12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553 |
- #include "../ClipperUtils.hpp"
- #include "../ExPolygon.hpp"
- #include "../Surface.hpp"
- #include "../Geometry.hpp"
- #include "../Layer.hpp"
- #include "../Print.hpp"
- #include "../ShortestPath.hpp"
- #include "FillAdaptive.hpp"
- // for indexed_triangle_set
- #include <admesh/stl.h>
- #include <cstdlib>
- #include <cmath>
- #include <algorithm>
- #include <numeric>
- // Boost pool: Don't use mutexes to synchronize memory allocation.
- #define BOOST_POOL_NO_MT
- #include <boost/pool/object_pool.hpp>
- #include <boost/geometry.hpp>
- #include <boost/geometry/geometries/point.hpp>
- #include <boost/geometry/geometries/segment.hpp>
- #include <boost/geometry/index/rtree.hpp>
- namespace Slic3r {
- namespace FillAdaptive {
- // Derived from https://github.com/juj/MathGeoLib/blob/master/src/Geometry/Triangle.cpp
- // The AABB-Triangle test implementation is based on the pseudo-code in
- // Christer Ericson's Real-Time Collision Detection, pp. 169-172. It is
- // practically a standard SAT test.
- //
- // Original MathGeoLib benchmark:
- // Best: 17.282 nsecs / 46.496 ticks, Avg: 17.804 nsecs, Worst: 18.434 nsecs
- //
- //FIXME Vojtech: The MathGeoLib contains a vectorized implementation.
- template<typename Vector>
- bool triangle_AABB_intersects(const Vector &a, const Vector &b, const Vector &c, const BoundingBoxBase<Vector> &aabb)
- {
- using Scalar = typename Vector::Scalar;
- Vector tMin = a.cwiseMin(b.cwiseMin(c));
- Vector tMax = a.cwiseMax(b.cwiseMax(c));
- if (tMin.x() >= aabb.max.x() || tMax.x() <= aabb.min.x()
- || tMin.y() >= aabb.max.y() || tMax.y() <= aabb.min.y()
- || tMin.z() >= aabb.max.z() || tMax.z() <= aabb.min.z())
- return false;
- Vector center = (aabb.min + aabb.max) * 0.5f;
- Vector h = aabb.max - center;
- const Vector t[3] { b-a, c-a, c-b };
- Vector ac = a - center;
- Vector n = t[0].cross(t[1]);
- Scalar s = n.dot(ac);
- Scalar r = std::abs(h.dot(n.cwiseAbs()));
- if (abs(s) >= r)
- return false;
- const Vector at[3] = { t[0].cwiseAbs(), t[1].cwiseAbs(), t[2].cwiseAbs() };
- Vector bc = b - center;
- Vector cc = c - center;
- // SAT test all cross-axes.
- // The following is a fully unrolled loop of this code, stored here for reference:
- /*
- Scalar d1, d2, a1, a2;
- const Vector e[3] = { DIR_VEC(1, 0, 0), DIR_VEC(0, 1, 0), DIR_VEC(0, 0, 1) };
- for(int i = 0; i < 3; ++i)
- for(int j = 0; j < 3; ++j)
- {
- Vector axis = Cross(e[i], t[j]);
- ProjectToAxis(axis, d1, d2);
- aabb.ProjectToAxis(axis, a1, a2);
- if (d2 <= a1 || d1 >= a2) return false;
- }
- */
- // eX <cross> t[0]
- Scalar d1 = t[0].y() * ac.z() - t[0].z() * ac.y();
- Scalar d2 = t[0].y() * cc.z() - t[0].z() * cc.y();
- Scalar tc = (d1 + d2) * 0.5f;
- r = std::abs(h.y() * at[0].z() + h.z() * at[0].y());
- if (r + std::abs(tc - d1) < std::abs(tc))
- return false;
- // eX <cross> t[1]
- d1 = t[1].y() * ac.z() - t[1].z() * ac.y();
- d2 = t[1].y() * bc.z() - t[1].z() * bc.y();
- tc = (d1 + d2) * 0.5f;
- r = std::abs(h.y() * at[1].z() + h.z() * at[1].y());
- if (r + std::abs(tc - d1) < std::abs(tc))
- return false;
- // eX <cross> t[2]
- d1 = t[2].y() * ac.z() - t[2].z() * ac.y();
- d2 = t[2].y() * bc.z() - t[2].z() * bc.y();
- tc = (d1 + d2) * 0.5f;
- r = std::abs(h.y() * at[2].z() + h.z() * at[2].y());
- if (r + std::abs(tc - d1) < std::abs(tc))
- return false;
- // eY <cross> t[0]
- d1 = t[0].z() * ac.x() - t[0].x() * ac.z();
- d2 = t[0].z() * cc.x() - t[0].x() * cc.z();
- tc = (d1 + d2) * 0.5f;
- r = std::abs(h.x() * at[0].z() + h.z() * at[0].x());
- if (r + std::abs(tc - d1) < std::abs(tc))
- return false;
- // eY <cross> t[1]
- d1 = t[1].z() * ac.x() - t[1].x() * ac.z();
- d2 = t[1].z() * bc.x() - t[1].x() * bc.z();
- tc = (d1 + d2) * 0.5f;
- r = std::abs(h.x() * at[1].z() + h.z() * at[1].x());
- if (r + std::abs(tc - d1) < std::abs(tc))
- return false;
- // eY <cross> t[2]
- d1 = t[2].z() * ac.x() - t[2].x() * ac.z();
- d2 = t[2].z() * bc.x() - t[2].x() * bc.z();
- tc = (d1 + d2) * 0.5f;
- r = std::abs(h.x() * at[2].z() + h.z() * at[2].x());
- if (r + std::abs(tc - d1) < std::abs(tc))
- return false;
- // eZ <cross> t[0]
- d1 = t[0].x() * ac.y() - t[0].y() * ac.x();
- d2 = t[0].x() * cc.y() - t[0].y() * cc.x();
- tc = (d1 + d2) * 0.5f;
- r = std::abs(h.y() * at[0].x() + h.x() * at[0].y());
- if (r + std::abs(tc - d1) < std::abs(tc))
- return false;
- // eZ <cross> t[1]
- d1 = t[1].x() * ac.y() - t[1].y() * ac.x();
- d2 = t[1].x() * bc.y() - t[1].y() * bc.x();
- tc = (d1 + d2) * 0.5f;
- r = std::abs(h.y() * at[1].x() + h.x() * at[1].y());
- if (r + std::abs(tc - d1) < std::abs(tc))
- return false;
- // eZ <cross> t[2]
- d1 = t[2].x() * ac.y() - t[2].y() * ac.x();
- d2 = t[2].x() * bc.y() - t[2].y() * bc.x();
- tc = (d1 + d2) * 0.5f;
- r = std::abs(h.y() * at[2].x() + h.x() * at[2].y());
- if (r + std::abs(tc - d1) < std::abs(tc))
- return false;
- // No separating axis exists, the AABB and triangle intersect.
