123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 |
- package Slic3r::Fill::Rectilinear;
- use Moo;
- use constant PI => 4 * atan2(1, 1);
- use constant X1 => 0;
- use constant Y1 => 1;
- use constant X2 => 2;
- use constant Y2 => 3;
- use constant A => 0;
- use constant B => 1;
- use constant X => 0;
- use constant Y => 1;
- use Math::Geometry::Planar;
- use POSIX qw(ceil);
- use XXX;
- sub make_fill {
- my $self = shift;
- my ($print, $layer) = @_;
- printf "Filling layer %d:\n", $layer->id;
-
- my $max_print_dimension = $print->max_length * sqrt(2);
-
- my $n = 1;
- foreach my $surface_collection (@{ $layer->fill_surfaces }) {
- my @path_collection = ();
-
- SURFACE: foreach my $surface (@{ $surface_collection->surfaces }) {
- Slic3r::debugf " Processing surface %s:\n", $surface->id;
- my $polygon = $surface->mgp_polygon;
-
- # set infill angle
- my (@rotate, @shift);
- $rotate[0] = Slic3r::Geometry::deg2rad($Slic3r::fill_angle);
- $rotate[1] = [ $max_print_dimension / 2, $max_print_dimension / 2 ];
- @shift = @{$rotate[1]};
-
- # alternate fill direction
- if ($layer->id % 2) {
- $rotate[0] = Slic3r::Geometry::deg2rad($Slic3r::fill_angle) + PI/2;
- }
-
- # TODO: here we should implement an "infill in direction of bridges" option
-
- # rotate surface as needed
- @shift = @{ +(Slic3r::Geometry::rotate_points(@rotate, \@shift))[0] };
- $polygon = $polygon->rotate(@rotate)->move(@shift) if $rotate[0];
-
- # force 100% density for external surfaces
- my $density = $surface->surface_type eq 'internal' ? $Slic3r::fill_density : 1;
- next SURFACE unless $density > 0;
-
- my $distance_between_lines = $Slic3r::flow_width / $Slic3r::resolution / $density;
- my $number_of_lines = ceil($max_print_dimension / $distance_between_lines);
-
- #printf "distance = %f\n", $distance_between_lines;
- #printf "number_of_lines = %d\n", $number_of_lines;
-
- # this arrayref will hold intersection points of the fill grid with surface segments
- my $points = [ map [], 0..$number_of_lines-1 ];
- foreach my $line (map $self->_lines_from_mgp_points($_), @{ $polygon->polygons }) {
-
- # find out the coordinates
- my @coordinates = map @$_, @$line;
-
- # get the extents of the segment along the primary axis
- my @line_c = sort { $a <=> $b } @coordinates[X1, X2];
- Slic3r::debugf "Segment %d,%d - %d,%d (extents: %f, %f)\n", @coordinates, @line_c;
-
- for (my $c = int($line_c[0] / $distance_between_lines) * $distance_between_lines;
- $c <= $line_c[1]; $c += $distance_between_lines) {
- next if $c < $line_c[0] || $c > $line_c[1];
- my $i = sprintf('%.0f', $c / $distance_between_lines) - 1;
- #printf "CURRENT \$i = %d, \$c = %f\n", $i, $c;
-
- # if the segment is parallel to our ray, there will be two intersection points
- if ($line_c[0] == $line_c[1]) {
- Slic3r::debugf " Segment is parallel!\n";
- push @{ $points->[$i] }, $coordinates[Y1], $coordinates[Y2];
- Slic3r::debugf " intersections at %f (%d) = %f, %f\n", $c, $i, $points->[$i][-2], $points->[$i][-1];
- } else {
- Slic3r::debugf " Segment NOT parallel!\n";
- # one point of intersection
- push @{ $points->[$i] }, $coordinates[Y1] + ($coordinates[Y2] - $coordinates[Y1])
- * ($c - $coordinates[X1]) / ($coordinates[X2] - $coordinates[X1]);
- Slic3r::debugf " intersection at %f (%d) = %f\n", $c, $i, $points->[$i][-1];
- }
- }
- }
-
- # sort and remove duplicates
- for (my $i = 0; $i <= $#$points; $i++) {
- my %h = map { sprintf("%.9f", $_) => 1 } @{ $points->[$i] };
- $points->[$i] = [ sort { $a <=> $b } keys %h ];
- }
-
- # generate extrusion paths
- my (@paths, @path_points) = ();
- my $direction = 0;
-
- my $stop_path = sub {
- # defensive programming
- if (@path_points == 1) {
- #warn "There shouldn't be only one point in the current path";
- }
-
- # if we were constructing a path, stop it
- push @paths, [ @path_points ] if @path_points > 1;
- @path_points = ();
- };
-
- # loop until we have spare points
- CYCLE: while (scalar map(@$_, @$points) > 1) {
- # loop through rows
- ROW: for (my $i = 0; $i <= $#$points; $i++) {
- my $row = $points->[$i] or next ROW;
- Slic3r::debugf "\nProcessing row %d (direction: %d)...\n", $i, $direction;
- if (!@$row) {
- Slic3r::debugf " no points\n";
- $stop_path->();
- next ROW;
- }
- Slic3r::debugf " points = %s\n", join ', ', @$row if $Slic3r::debug;
-
- # coordinate of current row
- my $c = ($i + 1) * $distance_between_lines;
-
- # need to start a path?
