12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541 |
- #include <stdlib.h>
- #include <stdint.h>
- #include <algorithm>
- #include <cmath>
- #include <limits>
- #include <boost/static_assert.hpp>
- #include "../ExtrusionEntityCollection.hpp"
- #include "../ClipperUtils.hpp"
- #include "../ExPolygon.hpp"
- #include "../Geometry.hpp"
- #include "../Surface.hpp"
- #include "FillRectilinear2.hpp"
- // #define SLIC3R_DEBUG
- // Make assert active if SLIC3R_DEBUG
- #ifdef SLIC3R_DEBUG
- #undef NDEBUG
- #include "SVG.hpp"
- #endif
- #include <cassert>
- // We want our version of assert.
- #include "../libslic3r.h"
- namespace Slic3r {
- // Having a segment of a closed polygon, calculate its Euclidian length.
- // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
- // therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
- static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
- {
- #ifdef SLIC3R_DEBUG
- // Verify that p1 lies on seg1. This is difficult to verify precisely,
- // but at least verify, that p1 lies in the bounding box of seg1.
- for (size_t i = 0; i < 2; ++ i) {
- size_t seg = (i == 0) ? seg1 : seg2;
- Point px = (i == 0) ? p1 : p2;
- Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
- Point pb = poly.points[seg];
- if (pa.x > pb.x)
- std::swap(pa.x, pb.x);
- if (pa.y > pb.y)
- std::swap(pa.y, pb.y);
- assert(px.x >= pa.x && px.x <= pb.x);
- assert(px.y >= pa.y && px.y <= pb.y);
- }
- #endif /* SLIC3R_DEBUG */
- const Point *pPrev = &p1;
- const Point *pThis = NULL;
- coordf_t len = 0;
- if (seg1 <= seg2) {
- for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
- len += pPrev->distance_to(*(pThis = &poly.points[i]));
- } else {
- for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
- len += pPrev->distance_to(*(pThis = &poly.points[i]));
- for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
- len += pPrev->distance_to(*(pThis = &poly.points[i]));
- }
- len += pPrev->distance_to(p2);
- return len;
- }
- // Append a segment of a closed polygon to a polyline.
- // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
- // Only insert intermediate points between seg1 and seg2.
- static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
- {
- if (seg1 == seg2) {
- // Nothing to append from this segment.
- } else if (seg1 < seg2) {
- // Do not append a point pointed to by seg2.
- out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
- } else {
- out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
- out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
- // Do not append a point pointed to by seg2.
- out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
- }
- }
- // Append a segment of a closed polygon to a polyline.
- // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
- // but this time the segment is traversed backward.
- // Only insert intermediate points between seg1 and seg2.
- static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
- {
- if (seg1 >= seg2) {
- out.reserve(seg1 - seg2);
- for (size_t i = seg1; i > seg2; -- i)
- out.push_back(polygon.points[i - 1]);
- } else {
- // it could be, that seg1 == seg2. In that case, append the complete loop.
- out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
- for (size_t i = seg1; i > 0; -- i)
- out.push_back(polygon.points[i - 1]);
- for (size_t i = polygon.points.size(); i > seg2; -- i)
- out.push_back(polygon.points[i - 1]);
- }
- }
- // Intersection point of a vertical line with a polygon segment.
- class SegmentIntersection
- {
- public:
- SegmentIntersection() :
- iContour(0),
- iSegment(0),
- pos_p(0),
- pos_q(1),
- type(UNKNOWN),
- consumed_vertical_up(false),
- consumed_perimeter_right(false)
- {}
- // Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
- size_t iContour;
- // Index of a segment in iContour, with which this vertical line intersects.
- size_t iSegment;
- // y position of the intersection, ratinal number.
- int64_t pos_p;
- uint32_t pos_q;
- coord_t pos() const {
- // Division rounds both positive and negative down to zero.
- // Add half of q for an arithmetic rounding effect.
- int64_t p = pos_p;
- if (p < 0)
- p -= int64_t(pos_q>>1);
- else
- p += int64_t(pos_q>>1);
- return coord_t(p / int64_t(pos_q));
- }
- // Kind of intersection. With the original contour, or with the inner offestted contour?
- // A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
- // but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
- // and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
- enum SegmentIntersectionType {
- OUTER_LOW = 0,
- OUTER_HIGH = 1,
- INNER_LOW = 2,
- INNER_HIGH = 3,
- UNKNOWN = -1
- };
- SegmentIntersectionType type;
- // Was this segment along the y axis consumed?
- // Up means up along the vertical segment.
- bool consumed_vertical_up;
- // Was a segment of the inner perimeter contour consumed?
- // Right means right from the vertical segment.
- bool consumed_perimeter_right;
- // For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
- // For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
- // If INNER_LOW is connected to INNER_HIGH or vice versa,
- // one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
- bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
- bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
- bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
- bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }
- // Compare two y intersection points given by rational numbers.
- // Note that the rational number is given as pos_p/pos_q, where pos_p is int64 and pos_q is uint32.
- // This function calculates pos_p * other.pos_q < other.pos_p * pos_q as a 48bit number.
- // We don't use 128bit intrinsic data types as these are usually not supported by 32bit compilers and
- // we don't need the full 128bit precision anyway.
- bool operator<(const SegmentIntersection &other) const
- {
- assert(pos_q > 0);
- assert(other.pos_q > 0);
- if (pos_p == 0 || other.pos_p == 0) {
- // Because the denominators are positive and one of the nominators is zero,
- // following simple statement holds.
- return pos_p < other.pos_p;
- } else {
- // None of the nominators is zero.
- int sign1 = (pos_p > 0) ? 1 : -1;
- int sign2 = (other.pos_p > 0) ? 1 : -1;
- int signs = sign1 * sign2;
- assert(signs == 1 || signs == -1);
- if (signs < 0) {
- // The nominators have different signs.
- return sign1 < 0;
- } else {
- // The nominators have the same sign.
- // Absolute values
- uint64_t p1, p2;
- if (sign1 > 0) {
- p1 = uint64_t(pos_p);
- p2 = uint64_t(other.pos_p);
- } else {
- p1 = uint64_t(- pos_p);
- p2 = uint64_t(- other.pos_p);
- };
- // Multiply low and high 32bit words of p1 by other_pos.q
- // 32bit x 32bit => 64bit
- // l_hi and l_lo overlap by 32 bits.
- uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
- uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
- l_hi += (l_lo >> 32);
- uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
- uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
- r_hi += (r_lo >> 32);
- // Compare the high 64 bits.
- if (l_hi == r_hi) {
- // Compare the low 32 bits.
- l_lo &= 0xffffffffll;
- r_lo &= 0xffffffffll;
- return (sign1 < 0) ? (l_lo > r_lo) : (l_lo < r_lo);
- }
- return (sign1 < 0) ? (l_hi > r_hi) : (l_hi < r_hi);
- }
- }
- }
- bool operator==(const SegmentIntersection &other) const
- {
- assert(pos_q > 0);
- assert(other.pos_q > 0);
- if (pos_p == 0 || other.pos_p == 0) {
- // Because the denominators are positive and one of the nominators is zero,
- // following simple statement holds.
- return pos_p == other.pos_p;
- }
- // None of the nominators is zero, none of the denominators is zero.
- bool positive = pos_p > 0;
- if (positive != (other.pos_p > 0))
- return false;
- // The nominators have the same sign.
- // Absolute values
- uint64_t p1 = positive ? uint64_t(pos_p) : uint64_t(- pos_p);
- uint64_t p2 = positive ? uint64_t(other.pos_p) : uint64_t(- other.pos_p);
- // Multiply low and high 32bit words of p1 by other_pos.q
- // 32bit x 32bit => 64bit
- // l_hi and l_lo overlap by 32 bits.
- uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
- uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
- if (l_lo != r_lo)
- return false;
- uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
- uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
- return l_hi + (l_lo >> 32) == r_hi + (r_lo >> 32);
- }
- };
- // A vertical line with intersection points with polygons.
- class SegmentedIntersectionLine
- {
- public:
- // Index of this vertical intersection line.
- size_t idx;
- // x position of this vertical intersection line.
- coord_t pos;
- // List of intersection points with polygons, sorted increasingly by the y axis.
- std::vector<SegmentIntersection> intersections;
- };
- // A container maintaining an expolygon with its inner offsetted polygon.
- // The purpose of the inner offsetted polygon is to provide segments to connect the infill lines.
- struct ExPolygonWithOffset
- {
- public:
- ExPolygonWithOffset(
- const ExPolygon &expolygon,
- float angle,
- coord_t aoffset1,
- coord_t aoffset2)
- {
- // Copy and rotate the source polygons.
- polygons_src = expolygon;
- polygons_src.contour.rotate(angle);
- for (Polygons::iterator it = polygons_src.holes.begin(); it != polygons_src.holes.end(); ++ it)
- it->rotate(angle);
- double mitterLimit = 3.;
- // for the infill pattern, don't cut the corners.
- // default miterLimt = 3
- //double mitterLimit = 10.;
- assert(aoffset1 < 0);
- assert(aoffset2 < 0);
- assert(aoffset2 < aoffset1);
- bool sticks_removed = remove_sticks(polygons_src);
- // if (sticks_removed) printf("Sticks removed!\n");
- polygons_outer = offset(polygons_src, aoffset1,
- ClipperLib::jtMiter,
- mitterLimit);
- polygons_inner = offset(polygons_outer, aoffset2 - aoffset1,
- ClipperLib::jtMiter,
- mitterLimit);
- // Filter out contours with zero area or small area, contours with 2 points only.
- const double min_area_threshold = 0.01 * aoffset2 * aoffset2;
- remove_small(polygons_outer, min_area_threshold);
- remove_small(polygons_inner, min_area_threshold);
- remove_sticks(polygons_outer);
- remove_sticks(polygons_inner);
- n_contours_outer = polygons_outer.size();
- n_contours_inner = polygons_inner.size();
- n_contours = n_contours_outer + n_contours_inner;
- polygons_ccw.assign(n_contours, false);
- for (size_t i = 0; i < n_contours; ++ i) {
- contour(i).remove_duplicate_points();
- assert(! contour(i).has_duplicate_points());
- polygons_ccw[i] = Slic3r::Geometry::is_ccw(contour(i));
- }
- }
- // Any contour with offset1
- bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
- // Any contour with offset2
- bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }
- const Polygon& contour(size_t idx) const
- { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
- Polygon& contour(size_t idx)
- { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
- bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx]; }
- BoundingBox bounding_box_src() const
- { return get_extents(polygons_src); }
- BoundingBox bounding_box_outer() const
- { return get_extents(polygons_outer); }
- BoundingBox bounding_box_inner() const
- { return get_extents(polygons_inner); }
- #ifdef SLIC3R_DEBUG
- void export_to_svg(Slic3r::SVG &svg) {
- svg.draw_outline(polygons_src, "black");
- svg.draw_outline(polygons_outer, "green");
- svg.draw_outline(polygons_inner, "brown");
- }
- #endif /* SLIC3R_DEBUG */
- ExPolygon polygons_src;
- Polygons polygons_outer;
- Polygons polygons_inner;
- size_t n_contours_outer;
- size_t n_contours_inner;
- size_t n_contours;
- protected:
- // For each polygon of polygons_inner, remember its orientation.
- std::vector<unsigned char> polygons_ccw;
- };
- static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
- {
- int d = int(seg2) - int(seg1);
- if (! forward)
- d = - d;
- if (d < 0)
- d += int(poly.points.size());
- return d;
- }
- // For a vertical line, an inner contour and an intersection point,
- // find an intersection point on the previous resp. next vertical line.
- // The intersection point is connected with the prev resp. next intersection point with iInnerContour.
- // Return -1 if there is no such point on the previous resp. next vertical line.
- static inline int intersection_on_prev_next_vertical_line(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- bool dir_is_next)
- {
- size_t iVerticalLineOther = iVerticalLine;
- if (dir_is_next) {
- if (++ iVerticalLineOther == segs.size())
- // No successive vertical line.
- return -1;
- } else if (iVerticalLineOther -- == 0) {
- // No preceding vertical line.
- return -1;
- }
- const SegmentedIntersectionLine &il = segs[iVerticalLine];
- const SegmentIntersection &itsct = il.intersections[iIntersection];
- const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
- const Polygon &poly = poly_with_offset.contour(iInnerContour);
- // const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
- const bool forward = itsct.is_low() == dir_is_next;
- // Resulting index of an intersection point on il2.
- int out = -1;
- // Find an intersection point on iVerticalLineOther, intersecting iInnerContour
- // at the same orientation as iIntersection, and being closest to iIntersection
- // in the number of contour segments, when following the direction of the contour.