- return true;
- }
- // static double dist2_to_triangle(const Vec3d &a, const Vec3d &b, const Vec3d &c, const Vec3d &p)
- // {
- // double out = std::numeric_limits<double>::max();
- // const Vec3d v1 = b - a;
- // auto l1 = v1.squaredNorm();
- // const Vec3d v2 = c - b;
- // auto l2 = v2.squaredNorm();
- // const Vec3d v3 = a - c;
- // auto l3 = v3.squaredNorm();
- // // Is the triangle valid?
- // if (l1 > 0. && l2 > 0. && l3 > 0.)
- // {
- // // 1) Project point into the plane of the triangle.
- // const Vec3d n = v1.cross(v2);
- // double d = (p - a).dot(n);
- // const Vec3d foot_pt = p - n * d / n.squaredNorm();
- // // 2) Maximum projection of n.
- // int proj_axis;
- // n.array().cwiseAbs().maxCoeff(&proj_axis);
- // // 3) Test whether the foot_pt is inside the triangle.
- // {
- // auto inside_triangle = [](const Vec2d& v1, const Vec2d& v2, const Vec2d& v3, const Vec2d& pt) {
- // const double d1 = cross2(v1, pt);
- // const double d2 = cross2(v2, pt);
- // const double d3 = cross2(v3, pt);
- // // Testing both CCW and CW orientations.
- // return (d1 >= 0. && d2 >= 0. && d3 >= 0.) || (d1 <= 0. && d2 <= 0. && d3 <= 0.);
- // };
- // bool inside;
- // switch (proj_axis) {
- // case 0:
- // inside = inside_triangle({v1.y(), v1.z()}, {v2.y(), v2.z()}, {v3.y(), v3.z()}, {foot_pt.y(), foot_pt.z()}); break;
- // case 1:
- // inside = inside_triangle({v1.z(), v1.x()}, {v2.z(), v2.x()}, {v3.z(), v3.x()}, {foot_pt.z(), foot_pt.x()}); break;
- // default:
- // assert(proj_axis == 2);
- // inside = inside_triangle({v1.x(), v1.y()}, {v2.x(), v2.y()}, {v3.x(), v3.y()}, {foot_pt.x(), foot_pt.y()}); break;
- // }
- // if (inside)
- // return (p - foot_pt).squaredNorm();
- // }
- // // 4) Find minimum distance to triangle vertices and edges.
- // out = std::min((p - a).squaredNorm(), std::min((p - b).squaredNorm(), (p - c).squaredNorm()));
- // auto t = (p - a).dot(v1);
- // if (t > 0. && t < l1)
- // out = std::min(out, (a + v1 * (t / l1) - p).squaredNorm());
- // t = (p - b).dot(v2);
- // if (t > 0. && t < l2)
- // out = std::min(out, (b + v2 * (t / l2) - p).squaredNorm());
- // t = (p - c).dot(v3);
- // if (t > 0. && t < l3)
- // out = std::min(out, (c + v3 * (t / l3) - p).squaredNorm());
- // }
- // return out;
- // }
- // Ordering of children cubes.
- static const std::array<Vec3d, 8> child_centers {
- Vec3d(-1, -1, -1), Vec3d( 1, -1, -1), Vec3d(-1, 1, -1), Vec3d( 1, 1, -1),
- Vec3d(-1, -1, 1), Vec3d( 1, -1, 1), Vec3d(-1, 1, 1), Vec3d( 1, 1, 1)
- };
- // Traversal order of octree children cells for three infill directions,
- // so that a single line will be discretized in a strictly monotonic order.
- static constexpr std::array<std::array<int, 8>, 3> child_traversal_order {
- std::array<int, 8>{ 2, 3, 0, 1, 6, 7, 4, 5 },
- std::array<int, 8>{ 4, 0, 6, 2, 5, 1, 7, 3 },
- std::array<int, 8>{ 1, 5, 0, 4, 3, 7, 2, 6 },
- };
- struct Cube
- {
- Vec3d center;
- #ifndef NDEBUG
- Vec3d center_octree;
- #endif // NDEBUG
- std::array<Cube*, 8> children {}; // initialized to nullptrs
- Cube(const Vec3d ¢er) : center(center) {}
- };
- struct CubeProperties
- {
- double edge_length; // Lenght of edge of a cube
- double height; // Height of rotated cube (standing on the corner)
- double diagonal_length; // Length of diagonal of a cube a face
- double line_z_distance; // Defines maximal distance from a center of a cube on Z axis on which lines will be created
- double line_xy_distance;// Defines maximal distance from a center of a cube on X and Y axis on which lines will be created
- };
- struct Octree
- {
- // Octree will allocate its Cubes from the pool. The pool only supports deletion of the complete pool,
- // perfect for building up our octree.