- if (!@path_points) {
- Slic3r::debugf " path starts at %d\n", $row->[0];
- push @path_points, [ $c, shift @$row ];
- }
-
- my @search_points = @$row;
- @search_points = reverse @search_points if $direction == 1;
- my @connectable_points = $self->find_connectable_points($polygon, $path_points[-1], $c, [@search_points]);
- Slic3r::debugf " ==> found %d connectable points = %s\n", scalar(@connectable_points),
- join ', ', @connectable_points if $Slic3r::debug;
-
- if (!@connectable_points && @path_points && $path_points[-1][0] != $c) {
- # no connectable in this row
- $stop_path->();
- }
-
- if (@connectable_points == 1 && $path_points[0][0] != $c
- && (($connectable_points[0] == $row->[-1] && $direction == 0)
- || ($connectable_points[0] == $row->[0] && $direction == 1))) {
- $i--; # keep searching on current row in the opposite direction
- }
-
- foreach my $p (@connectable_points) {
- push @path_points, [ $c, $p ];
- @$row = grep $_ != $p, @$row; # remove point from row
- }
-
- # invert direction
- $direction = $direction ? 0 : 1;
- }
- $stop_path->() if @path_points;
- }
-
- # paths must be rotated back
- if ($rotate[0]) {
- @paths = map [ Slic3r::Geometry::rotate_points(-$rotate[0], $rotate[1], @$_) ],
- map [ Slic3r::Geometry::move_points([map -$_, @shift], @$_) ], @paths;
- }
-
- push @path_collection, @paths;
- }
-
- # save into layer
- FINISH: push @{ $layer->fills }, Slic3r::ExtrusionPath::Collection->new(
- paths => [ map Slic3r::ExtrusionPath->cast([ @$_ ]), @path_collection ],
- );
- }
- }
- # this function will select the first contiguous block of
- # points connectable to a given one
- sub find_connectable_points {
- my $self = shift;
- my ($polygon, $point, $c, $points) = @_;
-
- my @connectable_points = ();
- foreach my $p (@$points) {
- if (!$self->can_connect($polygon, $point, [ $c, $p ])) {
- @connectable_points ? last : next;
- }
- push @connectable_points, $p;
- $point = [ $c, $p ] if $point->[0] != $c;
- }
- return @connectable_points;
- }
- # this subroutine tries to determine whether two points in a surface
- # are connectable without crossing contour or holes
- sub can_connect {
- my $self = shift;
- my ($polygon, $p1, $p2) = @_;
- #printf " Checking connectability of point %d\n", $p2->[1];
-
- # there's room for optimization here
-
- # this is not needed since we assume that $p1 and $p2 belong to $polygon
- for ($p1, $p2) {
- #return 0 unless $polygon->isinside($_);
-
- # TODO: re-enable this one after testing point_in_polygon() which
- # doesn't detect well points on the contour of polygon
- #return 0 unless Slic3r::Geometry::point_in_polygon($_, $polygon->points);
- }
-
- # check whether the $p1-$p2 segment doesn't intersect any segment
- # of the contour or of holes
- my ($contour_p, @holes_p) = $polygon->get_polygons;
- foreach my $points ($contour_p, @holes_p) {
- foreach my $line ($self->_lines_from_mgp_points($points)) {
-
- # theoretically speaking, SegmentIntersection() would be the right tool for the
- # job; however floating point math often makes it not return any intersection
- # point between our hypothetical extrusion segment and any other one, even
- # if, of course, the final point of the extrusion segment is taken from
- # $point and thus it's a point that belongs for sure to a segment.