- int dmin = std::numeric_limits<int>::max();
- for (size_t i = 0; i < il2.intersections.size(); ++ i) {
- const SegmentIntersection &itsct2 = il2.intersections[i];
- if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
- /*
- if (itsct.is_low()) {
- assert(itsct.type == SegmentIntersection::INNER_LOW);
- assert(iIntersection > 0);
- assert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW);
- assert(i > 0);
- if (il2.intersections[i-1].is_inner())
- // Take only the lowest inner intersection point.
- continue;
- assert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW);
- } else {
- assert(itsct.type == SegmentIntersection::INNER_HIGH);
- assert(iIntersection+1 < il.intersections.size());
- assert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH);
- assert(i+1 < il2.intersections.size());
- if (il2.intersections[i+1].is_inner())
- // Take only the highest inner intersection point.
- continue;
- assert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH);
- }
- */
- // The intersection points lie on the same contour and have the same orientation.
- // Find the intersection point with a shortest path in the direction of the contour.
- int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward);
- if (d < dmin) {
- out = i;
- dmin = d;
- }
- }
- }
- //FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line.
- return out;
- }
- static inline int intersection_on_prev_vertical_line(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection)
- {
- return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
- }
- static inline int intersection_on_next_vertical_line(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection)
- {
- return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
- }
- enum IntersectionTypeOtherVLine {
- // There is no connection point on the other vertical line.
- INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1,
- // Connection point on the other vertical segment was found
- // and it could be followed.
- INTERSECTION_TYPE_OTHER_VLINE_OK = 0,
- // The connection segment connects to a middle of a vertical segment.
- // Cannot follow.
- INTERSECTION_TYPE_OTHER_VLINE_INNER,
- // Cannot extend the contor to this intersection point as either the connection segment
- // or the succeeding vertical segment were already consumed.
- INTERSECTION_TYPE_OTHER_VLINE_CONSUMED,
- // Not the first intersection along the contor. This intersection point
- // has been preceded by an intersection point along the vertical line.
- INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST,
- };
- // Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
- static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line(
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iIntersection,
- size_t iIntersectionOther,
- bool dir_is_next)
- {
- // This routine will propose a connecting line even if the connecting perimeter segment intersects
- // iVertical line multiple times before reaching iIntersectionOther.
- if (iIntersectionOther == -1)
- return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED;
- assert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
- const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
- const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
- const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
- const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
- assert(itsct_other.is_inner());
- assert(iIntersectionOther > 0);
- assert(iIntersectionOther + 1 < il_other.intersections.size());
- // Is iIntersectionOther at the boundary of a vertical segment?
- const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
- if (itsct_other2.is_inner())
- // Cannot follow a perimeter segment into the middle of another vertical segment.
- // Only perimeter segments connecting to the end of a vertical segment are followed.
- return INTERSECTION_TYPE_OTHER_VLINE_INNER;
- assert(itsct_other.is_low() == itsct_other2.is_low());
- if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
- // This perimeter segment was already consumed.
- return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
- if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
- // This vertical segment was already consumed.
- return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
- return INTERSECTION_TYPE_OTHER_VLINE_OK;
- }
- static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line(
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iIntersection,
- size_t iIntersectionPrev)
- {
- return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionPrev, false);
- }
- static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line(
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iIntersection,
- size_t iIntersectionNext)
- {
- return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionNext, true);
- }
- // Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
- static inline coordf_t measure_perimeter_prev_next_segment_length(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2,
- bool dir_is_next)
- {
- size_t iVerticalLineOther = iVerticalLine;
- if (dir_is_next) {
- if (++ iVerticalLineOther == segs.size())
- // No successive vertical line.
- return coordf_t(-1);
- } else if (iVerticalLineOther -- == 0) {
- // No preceding vertical line.
- return coordf_t(-1);
- }
- const SegmentedIntersectionLine &il = segs[iVerticalLine];
- const SegmentIntersection &itsct = il.intersections[iIntersection];
- const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
- const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
- const Polygon &poly = poly_with_offset.contour(iInnerContour);
- // const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
- assert(itsct.type == itsct2.type);
- assert(itsct.iContour == itsct2.iContour);
- assert(itsct.is_inner());
- const bool forward = itsct.is_low() == dir_is_next;
- Point p1(il.pos, itsct.pos());
- Point p2(il2.pos, itsct2.pos());
- return forward ?
- segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
- segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
- }
- static inline coordf_t measure_perimeter_prev_segment_length(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2)
- {
- return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false);
- }
- static inline coordf_t measure_perimeter_next_segment_length(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2)
- {
- return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true);
- }
- // Append the points of a perimeter segment when going from iIntersection to iIntersection2.
- // The first point (the point of iIntersection) will not be inserted,
- // the last point will be inserted.
- static inline void emit_perimeter_prev_next_segment(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2,
- Polyline &out,
- bool dir_is_next)
- {
- size_t iVerticalLineOther = iVerticalLine;
- if (dir_is_next) {
- ++ iVerticalLineOther;
- assert(iVerticalLineOther < segs.size());
- } else {
- assert(iVerticalLineOther > 0);
- -- iVerticalLineOther;
- }
- const SegmentedIntersectionLine &il = segs[iVerticalLine];
- const SegmentIntersection &itsct = il.intersections[iIntersection];
- const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
- const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
- const Polygon &poly = poly_with_offset.contour(iInnerContour);
- // const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
- assert(itsct.type == itsct2.type);
- assert(itsct.iContour == itsct2.iContour);
- assert(itsct.is_inner());
- const bool forward = itsct.is_low() == dir_is_next;
- // Do not append the first point.
- // out.points.push_back(Point(il.pos, itsct.pos));
- if (forward)
- polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
- else
- polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
- // Append the last point.
- out.points.push_back(Point(il2.pos, itsct2.pos()));
- }
- static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2,
- bool forward)
- {
- const SegmentedIntersectionLine &il = segs[iVerticalLine];
- const SegmentIntersection &itsct = il.intersections[iIntersection];
- const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
- const Polygon &poly = poly_with_offset.contour(iInnerContour);
- assert(itsct.is_inner());
- assert(itsct2.is_inner());
- assert(itsct.type != itsct2.type);
- assert(itsct.iContour == iInnerContour);
- assert(itsct.iContour == itsct2.iContour);
- Point p1(il.pos, itsct.pos());
- Point p2(il.pos, itsct2.pos());
- return forward ?
- segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
- segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
- }
- // Append the points of a perimeter segment when going from iIntersection to iIntersection2.
- // The first point (the point of iIntersection) will not be inserted,
- // the last point will be inserted.
- static inline void emit_perimeter_segment_on_vertical_line(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2,
- Polyline &out,
- bool forward)
- {
- const SegmentedIntersectionLine &il = segs[iVerticalLine];
- const SegmentIntersection &itsct = il.intersections[iIntersection];
- const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
- const Polygon &poly = poly_with_offset.contour(iInnerContour);
- assert(itsct.is_inner());
- assert(itsct2.is_inner());
- assert(itsct.type != itsct2.type);
- assert(itsct.iContour == iInnerContour);
- assert(itsct.iContour == itsct2.iContour);
- // Do not append the first point.
- // out.points.push_back(Point(il.pos, itsct.pos));
- if (forward)
- polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
- else
- polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
- // Append the last point.
- out.points.push_back(Point(il.pos, itsct2.pos()));
- }
- //TBD: For precise infill, measure the area of a slab spanned by an infill line.
- /*
- static inline float measure_outer_contour_slab(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t i_vline,
- size_t iIntersection)
- {
- const SegmentedIntersectionLine &il = segs[i_vline];
- const SegmentIntersection &itsct = il.intersections[i_vline];
- const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
- const Polygon &poly = poly_with_offset.contour((itsct.iContour);
- assert(itsct.is_outer());
- assert(itsct2.is_outer());
- assert(itsct.type != itsct2.type);
- assert(itsct.iContour == itsct2.iContour);
- if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour)
- // Error, return zero area.
- return 0.f;
- // Find possible connection points on the previous / next vertical line.
- int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
- int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
- // Find possible connection points on the same vertical line.
- int iAbove = iBelow = -1;
- // Does the perimeter intersect the current vertical line above intrsctn?
- for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
- if (seg.intersections[i].iContour == itsct.iContour)
- { iAbove = i; break; }
- // Does the perimeter intersect the current vertical line below intrsctn?
- for (int i = int(i_intersection) - 1; i > 0; -- i)
- if (seg.intersections[i].iContour == itsct.iContour)
- { iBelow = i; break; }
- if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) {
- // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
- // The perimeter contour orientation.
- const Polygon &poly = poly_with_offset.contour(itsct.iContour);
- {
- int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true);
- int d_down = (iBelow == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
- int d_up = (iAbove == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
- if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
- // The vertical crossing comes eralier than the prev crossing.
- // Disable the perimeter going back.
- intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
- if (d_up > std::min(d_horiz, d_down))
- // The horizontal crossing comes earlier than the vertical crossing.
- vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
- }
- {
- int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true);
- int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, itsct.iSegment, iSegBelow, true);
- int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, itsct.iSegment, iSegAbove, true);
- if (d_up > std::min(d_horiz, d_down))
- // The horizontal crossing comes earlier than the vertical crossing.
- vert_seg_dir_valid_mask &= ~DIR_FORWARD;
- }
- }
- }
- */
- enum DirectionMask
- {
- DIR_FORWARD = 1,
- DIR_BACKWARD = 2
- };
- bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillParams ¶ms, float angleBase, float pattern_shift, Polylines &polylines_out)
- {
- // At the end, only the new polylines will be rotated back.
- size_t n_polylines_out_initial = polylines_out.size();
- // Shrink the input polygon a bit first to not push the infill lines out of the perimeters.
- // const float INFILL_OVERLAP_OVER_SPACING = 0.3f;
- const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
- assert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);
- // Rotate polygons so that we can work with vertical lines here
- std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
- rotate_vector.first += angleBase;
- assert(params.density > 0.0001f && params.density <= 1.f);
- coord_t line_spacing = coord_t(scale_(this->spacing) / params.density);
- // On the polygons of poly_with_offset, the infill lines will be connected.
- ExPolygonWithOffset poly_with_offset(
- surface->expolygon,
- - rotate_vector.first,
- scale_(0 - (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing),
- scale_(0 - 0.5 * this->spacing));
- if (poly_with_offset.n_contours_inner == 0) {
- // Not a single infill line fits.
- //FIXME maybe one shall trigger the gap fill here?
- return true;
- }
- BoundingBox bounding_box = poly_with_offset.bounding_box_src();
- // define flow spacing according to requested density
- if (params.full_infill() && !params.dont_adjust) {
- line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, line_spacing);
- this->spacing = unscale(line_spacing);
- } else {
- // extend bounding box so that our pattern will be aligned with other layers
- // Transform the reference point to the rotated coordinate system.
- Point refpt = rotate_vector.second.rotated(- rotate_vector.first);
- // _align_to_grid will not work correctly with positive pattern_shift.
- coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing;
- refpt.x -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
- bounding_box.merge(_align_to_grid(
- bounding_box.min,
- Point(line_spacing, line_spacing),
- refpt));
- }
- // Intersect a set of euqally spaced vertical lines wiht expolygon.
- // n_vlines = ceil(bbox_width / line_spacing)
- size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + line_spacing - 1) / line_spacing;
- coord_t x0 = bounding_box.min.x;
- if (params.full_infill())
- x0 += (line_spacing + SCALED_EPSILON) / 2;
- #ifdef SLIC3R_DEBUG
- static int iRun = 0;
- BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
- ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.));
- poly_with_offset.export_to_svg(svg);
- {
- ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.));
- poly_with_offset.export_to_svg(svg);
- }
- iRun ++;
- #endif /* SLIC3R_DEBUG */
- // For each contour
- // Allocate storage for the segments.
- std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
- for (size_t i = 0; i < n_vlines; ++ i) {
- segs[i].idx = i;
- segs[i].pos = x0 + i * line_spacing;
- }
- for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
- const Points &contour = poly_with_offset.contour(iContour).points;
- if (contour.size() < 2)
- continue;
- // For each segment
- for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
- size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
- const Point &p1 = contour[iPrev];
- const Point &p2 = contour[iSegment];
- // Which of the equally spaced vertical lines is intersected by this segment?