- boost::object_pool<Cube> pool;
- Cube* root_cube { nullptr };
- Vec3d origin;
- std::vector<CubeProperties> cubes_properties;
- Octree(const Vec3d &origin, const std::vector<CubeProperties> &cubes_properties)
- : root_cube(pool.construct(origin)), origin(origin), cubes_properties(cubes_properties) {}
- void insert_triangle(const Vec3d &a, const Vec3d &b, const Vec3d &c, Cube *current_cube, const BoundingBoxf3 ¤t_bbox, int depth);
- };
- void OctreeDeleter::operator()(Octree *p) {
- delete p;
- }
- std::pair<double, double> adaptive_fill_line_spacing(const PrintObject &print_object)
- {
- // Output, spacing for icAdaptiveCubic and icSupportCubic
- double adaptive_line_spacing = 0.;
- double support_line_spacing = 0.;
- enum class Tristate {
- Yes,
- No,
- Maybe
- };
- struct RegionFillData {
- Tristate has_adaptive_infill;
- Tristate has_support_infill;
- double density;
- double extrusion_width;
- };
- std::vector<RegionFillData> region_fill_data;
- region_fill_data.reserve(print_object.num_printing_regions());
- bool build_octree = false;
- const std::vector<double> &nozzle_diameters = print_object.print()->config().nozzle_diameter.values;
- double max_nozzle_diameter = *std::max_element(nozzle_diameters.begin(), nozzle_diameters.end());
- double default_infill_extrusion_width = Flow::auto_extrusion_width(FlowRole::frInfill, float(max_nozzle_diameter));
- for (size_t region_id = 0; region_id < print_object.num_printing_regions(); ++ region_id) {
- const PrintRegionConfig &config = print_object.printing_region(region_id).config();
- bool nonempty = config.fill_density > 0;
- bool has_adaptive_infill = nonempty && config.fill_pattern.value == ipAdaptiveCubic;
- bool has_support_infill = nonempty && config.fill_pattern.value == ipSupportCubic;
- double infill_extrusion_width = config.infill_extrusion_width.get_abs_value(max_nozzle_diameter);
- region_fill_data.push_back(RegionFillData({
- has_adaptive_infill ? Tristate::Maybe : Tristate::No,
- has_support_infill ? Tristate::Maybe : Tristate::No,
- config.fill_density,
- infill_extrusion_width != 0. ? infill_extrusion_width : default_infill_extrusion_width
- }));
- build_octree |= has_adaptive_infill || has_support_infill;
- }
- if (build_octree) {
- // Compute the average of above parameters over all layers
- for (const Layer *layer : print_object.layers())
- for (size_t region_id = 0; region_id < layer->regions().size(); ++ region_id) {
- RegionFillData &rd = region_fill_data[region_id];
- if (rd.has_adaptive_infill == Tristate::Maybe && ! layer->regions()[region_id]->fill_surfaces.empty())
- rd.has_adaptive_infill = Tristate::Yes;
- if (rd.has_support_infill == Tristate::Maybe && ! layer->regions()[region_id]->fill_surfaces.empty())
- rd.has_support_infill = Tristate::Yes;
- }
- double adaptive_fill_density = 0.;
- double adaptive_infill_extrusion_width = 0.;
- int adaptive_cnt = 0;
- double support_fill_density = 0.;
- double support_infill_extrusion_width = 0.;
- int support_cnt = 0;
- for (const RegionFillData &rd : region_fill_data) {
- if (rd.has_adaptive_infill == Tristate::Yes) {
- adaptive_fill_density += rd.density;
- adaptive_infill_extrusion_width += rd.extrusion_width;
- ++ adaptive_cnt;
- } else if (rd.has_support_infill == Tristate::Yes) {
- support_fill_density += rd.density;
- support_infill_extrusion_width += rd.extrusion_width;
- ++ support_cnt;
- }
- }
- auto to_line_spacing = [](int cnt, double density, double extrusion_width) {
- if (cnt) {
- density /= double(cnt);
- extrusion_width /= double(cnt);
- return extrusion_width / ((density / 100.0f) * 0.333333333f);
- } else
- return 0.;
- };
- adaptive_line_spacing = to_line_spacing(adaptive_cnt, adaptive_fill_density, adaptive_infill_extrusion_width);
- support_line_spacing = to_line_spacing(support_cnt, support_fill_density, support_infill_extrusion_width);
- }
- return std::make_pair(adaptive_line_spacing, support_line_spacing);
- }
- // Context used by generate_infill_lines() when recursively traversing an octree in a DDA fashion
- // (Digital Differential Analyzer).
- struct FillContext
- {
- // The angles have to agree with child_traversal_order.
- static constexpr double direction_angles[3] {
- 0.,
- (2.0 * M_PI) / 3.0,
- -(2.0 * M_PI) / 3.0
- };
- FillContext(const Octree &octree, double z_position, int direction_idx) :
- cubes_properties(octree.cubes_properties),
- z_position(z_position),
- traversal_order(child_traversal_order[direction_idx]),
- cos_a(cos(direction_angles[direction_idx])),
- sin_a(sin(direction_angles[direction_idx]))
- {
- static constexpr auto unused = std::numeric_limits<coord_t>::max();
- temp_lines.assign((1 << octree.cubes_properties.size()) - 1, Line(Point(unused, unused), Point(unused, unused)));
- }
- // Rotate the point, uses the same convention as Point::rotate().
- Vec2d rotate(const Vec2d& v) { return Vec2d(this->cos_a * v.x() - this->sin_a * v.y(), this->sin_a * v.x() + this->cos_a * v.y()); }
- const std::vector<CubeProperties> &cubes_properties;
- // Top of the current layer.
- const double z_position;
- // Order of traversal for this line direction.
- const std::array<int, 8> traversal_order;
- // Rotation of the generated line for this line direction.
- const double cos_a;
- const double sin_a;
- // Linearized tree spanning a single Octree wall, used to connect lines spanning
- // neighboring Octree cells. Unused lines have the Line::a::x set to infinity.
- std::vector<Line> temp_lines;
- // Final output
- std::vector<Line> output_lines;
- };
- static constexpr double octree_rot[3] = { 5.0 * M_PI / 4.0, Geometry::deg2rad(215.264), M_PI / 6.0 };
- Eigen::Quaterniond transform_to_world()
- {
- return Eigen::AngleAxisd(octree_rot[2], Vec3d::UnitZ()) * Eigen::AngleAxisd(octree_rot[1], Vec3d::UnitY()) * Eigen::AngleAxisd(octree_rot[0], Vec3d::UnitX());
- }
- Eigen::Quaterniond transform_to_octree()
- {
- return Eigen::AngleAxisd(- octree_rot[0], Vec3d::UnitX()) * Eigen::AngleAxisd(- octree_rot[1], Vec3d::UnitY()) * Eigen::AngleAxisd(- octree_rot[2], Vec3d::UnitZ());
- }
- #ifndef NDEBUG
- // Verify that the traversal order of the octree children matches the line direction,
- // therefore the infill line may get extended with O(1) time & space complexity.
