123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- #include <assert.h>
- #include <stdio.h>
- #include <memory>
- #include "../ClipperUtils.hpp"
- #include "../Geometry.hpp"
- #include "../Layer.hpp"
- #include "../Print.hpp"
- #include "../PrintConfig.hpp"
- #include "../Surface.hpp"
- #include "FillBase.hpp"
- namespace Slic3r {
- struct SurfaceGroupAttrib
- {
- SurfaceGroupAttrib() : is_solid(false), flow_width(0.f), pattern(-1) {}
- bool operator==(const SurfaceGroupAttrib &other) const
- { return is_solid == other.is_solid && flow_width == other.flow_width && pattern == other.pattern; }
- bool is_solid;
- float flow_width;
- // pattern is of type InfillPattern, -1 for an unset pattern.
- int pattern;
- };
- // Generate infills for Slic3r::Layer::Region.
- // The Slic3r::Layer::Region at this point of time may contain
- // surfaces of various types (internal/bridge/top/bottom/solid).
- // The infills are generated on the groups of surfaces with a compatible type.
- // Returns an array of Slic3r::ExtrusionPath::Collection objects containing the infills generaed now
- // and the thin fills generated by generate_perimeters().
- void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
- {
- // Slic3r::debugf "Filling layer %d:\n", $layerm->layer->id;
-
- double fill_density = layerm.region()->config().fill_density;
- Flow infill_flow = layerm.flow(frInfill);
- Flow solid_infill_flow = layerm.flow(frSolidInfill);
- Flow top_solid_infill_flow = layerm.flow(frTopSolidInfill);
- Surfaces surfaces;
-
- // merge adjacent surfaces
- // in case of bridge surfaces, the ones with defined angle will be attached to the ones
- // without any angle (shouldn't this logic be moved to process_external_surfaces()?)
- {
- Polygons polygons_bridged;
- polygons_bridged.reserve(layerm.fill_surfaces.surfaces.size());
- for (Surfaces::iterator it = layerm.fill_surfaces.surfaces.begin(); it != layerm.fill_surfaces.surfaces.end(); ++ it)
- if (it->bridge_angle >= 0)
- polygons_append(polygons_bridged, *it);
-
- // group surfaces by distinct properties (equal surface_type, thickness, thickness_layers, bridge_angle)
- // group is of type Slic3r::SurfaceCollection
- //FIXME: Use some smart heuristics to merge similar surfaces to eliminate tiny regions.
- std::vector<SurfacesPtr> groups;
- layerm.fill_surfaces.group(&groups);
-
- // merge compatible groups (we can generate continuous infill for them)
- {
- // cache flow widths and patterns used for all solid groups
- // (we'll use them for comparing compatible groups)
- std::vector<SurfaceGroupAttrib> group_attrib(groups.size());
- for (size_t i = 0; i < groups.size(); ++ i) {
- // we can only merge solid non-bridge surfaces, so discard
- // non-solid surfaces
- const Surface &surface = *groups[i].front();
- if (surface.is_solid() && (!surface.is_bridge() || layerm.layer()->id() == 0)) {
- group_attrib[i].is_solid = true;
- group_attrib[i].flow_width = (surface.surface_type == stTop) ? top_solid_infill_flow.width : solid_infill_flow.width;
- group_attrib[i].pattern = surface.is_external() ?
- (surface.is_top() ? layerm.region()->config().top_fill_pattern.value : layerm.region()->config().bottom_fill_pattern.value) :
- ipRectilinear;
- }
- }
- // Loop through solid groups, find compatible groups and append them to this one.
- for (size_t i = 0; i < groups.size(); ++ i) {
- if (! group_attrib[i].is_solid)
- continue;
- for (size_t j = i + 1; j < groups.size();) {
- if (group_attrib[i] == group_attrib[j]) {
- // groups are compatible, merge them
- groups[i].insert(groups[i].end(), groups[j].begin(), groups[j].end());
- groups.erase(groups.begin() + j);
- group_attrib.erase(group_attrib.begin() + j);
- } else
- ++ j;
- }
- }
- }
-
- // Give priority to bridges. Process the bridges in the first round, the rest of the surfaces in the 2nd round.
- for (size_t round = 0; round < 2; ++ round) {
- for (std::vector<SurfacesPtr>::iterator it_group = groups.begin(); it_group != groups.end(); ++ it_group) {
- const SurfacesPtr &group = *it_group;
- bool is_bridge = group.front()->bridge_angle >= 0;
- if (is_bridge != (round == 0))
- continue;
- // Make a union of polygons defining the infiill regions of a group, use a safety offset.
- Polygons union_p = union_(to_polygons(*it_group), true);
- // Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
- if (! polygons_bridged.empty() && ! is_bridge)
- union_p = diff(union_p, polygons_bridged, true);
- // subtract any other surface already processed
- //FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
- // Using group.front() as a template.