- # then, let's calculate intersection considering extrusion segment as a ray
- # instead of a segment, and then check whether the intersection point
- # belongs to the segment
- my $point = SegmentRayIntersection([@$line, $p1, $p2]);
- #printf " intersecting ray %f,%f - %f,%f and segment %f,%f - %f,%f\n",
- # @$p1, @$p2, map @$_, @$line;
-
- if ($point && Slic3r::Geometry::line_point_belongs_to_segment($point, [$p1, $p2])) {
- #printf " ...point intersects!\n";
- #YYY [ $point, $p1, $p2 ];
-
- # our $p1-$p2 line intersects $line
-
- # if the intersection point is an intermediate point of $p1-$p2
- # it means that $p1-$p2 crosses $line, thus we're sure that
- # $p1 and $p2 are not connectible (one is inside polygon and one
- # is outside), unless $p1-$p2 and $line coincide but we've got
- # an intersection due to floating point math
- my @points_not_belonging_to_line = grep !Slic3r::Geometry::points_coincide($point, $_), $p1, $p2;
- if (@points_not_belonging_to_line == 2) {
-
- # make sure $p1-$p2 and $line are two distinct lines; we do this
- # by checking their slopes
- if (!Slic3r::Geometry::lines_parallel([$p1, $p2], $line)) {
- #printf " ...lines cross!\n";
- #Slic3r::SVG::output_lines($main::print, "lines" . $n++ . ".svg", [ @lines, [$p1, $p2] ]);
- return 0;
- }
-
- }
-
- # defensive programming, this shouldn't happen
- if (@points_not_belonging_to_line == 0) {
- die "SegmentIntersection is not expected to return an intersection point "
- . "if \$line coincides with \$p1-\$p2";
- }
-
- # if we're here, then either $p1 or $p2 belong to $line
- # so we have to check whether the other point falls inside
- # the polygon or not
- # we rely on Math::Geometry::Planar returning contour points
- # in counter-clockwise order and hole points in clockwise
- # order, so that if the point falls on the left of $line
- # it's inside the polygon and viceversa
- my $C = $points_not_belonging_to_line[0];
- my $isInside = (($line->[B][X] - $line->[A][X])*($C->[Y] - $line->[A][Y])
- - ($line->[B][Y] - $line->[A][Y])*($C->[X] - $line->[A][X])) > 0;
-
- #printf " \$line is inside polygon: %d\n", $isInside;
-
-
- # if the line is outside the polygon then points are not connectable
- return 0 if !$isInside;
- #Slic3r::SVG::output_lines($main::print, "lines" . $n++ . ".svg", [ @lines, [$p1, $p2] ])
- # if !$isInside;
- }
- }
- }
- # even if no intersection is found, we should check whether both $p1 and $p2 are
- # inside a hole; this may happen due to floating point path
- #foreach my $hole_p (map $self->_mgp_from_points_ref($_), @holes_p) {
- # if ($hole_p->isinside($p1) || $hole_p->isinside($p2)) {
- # return 0;
- # }
- #}
-
- #use Slic3r::SVG;
- #Slic3r::SVG::output_lines($main::print, "lines" . $n++ . ".svg", [ @lines, [$p1, $p2] ]);
-
- return 1;
- }
- sub _lines_from_mgp_points {
- my $self = shift;
- my ($points) = @_;
-
- my @lines = ();
- my $last_point = $points->[-1];
- foreach my $point (@$points) {
- push @lines, [ $last_point, $point ];
- $last_point = $point;
- }
- return @lines;
- }
- sub _mgp_from_points_ref {
- my $self = shift;
- my ($points) = @_;
- my $p = Math::Geometry::Planar->new;
- $p->points($points);
- return $p;
- }
- 1;
|