- static bool verify_traversal_order(
- FillContext &context,
- const Cube *cube,
- int depth,
- const Vec2d &line_from,
- const Vec2d &line_to)
- {
- std::array<Vec3d, 8> c;
- Eigen::Quaterniond to_world = transform_to_world();
- for (int i = 0; i < 8; ++i) {
- int j = context.traversal_order[i];
- Vec3d cntr = to_world * (cube->center_octree + (child_centers[j] * (context.cubes_properties[depth].edge_length / 4.)));
- assert(!cube->children[j] || cube->children[j]->center.isApprox(cntr));
- c[i] = cntr;
- }
- std::array<Vec3d, 10> dirs = {
- c[1] - c[0], c[2] - c[0], c[3] - c[1], c[3] - c[2], c[3] - c[0],
- c[5] - c[4], c[6] - c[4], c[7] - c[5], c[7] - c[6], c[7] - c[4]
- };
- assert(std::abs(dirs[4].z()) < 0.005);
- assert(std::abs(dirs[9].z()) < 0.005);
- assert(dirs[0].isApprox(dirs[3]));
- assert(dirs[1].isApprox(dirs[2]));
- assert(dirs[5].isApprox(dirs[8]));
- assert(dirs[6].isApprox(dirs[7]));
- Vec3d line_dir = Vec3d(line_to.x() - line_from.x(), line_to.y() - line_from.y(), 0.).normalized();
- for (auto& dir : dirs) {
- double d = dir.normalized().dot(line_dir);
- assert(d > 0.7);
- }
- return true;
- }
- #endif // NDEBUG
- static void generate_infill_lines_recursive(
- FillContext &context,
- const Cube *cube,
- // Address of this wall in the octree, used to address context.temp_lines.
- int address,
- int depth)
- {
- assert(cube != nullptr);
- const std::vector<CubeProperties> &cubes_properties = context.cubes_properties;
- const double z_diff = context.z_position - cube->center.z();
- const double z_diff_abs = std::abs(z_diff);
- if (z_diff_abs > cubes_properties[depth].height / 2.)
- return;
- if (z_diff_abs < cubes_properties[depth].line_z_distance) {
- // Discretize a single wall splitting the cube into two.
- const double zdist = cubes_properties[depth].line_z_distance;
- Vec2d from(
- 0.5 * cubes_properties[depth].diagonal_length * (zdist - z_diff_abs) / zdist,
- cubes_properties[depth].line_xy_distance - (zdist + z_diff) / sqrt(2.));
- Vec2d to(-from.x(), from.y());
- from = context.rotate(from);
- to = context.rotate(to);
- // Relative to cube center
- const Vec2d offset(cube->center.x(), cube->center.y());
- from += offset;
- to += offset;
- // Verify that the traversal order of the octree children matches the line direction,
- // therefore the infill line may get extended with O(1) time & space complexity.
- assert(verify_traversal_order(context, cube, depth, from, to));
- // Either extend an existing line or start a new one.
- Line &last_line = context.temp_lines[address];
- Line new_line(Point::new_scale(from), Point::new_scale(to));
- if (last_line.a.x() == std::numeric_limits<coord_t>::max()) {
- last_line.a = new_line.a;
- } else if ((new_line.a - last_line.b).cwiseAbs().maxCoeff() > 1000) { // SCALED_EPSILON is 100 and it is not enough
- context.output_lines.emplace_back(last_line);
- last_line.a = new_line.a;
- }
- last_line.b = new_line.b;
- }
- // left child index
- address = address * 2 + 1;
- -- depth;
- size_t i = 0;
- for (const int child_idx : context.traversal_order) {
- const Cube *child = cube->children[child_idx];
- if (child != nullptr)
- generate_infill_lines_recursive(context, child, address, depth);
- if (++ i == 4)
- // right child index
- ++ address;
- }
- }
- #ifndef NDEBUG
- // #define ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- #endif
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- static void export_infill_lines_to_svg(const ExPolygon &expoly, const Polylines &polylines, const std::string &path, const Points &pts = Points())
- {
- BoundingBox bbox = get_extents(expoly);
- bbox.offset(scale_(3.));
- ::Slic3r::SVG svg(path, bbox);
- svg.draw(expoly);
- svg.draw_outline(expoly, "green");
- svg.draw(polylines, "red");
- static constexpr double trim_length = scale_(0.4);
- for (Polyline polyline : polylines) {
- if (! polyline.empty()) {
- Vec2d a = polyline.points.front().cast<double>();
- Vec2d d = polyline.points.back().cast<double>();
- if (polyline.size() == 2) {
- Vec2d v = d - a;
- double l = v.norm();
- if (l > 2. * trim_length) {
- a += v * trim_length / l;
- d -= v * trim_length / l;
- polyline.points.front() = a.cast<coord_t>();
- polyline.points.back() = d.cast<coord_t>();
- } else
- polyline.points.clear();
- } else if (polyline.size() > 2) {
- Vec2d b = polyline.points[1].cast<double>();
- Vec2d c = polyline.points[polyline.points.size() - 2].cast<double>();
- Vec2d v = b - a;
- double l = v.norm();
- if (l > trim_length) {
- a += v * trim_length / l;
- polyline.points.front() = a.cast<coord_t>();
- } else
- polyline.points.erase(polyline.points.begin());
- v = d - c;
- l = v.norm();
- if (l > trim_length)
- polyline.points.back() = (d - v * trim_length / l).cast<coord_t>();
- else
- polyline.points.pop_back();
- }
- svg.draw(polyline, "black");
- }
- }
- svg.draw(pts, "magenta");
- }
- #endif /* ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT */
- // Representing a T-joint (in general case) between two infill lines
- // (between one end point of intersect_pl/intersect_line and
- struct Intersection
- {
- // Closest line to intersect_point.