- coord_t l = p1.x;
- coord_t r = p2.x;
- if (l > r)
- std::swap(l, r);
- // il, ir are the left / right indices of vertical lines intersecting a segment
- int il = (l - x0) / line_spacing;
- while (il * line_spacing + x0 < l)
- ++ il;
- il = std::max(int(0), il);
- int ir = (r - x0 + line_spacing) / line_spacing;
- while (ir * line_spacing + x0 > r)
- -- ir;
- ir = std::min(int(segs.size()) - 1, ir);
- if (il > ir)
- // No vertical line intersects this segment.
- continue;
- assert(il >= 0 && il < segs.size());
- assert(ir >= 0 && ir < segs.size());
- for (int i = il; i <= ir; ++ i) {
- coord_t this_x = segs[i].pos;
- assert(this_x == i * line_spacing + x0);
- SegmentIntersection is;
- is.iContour = iContour;
- is.iSegment = iSegment;
- assert(l <= this_x);
- assert(r >= this_x);
- // Calculate the intersection position in y axis. x is known.
- if (p1.x == this_x) {
- if (p2.x == this_x) {
- // Ignore strictly vertical segments.
- continue;
- }
- is.pos_p = p1.y;
- is.pos_q = 1;
- } else if (p2.x == this_x) {
- is.pos_p = p2.y;
- is.pos_q = 1;
- } else {
- // First calculate the intersection parameter 't' as a rational number with non negative denominator.
- if (p2.x > p1.x) {
- is.pos_p = this_x - p1.x;
- is.pos_q = p2.x - p1.x;
- } else {
- is.pos_p = p1.x - this_x;
- is.pos_q = p1.x - p2.x;
- }
- assert(is.pos_p >= 0 && is.pos_p <= is.pos_q);
- // Make an intersection point from the 't'.
- is.pos_p *= int64_t(p2.y - p1.y);
- is.pos_p += p1.y * int64_t(is.pos_q);
- }
- // +-1 to take rounding into account.
- assert(is.pos() + 1 >= std::min(p1.y, p2.y));
- assert(is.pos() <= std::max(p1.y, p2.y) + 1);
- segs[i].intersections.push_back(is);
- }
- }
- }
- // Sort the intersections along their segments, specify the intersection types.
- for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
- SegmentedIntersectionLine &sil = segs[i_seg];
- // Sort the intersection points using exact rational arithmetic.
- std::sort(sil.intersections.begin(), sil.intersections.end());
- // Assign the intersection types, remove duplicate or overlapping intersection points.
- // When a loop vertex touches a vertical line, intersection point is generated for both segments.
- // If such two segments are oriented equally, then one of them is removed.
- // Otherwise the vertex is tangential to the vertical line and both segments are removed.
- // The same rule applies, if the loop is pinched into a single point and this point touches the vertical line:
- // The loop has a zero vertical size at the vertical line, therefore the intersection point is removed.
- size_t j = 0;
- for (size_t i = 0; i < sil.intersections.size(); ++ i) {
- // What is the orientation of the segment at the intersection point?
- size_t iContour = sil.intersections[i].iContour;
- const Points &contour = poly_with_offset.contour(iContour).points;
- size_t iSegment = sil.intersections[i].iSegment;
- size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
- coord_t dir = contour[iSegment].x - contour[iPrev].x;
- bool low = dir > 0;
- sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
- (low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
- (low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
- if (j > 0 && sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
- // Two successive intersection points on a vertical line with the same contour. This may be a special case.
- if (sil.intersections[i].pos() == sil.intersections[j-1].pos()) {
- // Two successive segments meet exactly at the vertical line.
- #ifdef SLIC3R_DEBUG
- // Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint.
- size_t iSegment2 = sil.intersections[j-1].iSegment;
- size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
- assert(iSegment == iPrev2 || iSegment2 == iPrev);
- #endif /* SLIC3R_DEBUG */
- if (sil.intersections[i].type == sil.intersections[j-1].type) {
- // Two successive segments of the same direction (both to the right or both to the left)
- // meet exactly at the vertical line.
- // Remove the second intersection point.
- } else {
- // This is a loop returning to the same point.
- // It may as well be a vertex of a loop touching this vertical line.
- // Remove both the lines.
- -- j;
- }
- } else if (sil.intersections[i].type == sil.intersections[j-1].type) {
- // Two non successive segments of the same direction (both to the right or both to the left)
- // meet exactly at the vertical line. That means there is a Z shaped path, where the center segment
- // of the Z shaped path is aligned with this vertical line.
- // Remove one of the intersection points while maximizing the vertical segment length.
- if (low) {
- // Remove the second intersection point, keep the first intersection point.
- } else {
- // Remove the first intersection point, keep the second intersection point.
- sil.intersections[j-1] = sil.intersections[i];
- }
- } else {
- // Vertical line intersects a contour segment at a general position (not at one of its end points).
- // or the contour just touches this vertical line with a vertical segment or a sequence of vertical segments.
- // Keep both intersection points.
- if (j < i)
- sil.intersections[j] = sil.intersections[i];
- ++ j;
- }
- } else {
- // Vertical line intersects a contour segment at a general position (not at one of its end points).
- if (j < i)
- sil.intersections[j] = sil.intersections[i];
- ++ j;
- }
- }
- // Shrink the list of intersections, if any of the intersection was removed during the classification.
- if (j < sil.intersections.size())
- sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
- }
- // Verify the segments. If something is wrong, give up.
- #define ASSERT_OR_RETURN(CONDITION) do { assert(CONDITION); if (! (CONDITION)) return false; } while (0)
- for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
- SegmentedIntersectionLine &sil = segs[i_seg];
- // The intersection points have to be even.
- ASSERT_OR_RETURN((sil.intersections.size() & 1) == 0);
- for (size_t i = 0; i < sil.intersections.size();) {
- // An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
- ASSERT_OR_RETURN(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
- size_t j = i + 1;
- ASSERT_OR_RETURN(j < sil.intersections.size());
- ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
- for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
- ASSERT_OR_RETURN(j < sil.intersections.size());
- ASSERT_OR_RETURN((j & 1) == 1);
- ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
- ASSERT_OR_RETURN(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
- i = j + 1;
- }
- }
- #undef ASSERT_OR_RETURN
- #ifdef SLIC3R_DEBUG
- // Paint the segments and finalize the SVG file.
