vec4 position = view_model_matrix * vec4(v_position, 1.0);
- intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
- // Perform the same lighting calculation for the 2nd light source (no specular applied).
- NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
- intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
- world_position = v_position;
- gl_Position = projection_matrix * position;
- }
|