- const Line *closest_line;
- // The line for which is computed closest line from intersect_point to closest_line
- const Line *intersect_line;
- // Pointer to the polyline from which is computed closest_line
- Polyline *intersect_pl;
- // Point for which is computed closest line (closest_line)
- Point intersect_point;
- // Indicate if intersect_point is the first or the last point of intersect_pl
- bool front;
- // Signum of intersect_line_dir.cross(closest_line.dir()):
- bool left;
- // Indication if this intersection has been proceed
- bool used = false;
- bool fresh() const throw() { return ! used && ! intersect_pl->empty(); }
- Intersection(const Line &closest_line, const Line &intersect_line, Polyline *intersect_pl, const Point &intersect_point, bool front) :
- closest_line(&closest_line), intersect_line(&intersect_line), intersect_pl(intersect_pl), intersect_point(intersect_point), front(front)
- {
- // Calculate side of this intersection line of the closest line.
- Vec2d v1((this->closest_line->b - this->closest_line->a).cast<double>());
- Vec2d v2(this->intersect_line_dir());
- #ifndef NDEBUG
- {
- Vec2d v1n = v1.normalized();
- Vec2d v2n = v2.normalized();
- double c = cross2(v1n, v2n);
- assert(std::abs(c) > sin(M_PI / 12.));
- }
- #endif // NDEBUG
- this->left = cross2(v1, v2) > 0.;
- }
- std::optional<Line> other_hook() const {
- std::optional<Line> out;
- const Points &pts = intersect_pl->points;
- if (pts.size() >= 3)
- out = this->front ? Line(pts[1], pts[2]) : Line(pts[pts.size() - 2], pts[pts.size() - 3]);
- return out;
- }
- bool other_hook_intersects(const Line &l, Point &pt) {
- std::optional<Line> h = other_hook();
- return h && h->intersection(l, &pt);
- }
- bool other_hook_intersects(const Line &l) { Point pt; return this->other_hook_intersects(l, pt); }
- // Direction to intersect_point.
- Vec2d intersect_line_dir() const throw() {
- return (this->intersect_point == intersect_line->a ? intersect_line->b - intersect_line->a : intersect_line->a - intersect_line->b).cast<double>();
- }
- };
- static inline Intersection* get_nearest_intersection(std::vector<std::pair<Intersection*, double>>& intersect_line, const size_t first_idx)
- {
- assert(intersect_line.size() >= 2);
- bool take_next = false;
- if (first_idx == 0)
- take_next = true;
- else if (first_idx + 1 == intersect_line.size())
- take_next = false;
- else {
- // Has both prev and next.
- const std::pair<Intersection*, double> &ithis = intersect_line[first_idx];
- const std::pair<Intersection*, double> &iprev = intersect_line[first_idx - 1];
- const std::pair<Intersection*, double> &inext = intersect_line[first_idx + 1];
- take_next = iprev.first->fresh() && inext.first->fresh() ?
- inext.second - ithis.second < ithis.second - iprev.second :
- inext.first->fresh();
- }
- return intersect_line[take_next ? first_idx + 1 : first_idx - 1].first;
- }
- // Create a line representing the anchor aka hook extrusion based on line_to_offset
- // translated in the direction of the intersection line (intersection.intersect_line).
- static Line create_offset_line(Line offset_line, const Intersection &intersection, const coordf_t scaled_offset)
- {
- offset_line.translate((perp(intersection.closest_line->vector().cast<double>().normalized()) * (intersection.left ? scaled_offset : - scaled_offset)).cast<coord_t>());
- // Extend the line by a small value to guarantee a collision with adjacent lines
- offset_line.extend(coordf_t(coord_t(scaled_offset * 1.16))); // / cos(PI/6)
- return offset_line;
- }
- namespace bg = boost::geometry;
- namespace bgm = boost::geometry::model;
- namespace bgi = boost::geometry::index;
- // float is needed because for coord_t bgi::intersects throws "bad numeric conversion: positive overflow"
- using rtree_point_t = bgm::point<float, 2, boost::geometry::cs::cartesian>;
- using rtree_segment_t = bgm::segment<rtree_point_t>;
- using rtree_t = bgi::rtree<std::pair<rtree_segment_t, size_t>, bgi::rstar<16, 4>>;
- static inline rtree_point_t mk_rtree_point(const Point &pt) {
- return rtree_point_t(float(pt.x()), float(pt.y()));
- }
- static inline rtree_segment_t mk_rtree_seg(const Point &a, const Point &b) {
- return { mk_rtree_point(a), mk_rtree_point(b) };
- }
- static inline rtree_segment_t mk_rtree_seg(const Line &l) {
- return mk_rtree_seg(l.a, l.b);
- }
- // Create a hook based on hook_line and append it to the begin or end of the polyline in the intersection
- static void add_hook(
- const Intersection &intersection, const double scaled_offset,
- const coordf_t hook_length, double scaled_trim_distance,
- const rtree_t &rtree, const Lines &lines_src)
- {
- if (hook_length < SCALED_EPSILON)
- // Ignore open hooks.
- return;
- #ifndef NDEBUG
- {
- const Vec2d v = (intersection.closest_line->b - intersection.closest_line->a).cast<double>();
- const Vec2d va = (intersection.intersect_point - intersection.closest_line->a).cast<double>();
- const double l2 = v.squaredNorm(); // avoid a sqrt
- assert(l2 > 0.);
- const double t = va.dot(v) / l2;
- assert(t > 0. && t < 1.);
- const double d = (t * v - va).norm();
- assert(d < 1000.);
- }
- #endif // NDEBUG
- // Trim the hook start by the infill line it will connect to.
- Point hook_start;
- [[maybe_unused]] bool intersection_found = intersection.intersect_line->intersection(
- create_offset_line(*intersection.closest_line, intersection, scaled_offset),
- &hook_start);
- assert(intersection_found);
- std::optional<Line> other_hook = intersection.other_hook();
- Vec2d hook_vector_norm = intersection.closest_line->vector().cast<double>().normalized();
- // hook_vector is extended by the thickness of the infill line, so that a collision is found against
- // the infill centerline to be later trimmed by the thickened line.