- for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
- SegmentedIntersectionLine &sil = segs[i_seg];
- for (size_t i = 0; i < sil.intersections.size();) {
- size_t j = i + 1;
- for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
- if (i + 1 == j) {
- svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[j].pos())), "blue");
- } else {
- svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[i+1].pos())), "green");
- svg.draw(Line(Point(sil.pos, sil.intersections[i+1].pos()), Point(sil.pos, sil.intersections[j-1].pos())), (j - i + 1 > 4) ? "yellow" : "magenta");
- svg.draw(Line(Point(sil.pos, sil.intersections[j-1].pos()), Point(sil.pos, sil.intersections[j].pos())), "green");
- }
- i = j + 1;
- }
- }
- svg.Close();
- #endif /* SLIC3R_DEBUG */
- // For each outer only chords, measure their maximum distance to the bow of the outer contour.
- // Mark an outer only chord as consumed, if the distance is low.
- for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
- SegmentedIntersectionLine &seg = segs[i_vline];
- for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) {
- if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
- seg.intersections[i_intersection+1].type == SegmentIntersection::OUTER_HIGH) {
- bool consumed = false;
- // if (params.full_infill()) {
- // measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
- // } else
- consumed = true;
- seg.intersections[i_intersection].consumed_vertical_up = consumed;
- }
- }
- }
- // Now construct a graph.
- // Find the first point.
- // Naively one would expect to achieve best results by chaining the paths by the shortest distance,
- // but that procedure does not create the longest continuous paths.
- // A simple "sweep left to right" procedure achieves better results.
- size_t i_vline = 0;
- size_t i_intersection = size_t(-1);
- // Follow the line, connect the lines into a graph.
- // Until no new line could be added to the output path:
- Point pointLast;
- Polyline *polyline_current = NULL;
- if (! polylines_out.empty())
- pointLast = polylines_out.back().points.back();
- for (;;) {
- if (i_intersection == size_t(-1)) {
- // The path has been interrupted. Find a next starting point, closest to the previous extruder position.
- coordf_t dist2min = std::numeric_limits<coordf_t>().max();
- for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
- const SegmentedIntersectionLine &seg = segs[i_vline2];
- if (! seg.intersections.empty()) {
- assert(seg.intersections.size() > 1);
- // Even number of intersections with the loops.
- assert((seg.intersections.size() & 1) == 0);
- assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
- for (size_t i = 0; i < seg.intersections.size(); ++ i) {
- const SegmentIntersection &intrsctn = seg.intersections[i];
- if (intrsctn.is_outer()) {
- assert(intrsctn.is_low() || i > 0);
- bool consumed = intrsctn.is_low() ?
- intrsctn.consumed_vertical_up :
- seg.intersections[i-1].consumed_vertical_up;
- if (! consumed) {
- coordf_t dist2 = sqr(coordf_t(pointLast.x - seg.pos)) + sqr(coordf_t(pointLast.y - intrsctn.pos()));
- if (dist2 < dist2min) {
- dist2min = dist2;
- i_vline = i_vline2;
- i_intersection = i;
- //FIXME We are taking the first left point always. Verify, that the caller chains the paths
- // by a shortest distance, while reversing the paths if needed.
- //if (polylines_out.empty())
- // Initial state, take the first line, which is the first from the left.
- goto found;
- }
- }
- }
- }
- }
- }
- if (i_intersection == size_t(-1))
- // We are finished.
- break;
- found:
- // Start a new path.
- polylines_out.push_back(Polyline());
- polyline_current = &polylines_out.back();
- // Emit the first point of a path.
- pointLast = Point(segs[i_vline].pos, segs[i_vline].intersections[i_intersection].pos());
- polyline_current->points.push_back(pointLast);
- }
- // From the initial point (i_vline, i_intersection), follow a path.
- SegmentedIntersectionLine &seg = segs[i_vline];
- SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
- bool going_up = intrsctn->is_low();
- bool try_connect = false;
- if (going_up) {
- assert(! intrsctn->consumed_vertical_up);
- assert(i_intersection + 1 < seg.intersections.size());
- // Step back to the beginning of the vertical segment to mark it as consumed.
- if (intrsctn->is_inner()) {
- assert(i_intersection > 0);
- -- intrsctn;
- -- i_intersection;
- }
- // Consume the complete vertical segment up to the outer contour.
- do {
- intrsctn->consumed_vertical_up = true;
- ++ intrsctn;
- ++ i_intersection;
- assert(i_intersection < seg.intersections.size());
- } while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
- if ((intrsctn - 1)->is_inner()) {
- // Step back.
- -- intrsctn;
- -- i_intersection;
- assert(intrsctn->type == SegmentIntersection::INNER_HIGH);
- try_connect = true;
- }
- } else {
- // Going down.
- assert(intrsctn->is_high());
- assert(i_intersection > 0);
- assert(! (intrsctn - 1)->consumed_vertical_up);
- // Consume the complete vertical segment up to the outer contour.
- if (intrsctn->is_inner())
- intrsctn->consumed_vertical_up = true;
- do {
- assert(i_intersection > 0);
- -- intrsctn;
- -- i_intersection;
- intrsctn->consumed_vertical_up = true;
- } while (intrsctn->type != SegmentIntersection::OUTER_LOW);
- if ((intrsctn + 1)->is_inner()) {
- // Step back.
- ++ intrsctn;
- ++ i_intersection;
- assert(intrsctn->type == SegmentIntersection::INNER_LOW);
- try_connect = true;
- }
- }
- if (try_connect) {
- // Decide, whether to finish the segment, or whether to follow the perimeter.
- // 1) Find possible connection points on the previous / next vertical line.
- int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
- int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
- IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection, iPrev);
- IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection, iNext);
- // 2) Find possible connection points on the same vertical line.
- int iAbove = -1;
- int iBelow = -1;
- int iSegAbove = -1;
- int iSegBelow = -1;
- {
- SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ?
- SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW;
- // Does the perimeter intersect the current vertical line above intrsctn?
- for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
- // if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
- if (seg.intersections[i].iContour == intrsctn->iContour) {
- iAbove = i;
- iSegAbove = seg.intersections[i].iSegment;
- break;
- }
- // Does the perimeter intersect the current vertical line below intrsctn?
- for (size_t i = i_intersection - 1; i > 0; -- i)
- // if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
- if (seg.intersections[i].iContour == intrsctn->iContour) {
- iBelow = i;
- iSegBelow = seg.intersections[i].iSegment;
- break;
- }
- }
- // 3) Sort the intersection points, clear iPrev / iNext / iSegBelow / iSegAbove,
- // if it is preceded by any other intersection point along the contour.
