gouraud.vs 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. #version 110
  2. #define INTENSITY_CORRECTION 0.6
  3. // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
  4. const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
  5. #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
  6. #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
  7. #define LIGHT_TOP_SHININESS 20.0
  8. // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
  9. const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
  10. #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
  11. //#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
  12. //#define LIGHT_FRONT_SHININESS 5.0
  13. #define INTENSITY_AMBIENT 0.3
  14. const vec3 ZERO = vec3(0.0, 0.0, 0.0);
  15. struct PrintBoxDetection
  16. {
  17. bool actived;
  18. vec3 min;
  19. vec3 max;
  20. mat4 volume_world_matrix;
  21. };
  22. struct SlopeDetection
  23. {
  24. bool actived;
  25. float normal_z;
  26. mat3 volume_world_normal_matrix;
  27. };
  28. uniform PrintBoxDetection print_box;
  29. uniform SlopeDetection slope;
  30. // Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
  31. uniform vec2 z_range;
  32. // Clipping plane - general orientation. Used by the SLA gizmo.
  33. uniform vec4 clipping_plane;
  34. // x = diffuse, y = specular;
  35. varying vec2 intensity;
  36. varying vec3 delta_box_min;
  37. varying vec3 delta_box_max;
  38. varying vec3 clipping_planes_dots;
  39. varying vec4 model_pos;
  40. varying float world_pos_z;
  41. varying float world_normal_z;
  42. varying vec3 eye_normal;
  43. uniform bool compute_triangle_normals_in_fs;
  44. void main()
  45. {
  46. if (!compute_triangle_normals_in_fs) {
  47. // First transform the normal into camera space and normalize the result.
  48. eye_normal = normalize(gl_NormalMatrix * gl_Normal);
  49. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
  50. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
  51. float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
  52. intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
  53. vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
  54. intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
  55. // Perform the same lighting calculation for the 2nd light source (no specular applied).
  56. NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
  57. intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
  58. }
  59. model_pos = gl_Vertex;
  60. // Point in homogenous coordinates.
  61. vec4 world_pos = print_box.volume_world_matrix * gl_Vertex;
  62. world_pos_z = world_pos.z;
  63. // compute deltas for out of print volume detection (world coordinates)
  64. if (print_box.actived) {
  65. delta_box_min = world_pos.xyz - print_box.min;
  66. delta_box_max = world_pos.xyz - print_box.max;
  67. } else {
  68. delta_box_min = ZERO;
  69. delta_box_max = ZERO;
  70. }
  71. // z component of normal vector in world coordinate used for slope shading
  72. if (!compute_triangle_normals_in_fs)
  73. world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0;
  74. gl_Position = ftransform();
  75. // Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
  76. clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
  77. }