- Vector hook_vector = ((hook_length + 1.16 * scaled_trim_distance) * hook_vector_norm).cast<coord_t>();
- Line hook_forward(hook_start, hook_start + hook_vector);
- auto filter_itself = [&intersection, &lines_src](const auto &item) { return item.second != (long unsigned int)(intersection.intersect_line - lines_src.data()); };
- std::vector<std::pair<rtree_segment_t, size_t>> hook_intersections;
- rtree.query(bgi::intersects(mk_rtree_seg(hook_forward)) && bgi::satisfies(filter_itself), std::back_inserter(hook_intersections));
- Point self_intersection_point;
- bool self_intersection = other_hook && other_hook->intersection(hook_forward, &self_intersection_point);
- // Find closest intersection of a line segment starting with pt pointing in dir
- // with any of the hook_intersections, returns Euclidian distance.
- // dir is normalized.
- auto max_hook_length = [hook_length, scaled_trim_distance, &lines_src](
- const Vec2d &pt, const Vec2d &dir,
- const std::vector<std::pair<rtree_segment_t, size_t>> &hook_intersections,
- bool self_intersection, const std::optional<Line> &self_intersection_line, const Point &self_intersection_point) {
- // No hook is longer than hook_length, there shouldn't be any intersection closer than that.
- auto max_length = hook_length;
- auto update_max_length = [&max_length](double d) {
- if (d < max_length)
- max_length = d;
- };
- // Shift the trimming point away from the colliding thick line.
- auto shift_from_thick_line = [&dir, scaled_trim_distance](const Vec2d& dir2) {
- return scaled_trim_distance * std::abs(cross2(dir, dir2.normalized()));
- };
- for (const auto &hook_intersection : hook_intersections) {
- const rtree_segment_t &segment = hook_intersection.first;
- // Segment start and end points, segment vector.
- Vec2d pt2(bg::get<0, 0>(segment), bg::get<0, 1>(segment));
- Vec2d dir2 = Vec2d(bg::get<1, 0>(segment), bg::get<1, 1>(segment)) - pt2;
- // Find intersection of (pt, dir) with (pt2, dir2), where dir is normalized.
- double denom = cross2(dir, dir2);
- assert(std::abs(denom) > EPSILON);
- double t = cross2(pt2 - pt, dir2) / denom;
- if (hook_intersection.second < lines_src.size())
- // Trimming by another infill line. Reduce overlap.
- t -= shift_from_thick_line(dir2);
- update_max_length(t);
- }
- if (self_intersection) {
- double t = (self_intersection_point.cast<double>() - pt).dot(dir) - shift_from_thick_line((*self_intersection_line).vector().cast<double>());
- max_length = std::min(max_length, t);
- }
- return std::max(0., max_length);
- };
- Vec2d hook_startf = hook_start.cast<double>();
- double hook_forward_max_length = max_hook_length(hook_startf, hook_vector_norm, hook_intersections, self_intersection, other_hook, self_intersection_point);
- double hook_backward_max_length = 0.;
- if (hook_forward_max_length < hook_length - SCALED_EPSILON) {
- // Try the other side.
- hook_intersections.clear();
- Line hook_backward(hook_start, hook_start - hook_vector);
- rtree.query(bgi::intersects(mk_rtree_seg(hook_backward)) && bgi::satisfies(filter_itself), std::back_inserter(hook_intersections));
- self_intersection = other_hook && other_hook->intersection(hook_backward, &self_intersection_point);
- hook_backward_max_length = max_hook_length(hook_startf, - hook_vector_norm, hook_intersections, self_intersection, other_hook, self_intersection_point);
- }
- // Take the longer hook.
- Vec2d hook_dir = (hook_forward_max_length > hook_backward_max_length ? hook_forward_max_length : - hook_backward_max_length) * hook_vector_norm;
- Point hook_end = hook_start + hook_dir.cast<coord_t>();
- Points &pl = intersection.intersect_pl->points;
- if (intersection.front) {
- pl.front() = hook_start;
- pl.emplace(pl.begin(), hook_end);
- } else {
- pl.back() = hook_start;
- pl.emplace_back(hook_end);
- }
- }
- #ifndef NDEBUG
- bool validate_intersection_t_joint(const Intersection &intersection)
- {
- const Vec2d v = (intersection.closest_line->b - intersection.closest_line->a).cast<double>();
- const Vec2d va = (intersection.intersect_point - intersection.closest_line->a).cast<double>();
- const double l2 = v.squaredNorm(); // avoid a sqrt
- assert(l2 > 0.);
- const double t = va.dot(v);
- assert(t > SCALED_EPSILON && t < l2 - SCALED_EPSILON);
- const double d = ((t / l2) * v - va).norm();
- assert(d < 1000.);
- return true;
- }
- bool validate_intersections(const std::vector<Intersection> &intersections)
- {
- for (const Intersection& intersection : intersections)
- assert(validate_intersection_t_joint(intersection));
- return true;
- }
- #endif // NDEBUG
- static Polylines connect_lines_using_hooks(Polylines &&lines, const ExPolygon &boundary, const double spacing, const coordf_t hook_length, const coordf_t hook_length_max)
- {
- rtree_t rtree;
- size_t poly_idx = 0;
- // 19% overlap, slightly lower than the allowed overlap in Fill::connect_infill()
- const float scaled_offset = float(scale_(spacing) * 0.81);
- // 25% overlap
- const float scaled_trim_distance = float(scale_(spacing) * 0.5 * 0.75);
- // Keeping the vector of closest points outside the loop, so the vector does not need to be reallocated.
- std::vector<std::pair<rtree_segment_t, size_t>> closest;
- // Pairs of lines touching at one end point. The pair is sorted to make the end point connection test symmetric.
- std::vector<std::pair<const Polyline*, const Polyline*>> lines_touching_at_endpoints;
- {
- // Insert infill lines into rtree, merge close collinear segments split by the infill boundary,
- // collect lines_touching_at_endpoints.