- surfaces_append(surfaces, diff_ex(union_p, to_polygons(surfaces), true), *group.front());
- }
- }
- }
-
- // we need to detect any narrow surfaces that might collapse
- // when adding spacing below
- // such narrow surfaces are often generated in sloping walls
- // by bridge_over_infill() and combine_infill() as a result of the
- // subtraction of the combinable area from the layer infill area,
- // which leaves small areas near the perimeters
- // we are going to grow such regions by overlapping them with the void (if any)
- // TODO: detect and investigate whether there could be narrow regions without
- // any void neighbors
- {
- coord_t distance_between_surfaces = std::max(
- std::max(infill_flow.scaled_spacing(), solid_infill_flow.scaled_spacing()),
- top_solid_infill_flow.scaled_spacing());
- Polygons surfaces_polygons = to_polygons(surfaces);
- Polygons collapsed = diff(
- surfaces_polygons,
- offset2(surfaces_polygons, (float)-distance_between_surfaces/2, (float)+distance_between_surfaces/2),
- true);
- Polygons to_subtract;
- to_subtract.reserve(collapsed.size() + number_polygons(surfaces));
- for (Surfaces::const_iterator it_surface = surfaces.begin(); it_surface != surfaces.end(); ++ it_surface)
- if (it_surface->surface_type == stInternalVoid)
- polygons_append(to_subtract, *it_surface);
- polygons_append(to_subtract, collapsed);
- surfaces_append(
- surfaces,
- intersection_ex(
- offset(collapsed, (float)distance_between_surfaces),
- to_subtract,
- true),
- stInternalSolid);
- }
- if (0) {
- // require "Slic3r/SVG.pm";
- // Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
- // expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
- // red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
- // );
- }
- for (const Surface &surface : surfaces) {
- if (surface.surface_type == stInternalVoid)
- continue;
- InfillPattern fill_pattern = layerm.region()->config().fill_pattern.value;
- double density = fill_density;
- FlowRole role = (surface.surface_type == stTop) ? frTopSolidInfill :
- (surface.is_solid() ? frSolidInfill : frInfill);
- bool is_bridge = layerm.layer()->id() > 0 && surface.is_bridge();
-
- if (surface.is_solid()) {
- density = 100.;
- fill_pattern = (surface.is_external() && ! is_bridge) ?
- (surface.is_top() ? layerm.region()->config().top_fill_pattern.value : layerm.region()->config().bottom_fill_pattern.value) :
- ipRectilinear;
- } else if (density <= 0)
- continue;
-
- // get filler object
- std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(fill_pattern));
- f->set_bounding_box(layerm.layer()->object()->bounding_box());
-
- // calculate the actual flow we'll be using for this infill
- coordf_t h = (surface.thickness == -1) ? layerm.layer()->height : surface.thickness;
- Flow flow = layerm.region()->flow(
- role,
- h,
- is_bridge || f->use_bridge_flow(), // bridge flow?
- layerm.layer()->id() == 0, // first layer?
- -1, // auto width
- *layerm.layer()->object()
- );
-
- // calculate flow spacing for infill pattern generation
- bool using_internal_flow = false;
- if (! surface.is_solid() && ! is_bridge) {
- // it's internal infill, so we can calculate a generic flow spacing
- // for all layers, for avoiding the ugly effect of
- // misaligned infill on first layer because of different extrusion width and
- // layer height
- Flow internal_flow = layerm.region()->flow(
- frInfill,
- layerm.layer()->object()->config().layer_height.value, // TODO: handle infill_every_layers?
- false, // no bridge
- false, // no first layer
- -1, // auto width
- *layerm.layer()->object()
- );
- f->spacing = internal_flow.spacing();
- using_internal_flow = true;
- } else {
- f->spacing = flow.spacing();
- }
- double link_max_length = 0.;
- if (! is_bridge) {
- #if 0
- link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
- // printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
- #else
- if (density > 80.) // 80%
- link_max_length = 3. * f->spacing;
- #endif
- }
- f->layer_id = layerm.layer()->id();
- f->z = layerm.layer()->print_z;
- f->angle = float(Geometry::deg2rad(layerm.region()->config().fill_angle.value));
- // Maximum length of the perimeter segment linking two infill lines.
- f->link_max_length = (coord_t)scale_(link_max_length);
- // Used by the concentric infill pattern to clip the loops to create extrusion paths.
- f->loop_clipping = coord_t(scale_(flow.nozzle_diameter) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
- // f->layer_height = h;
- // apply half spacing using this flow's own spacing and generate infill
- FillParams params;
- params.density = float(0.01 * density);
- // params.dont_adjust = true;
- params.dont_adjust = false;
- Polylines polylines = f->fill_surface(&surface, params);
- if (polylines.empty())
- continue;
- // calculate actual flow from spacing (which might have been adjusted by the infill
- // pattern generator)
- if (using_internal_flow) {
- // if we used the internal flow we're not doing a solid infill
- // so we can safely ignore the slight variation that might have
- // been applied to $f->flow_spacing
- } else {
- flow = Flow::new_from_spacing(f->spacing, flow.nozzle_diameter, (float)h, is_bridge || f->use_bridge_flow());
- }
- // Save into layer.
- auto *eec = new ExtrusionEntityCollection();
- out.entities.push_back(eec);
- // Only concentric fills are not sorted.
- eec->no_sort = f->no_sort();
- extrusion_entities_append_paths(
- eec->entities, std::move(polylines),
- is_bridge ?
- erBridgeInfill :
- (surface.is_solid() ?
- ((surface.surface_type == stTop) ? erTopSolidInfill : erSolidInfill) :
- erInternalInfill),
- flow.mm3_per_mm(), flow.width, flow.height);
- }
- // add thin fill regions
- // thin_fills are of C++ Slic3r::ExtrusionEntityCollection, perl type Slic3r::ExtrusionPath::Collection
- // Unpacks the collection, creates multiple collections per path.
- // The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
- // Why the paths are unpacked?
- for (const ExtrusionEntity *thin_fill : layerm.thin_fills.entities) {
- ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
- out.entities.push_back(&collection);
- collection.entities.push_back(thin_fill->clone());
- }
- }
- } // namespace Slic3r
|