- unsigned int vert_seg_dir_valid_mask =
- (going_up ?
- (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::INNER_LOW) :
- (iSegBelow != -1 && seg.intersections[iBelow].type == SegmentIntersection::INNER_HIGH)) ?
- (DIR_FORWARD | DIR_BACKWARD) :
- 0;
- {
- // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
- // The perimeter contour orientation.
- const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
- const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
- {
- int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward);
- int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward);
- int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward);
- if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
- // The vertical crossing comes eralier than the prev crossing.
- // Disable the perimeter going back.
- intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
- if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
- // The horizontal crossing comes earlier than the vertical crossing.
- vert_seg_dir_valid_mask &= ~(forward ? DIR_BACKWARD : DIR_FORWARD);
- }
- {
- int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward);
- int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward);
- int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward);
- if (intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
- // The vertical crossing comes eralier than the prev crossing.
- // Disable the perimeter going forward.
- intrsctn_type_next = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
- if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
- // The horizontal crossing comes earlier than the vertical crossing.
- vert_seg_dir_valid_mask &= ~(forward ? DIR_FORWARD : DIR_BACKWARD);
- }
- }
- // 4) Try to connect to a previous or next vertical line, making a zig-zag pattern.
- if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
- coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
- measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
- coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
- measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
- // Take the shorter path.
- //FIXME this may not be always the best strategy to take the shortest connection line now.
- bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
- (distNext < distPrev) :
- intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
- assert(intrsctn->is_inner());
- bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length);
- if (skip) {
- // Just skip the connecting contour and start a new path.
- goto dont_connect;
- polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
- polylines_out.push_back(Polyline());
- polyline_current = &polylines_out.back();
- const SegmentedIntersectionLine &il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
- polyline_current->points.push_back(Point(il2.pos, il2.intersections[take_next ? iNext : iPrev].pos()));
- } else {
- polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
- emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
- }
- // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
- if (iPrev != -1)
- segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
- if (iNext != -1)
- intrsctn->consumed_perimeter_right = true;
- //FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
- // Advance to the neighbor line.
- if (take_next) {
- ++ i_vline;
- i_intersection = iNext;
- } else {
- -- i_vline;
- i_intersection = iPrev;
- }
- continue;
- }
- // 5) Try to connect to a previous or next point on the same vertical line.
- if (vert_seg_dir_valid_mask) {
- bool valid = true;
- // Verify, that there is no intersection with the inner contour up to the end of the contour segment.
- // Verify, that the successive segment has not been consumed yet.
- if (going_up) {
- if (seg.intersections[iAbove].consumed_vertical_up) {
- valid = false;
- } else {
- for (int i = (int)i_intersection + 1; i < iAbove && valid; ++i)
- if (seg.intersections[i].is_inner())
- valid = false;
- }
- } else {
- if (seg.intersections[iBelow-1].consumed_vertical_up) {
- valid = false;
- } else {
- for (int i = iBelow + 1; i < (int)i_intersection && valid; ++i)
- if (seg.intersections[i].is_inner())
- valid = false;
- }
- }
- if (valid) {
- const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
- int iNext = going_up ? iAbove : iBelow;
- int iSegNext = going_up ? iSegAbove : iSegBelow;
- bool dir_forward = (vert_seg_dir_valid_mask == (DIR_FORWARD | DIR_BACKWARD)) ?
- // Take the shorter length between the current and the next intersection point.
- (distance_of_segmens(poly, intrsctn->iSegment, iSegNext, true) <
- distance_of_segmens(poly, intrsctn->iSegment, iSegNext, false)) :
- (vert_seg_dir_valid_mask == DIR_FORWARD);
- // Skip this perimeter line?
- bool skip = params.dont_connect;
- if (! skip && link_max_length > 0) {
- coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
- poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, dir_forward);
- skip = link_length > link_max_length;
- }
- polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
- if (skip) {
- // Just skip the connecting contour and start a new path.
- polylines_out.push_back(Polyline());
- polyline_current = &polylines_out.back();
- polyline_current->points.push_back(Point(seg.pos, seg.intersections[iNext].pos()));
- } else {
- // Consume the connecting contour and the next segment.
- emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward);
- }
- // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
- // If there are any outer intersection points skipped (bypassed) by the contour,
- // mark them as processed.
- if (going_up) {
- for (int i = (int)i_intersection; i < iAbove; ++ i)
- seg.intersections[i].consumed_vertical_up = true;
- } else {
- for (int i = iBelow; i < (int)i_intersection; ++ i)
- seg.intersections[i].consumed_vertical_up = true;
- }
- // seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
- intrsctn->consumed_perimeter_right = true;
- i_intersection = iNext;
- if (going_up)
- ++ intrsctn;
- else
- -- intrsctn;
- intrsctn->consumed_perimeter_right = true;
- continue;
- }
- }
- dont_connect:
- // No way to continue the current polyline. Take the rest of the line up to the outer contour.
- // This will finish the polyline, starting another polyline at a new point.
- if (going_up)
- ++ intrsctn;
- else
- -- intrsctn;
- }
- // Finish the current vertical line,
- // reset the current vertical line to pick a new starting point in the next round.
- assert(intrsctn->is_outer());
- assert(intrsctn->is_high() == going_up);
- pointLast = Point(seg.pos, intrsctn->pos());
- polyline_current->points.push_back(pointLast);
- // Handle duplicate points and zero length segments.
- polyline_current->remove_duplicate_points();
- assert(! polyline_current->has_duplicate_points());
- // Handle nearly zero length edges.
- if (polyline_current->points.size() <= 1 ||
- (polyline_current->points.size() == 2 &&
- std::abs(polyline_current->points.front().x - polyline_current->points.back().x) < SCALED_EPSILON &&
- std::abs(polyline_current->points.front().y - polyline_current->points.back().y) < SCALED_EPSILON))
- polylines_out.pop_back();
- intrsctn = NULL;
- i_intersection = -1;
- polyline_current = NULL;
- }
- #ifdef SLIC3R_DEBUG
- {
- {
- ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.));
- poly_with_offset.export_to_svg(svg);
- for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
- svg.draw(polylines_out[i].lines(), "black");
- }
- // Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap.
- for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) {
- ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.));
- svg.draw(polylines_out[i_polyline].lines(), "black");
- }
- }
- #endif /* SLIC3R_DEBUG */
- // paths must be rotated back
- for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
- // No need to translate, the absolute position is irrelevant.