- double r2_close = Slic3r::sqr(1200.);
- for (Polyline &poly : lines) {
- assert(poly.points.size() == 2);
- if (&poly != lines.data()) {
- // Join collinear segments separated by a tiny gap. These gaps were likely created by clipping the infill lines with a concave dent in an infill boundary.
- auto collinear_segment = [&rtree, &closest, &lines, &lines_touching_at_endpoints, r2_close](const Point& pt, const Point& pt_other, const Polyline* polyline) -> std::pair<Polyline*, bool> {
- closest.clear();
- rtree.query(bgi::nearest(mk_rtree_point(pt), 1), std::back_inserter(closest));
- const Polyline *other = &lines[closest.front().second];
- double dist2_front = (other->points.front() - pt).cast<double>().squaredNorm();
- double dist2_back = (other->points.back() - pt).cast<double>().squaredNorm();
- double dist2_min = std::min(dist2_front, dist2_back);
- if (dist2_min < r2_close) {
- // Don't connect the segments in an opposite direction.
- double dist2_min_other = std::min((other->points.front() - pt_other).cast<double>().squaredNorm(), (other->points.back() - pt_other).cast<double>().squaredNorm());
- if (dist2_min_other > dist2_min) {
- // End points of the two lines are very close, they should have been merged together if they are collinear.
- Vec2d v1 = (pt_other - pt).cast<double>();
- Vec2d v2 = (other->points.back() - other->points.front()).cast<double>();
- Vec2d v1n = v1.normalized();
- Vec2d v2n = v2.normalized();
- // The vectors must not be collinear.
- double d = v1n.dot(v2n);
- if (std::abs(d) > 0.99f) {
- // Lines are collinear, merge them.
- rtree.remove(closest.front());
- return std::make_pair(const_cast<Polyline*>(other), dist2_min == dist2_front);
- } else {
- if (polyline > other)
- std::swap(polyline, other);
- lines_touching_at_endpoints.emplace_back(polyline, other);
- }
- }
- }
- return std::make_pair(static_cast<Polyline*>(nullptr), false);
- };
- auto collinear_front = collinear_segment(poly.points.front(), poly.points.back(), &poly);
- auto collinear_back = collinear_segment(poly.points.back(), poly.points.front(), &poly);
- assert(! collinear_front.first || ! collinear_back.first || collinear_front.first != collinear_back.first);
- if (collinear_front.first) {
- Polyline &other = *collinear_front.first;
- assert(&other != &poly);
- poly.points.front() = collinear_front.second ? other.points.back() : other.points.front();
- other.points.clear();
- }
- if (collinear_back.first) {
- Polyline &other = *collinear_back.first;
- assert(&other != &poly);
- poly.points.back() = collinear_back.second ? other.points.back() : other.points.front();
- other.points.clear();
- }
- }
- rtree.insert(std::make_pair(mk_rtree_seg(poly.points.front(), poly.points.back()), poly_idx++));
- }
- }
- // Convert input polylines to lines_src after the colinear segments were merged.
- Lines lines_src;
- lines_src.reserve(lines.size());
- std::transform(lines.begin(), lines.end(), std::back_inserter(lines_src), [](const Polyline &pl) {
- return pl.empty() ? Line(Point(0, 0), Point(0, 0)) : Line(pl.points.front(), pl.points.back()); });
- sort_remove_duplicates(lines_touching_at_endpoints);
- std::vector<Intersection> intersections;
- {
- // Minimum lenght of an infill line to anchor. Very short lines cannot be trimmed from both sides,
- // it does not help to anchor extremely short infill lines, it consumes too much plastic while not adding
- // to the object rigidity.
- assert(scaled_offset > scaled_trim_distance);
- const double line_len_threshold_drop_both_sides = scaled_offset * (2. / cos(PI / 6.) + 0.5) + SCALED_EPSILON;
- const double line_len_threshold_anchor_both_sides = line_len_threshold_drop_both_sides + scaled_offset;
- const double line_len_threshold_drop_single_side = scaled_offset * (1. / cos(PI / 6.) + 1.5) + SCALED_EPSILON;
- const double line_len_threshold_anchor_single_side = line_len_threshold_drop_single_side + scaled_offset;
- for (size_t line_idx = 0; line_idx < lines.size(); ++ line_idx) {
- Polyline &line = lines[line_idx];
- if (line.points.empty())
- continue;
- Point &front_point = line.points.front();
- Point &back_point = line.points.back();
- // Find the nearest line from the start point of the line.
- std::optional<size_t> tjoint_front, tjoint_back;
- {
- auto has_tjoint = [&closest, line_idx, &rtree, &lines, &lines_src](const Point &pt) {
- auto filter_t_joint = [line_idx, &lines_src, pt](const auto &item) {
- if (item.second != line_idx) {
- // Verify that the point projects onto the line.
- const Line &line = lines_src[item.second];
- const Vec2d v = (line.b - line.a).cast<double>();
- const Vec2d va = (pt - line.a).cast<double>();
- const double l2 = v.squaredNorm(); // avoid a sqrt
- if (l2 > 0.) {
- const double t = va.dot(v);
- return t > SCALED_EPSILON && t < l2 - SCALED_EPSILON;
- }
- }
- return false;
- };
- closest.clear();
- rtree.query(bgi::nearest(mk_rtree_point(pt), 1) && bgi::satisfies(filter_t_joint), std::back_inserter(closest));
- std::optional<size_t> out;
- if (! closest.empty()) {
- const Polyline &pl = lines[closest.front().second];
- if (pl.points.empty()) {
- // The closest infill line was already dropped as it was too short.
- // Such an infill line should not make a T-joint anyways.
- #if 0 // #ifndef NDEBUG
- const auto &seg = closest.front().first;
- struct Linef { Vec2d a; Vec2d b; };
- Linef l { { bg::get<0, 0>(seg), bg::get<0, 1>(seg) }, { bg::get<1, 0>(seg), bg::get<1, 1>(seg) } };
- assert(line_alg::distance_to_squared(l, Vec2d(pt.cast<double>())) > 1000 * 1000);
- #endif // NDEBUG
- } else if (pl.size() >= 2 &&
- //FIXME Hoping that pl is really a line, trimmed by a polygon using ClipperUtils. Sometimes Clipper leaves some additional collinear points on the polyline, let's hope it is all right.