- // it->translate(- rotate_vector.second.x, - rotate_vector.second.y);
- assert(! it->has_duplicate_points());
- it->rotate(rotate_vector.first);
- //FIXME rather simplify the paths to avoid very short edges?
- //assert(! it->has_duplicate_points());
- it->remove_duplicate_points();
- }
- #ifdef SLIC3R_DEBUG
- // Verify, that there are no duplicate points in the sequence.
- for (Polyline &polyline : polylines_out)
- assert(! polyline.has_duplicate_points());
- #endif /* SLIC3R_DEBUG */
- return true;
- }
- Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams ¶ms)
- {
- Polylines polylines_out;
- if (! fill_surface_by_lines(surface, params, 0.f, 0.f, polylines_out)) {
- printf("FillRectilinear2::fill_surface() failed to fill a region.\n");
- }
- return polylines_out;
- }
- Polylines FillGrid2::fill_surface(const Surface *surface, const FillParams ¶ms)
- {
- // Each linear fill covers half of the target coverage.
- FillParams params2 = params;
- params2.density *= 0.5f;
- Polylines polylines_out;
- if (! fill_surface_by_lines(surface, params2, 0.f, 0.f, polylines_out) ||
- ! fill_surface_by_lines(surface, params2, float(M_PI / 2.), 0.f, polylines_out)) {
- printf("FillGrid2::fill_surface() failed to fill a region.\n");
- }
- return polylines_out;
- }
- Polylines FillTriangles::fill_surface(const Surface *surface, const FillParams ¶ms)
- {
- // Each linear fill covers 1/3 of the target coverage.
- FillParams params2 = params;
- params2.density *= 0.333333333f;
- FillParams params3 = params2;
- params3.dont_connect = true;
- Polylines polylines_out;
- if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
- ! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
- ! fill_surface_by_lines(surface, params3, float(2. * M_PI / 3.), 0., polylines_out)) {
- printf("FillTriangles::fill_surface() failed to fill a region.\n");
- }
- return polylines_out;
- }
- Polylines FillStars::fill_surface(const Surface *surface, const FillParams ¶ms)
- {
- // Each linear fill covers 1/3 of the target coverage.
- FillParams params2 = params;
- params2.density *= 0.333333333f;
- FillParams params3 = params2;
- params3.dont_connect = true;
- Polylines polylines_out;
- if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
- ! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
- ! fill_surface_by_lines(surface, params3, float(2. * M_PI / 3.), 0.5 * this->spacing / params2.density, polylines_out)) {
- printf("FillStars::fill_surface() failed to fill a region.\n");
- }
- return polylines_out;
- }
- Polylines FillCubic::fill_surface(const Surface *surface, const FillParams ¶ms)
- {
- // Each linear fill covers 1/3 of the target coverage.
- FillParams params2 = params;
- params2.density *= 0.333333333f;
- FillParams params3 = params2;
- params3.dont_connect = true;
- Polylines polylines_out;
- coordf_t dx = sqrt(0.5) * z;
- if (! fill_surface_by_lines(surface, params2, 0.f, dx, polylines_out) ||
- ! fill_surface_by_lines(surface, params2, float(M_PI / 3.), - dx, polylines_out) ||
- // Rotated by PI*2/3 + PI to achieve reverse sloping wall.
- ! fill_surface_by_lines(surface, params3, float(M_PI * 2. / 3.), dx, polylines_out)) {
- printf("FillCubic::fill_surface() failed to fill a region.\n");
- }
- return polylines_out;
- }
- //Polylines FillRectilinear2Peri::fill_surface(const Surface *surface, const FillParams ¶ms) {
- void FillRectilinear2Peri::fill_surface_extrusion(const Surface *surface, const FillParams ¶ms, const Flow &flow, ExtrusionEntityCollection &out) {
- ExtrusionEntityCollection *eecroot = new ExtrusionEntityCollection();
- //you don't want to sort the extrusions: big infill first, small second
- eecroot->no_sort = true;
- Polylines polylines_1;
- //generate perimeter:
- //TODO: better optimize start/end point?
- ExPolygons path_perimeter = offset_ex(surface->expolygon, scale_(-this->spacing/2));
- for (ExPolygon &expolygon : path_perimeter) {
- expolygon.contour.make_counter_clockwise();
- polylines_1.push_back(expolygon.contour.split_at_index(0));
- for (Polygon hole : expolygon.holes) {
- hole.make_clockwise();
- polylines_1.push_back(hole.split_at_index(0));
- }
- }
- // Save into layer.
- auto *eec = new ExtrusionEntityCollection();
- /// pass the no_sort attribute to the extrusion path
- eec->no_sort = this->no_sort();
- /// add it into the collection
- eecroot->entities.push_back(eec);
- /// push the path
- extrusion_entities_append_paths(
- eec->entities, STDMOVE(polylines_1),
- flow.bridge ?
- erBridgeInfill :
- (surface->is_solid() ?
- ((surface->is_top()) ? erTopSolidInfill : erSolidInfill) :
- erInternalInfill),
- flow.mm3_per_mm() * params.flow_mult, flow.width * params.flow_mult, flow.height);
- Polylines polylines_2;
- //50% overlap with the new perimeter
- ExPolygons path_inner = offset2_ex(surface->expolygon, scale_(-this->spacing * 1.5), scale_(this->spacing));
- for (ExPolygon &expolygon : path_inner) {
- Surface surfInner(*surface, expolygon);
- if (!fill_surface_by_lines(&surfInner, params, 0.f, 0.f, polylines_2)) {
- printf("FillRectilinear2::fill_surface() failed to fill a region.\n");
- }
- }
- // Save into layer.
- eec = new ExtrusionEntityCollection();
- /// pass the no_sort attribute to the extrusion path
- eec->no_sort = this->no_sort();
- /// add it into the collection
- eecroot->entities.push_back(eec);
- /// push the path
- extrusion_entities_append_paths(
- eec->entities, STDMOVE(polylines_2),
- flow.bridge ?
- erBridgeInfill :
- (surface->is_solid() ?
- ((surface->is_top()) ? erTopSolidInfill : erSolidInfill) :
- erInternalInfill),
- flow.mm3_per_mm() * params.flow_mult, flow.width * params.flow_mult, flow.height);
- out.entities.push_back(eecroot);
- }
- } // namespace Slic3r
|