- Line{ pl.front(), pl.back() }.distance_to_squared(pt) <= 1000 * 1000)
- out = closest.front().second;
- }
- return out;
- };
- // Refuse to create a T-joint if the infill lines touch at their ends.
- auto filter_end_point_connections = [&lines_touching_at_endpoints, &lines, &line](std::optional<size_t> in) {
- std::optional<size_t> out;
- if (in) {
- const Polyline *lo = &line;
- const Polyline *hi = &lines[*in];
- if (lo > hi)
- std::swap(lo, hi);
- if (! std::binary_search(lines_touching_at_endpoints.begin(), lines_touching_at_endpoints.end(), std::make_pair(lo, hi)))
- // Not an end-point connection, it is a valid T-joint.
- out = in;
- }
- return out;
- };
- tjoint_front = filter_end_point_connections(has_tjoint(front_point));
- tjoint_back = filter_end_point_connections(has_tjoint(back_point));
- }
- int num_tjoints = int(tjoint_front.has_value()) + int(tjoint_back.has_value());
- if (num_tjoints > 0) {
- double line_len = line.length();
- bool drop = false;
- bool anchor = false;
- if (num_tjoints == 1) {
- // Connected to perimeters on a single side only, connected to another infill line on the other side.
- drop = line_len < line_len_threshold_drop_single_side;
- anchor = line_len > line_len_threshold_anchor_single_side;
- } else {
- // Not connected to perimeters at all, connected to two infill lines.
- assert(num_tjoints == 2);
- drop = line_len < line_len_threshold_drop_both_sides;
- anchor = line_len > line_len_threshold_anchor_both_sides;
- }
- if (drop) {
- // Drop a very short line if connected to another infill line.
- // Lines shorter than spacing are skipped because it is needed to shrink a line by the value of spacing.
- // A shorter line than spacing could produce a degenerate polyline.
- line.points.clear();
- } else if (anchor) {
- if (tjoint_front) {
- // T-joint of line's front point with the 'closest' line.
- intersections.emplace_back(lines_src[*tjoint_front], lines_src[line_idx], &line, front_point, true);
- assert(validate_intersection_t_joint(intersections.back()));
- }
- if (tjoint_back) {
- // T-joint of line's back point with the 'closest' line.
- intersections.emplace_back(lines_src[*tjoint_back], lines_src[line_idx], &line, back_point, false);
- assert(validate_intersection_t_joint(intersections.back()));
- }
- } else {
- if (tjoint_front)
- // T joint at the front at a 60 degree angle, the line is very short.
- // Trim the front side.
- front_point += ((scaled_trim_distance * 1.155) * (back_point - front_point).cast<double>().normalized()).cast<coord_t>();
- if (tjoint_back)
- // T joint at the front at a 60 degree angle, the line is very short.
- // Trim the front side.
- back_point += ((scaled_trim_distance * 1.155) * (front_point - back_point).cast<double>().normalized()).cast<coord_t>();
- }
- }
- }
- // Remove those intersections, that point to a dropped line.
- for (auto it = intersections.begin(); it != intersections.end(); ) {
- assert(! lines[it->intersect_line - lines_src.data()].points.empty());
- if (lines[it->closest_line - lines_src.data()].points.empty()) {
- *it = intersections.back();
- intersections.pop_back();
- } else
- ++ it;
- }
- }
- assert(validate_intersections(intersections));
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- static int iRun = 0;
- int iStep = 0;
- {
- Points pts;
- for (const Intersection &i : intersections)
- pts.emplace_back(i.intersect_point);
- export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-Tjoints-%d.svg", iRun++), pts);
- }
- #endif /* ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT */
- // Sort lexicographically by closest_line_idx and left/right orientation.
- std::sort(intersections.begin(), intersections.end(),
- [](const Intersection &i1, const Intersection &i2) {
- return (i1.closest_line == i2.closest_line) ?
- int(i1.left) < int(i2.left) :
- i1.closest_line < i2.closest_line;
- });
- std::vector<size_t> merged_with(lines.size());
- std::iota(merged_with.begin(), merged_with.end(), 0);
- // Appends the boundary polygon with all holes to rtree for detection to check whether hooks are not crossing the boundary
- {
- Point prev = boundary.contour.points.back();
- for (const Point &point : boundary.contour.points) {
- rtree.insert(std::make_pair(mk_rtree_seg(prev, point), poly_idx++));
- prev = point;
- }
- for (const Polygon &polygon : boundary.holes) {
- Point prev = polygon.points.back();
- for (const Point &point : polygon.points) {
- rtree.insert(std::make_pair(mk_rtree_seg(prev, point), poly_idx++));
- prev = point;
- }
- }
- }
- auto update_merged_polyline_idx = [&merged_with](size_t pl_idx) {
- // Update the polyline index to index which is merged
- for (size_t last = pl_idx;;) {
- size_t lower = merged_with[last];
- if (lower == last) {
- merged_with[pl_idx] = lower;
- return lower;
- }
- last = lower;
- }
- assert(false);
- return size_t(0);
- };
- auto update_merged_polyline = [&lines, update_merged_polyline_idx](Intersection& intersection) {
- // Update the polyline index to index which is merged
- size_t intersect_pl_idx = update_merged_polyline_idx(intersection.intersect_pl - lines.data());
- intersection.intersect_pl = &lines[intersect_pl_idx];
- // After polylines are merged, it is necessary to update "forward" based on if intersect_point is the first or the last point of intersect_pl.
- if (intersection.fresh()) {
- assert(intersection.intersect_pl->points.front() == intersection.intersect_point ||
- intersection.intersect_pl->points.back() == intersection.intersect_point);
- intersection.front = intersection.intersect_pl->points.front() == intersection.intersect_point;
- }
- };
- // Merge polylines touching at their ends. This should be a very rare case, but it happens surprisingly often.
- for (auto it = lines_touching_at_endpoints.rbegin(); it != lines_touching_at_endpoints.rend(); ++ it) {
- Polyline *pl1 = const_cast<Polyline*>(it->first);
- Polyline *pl2 = const_cast<Polyline*>(it->second);
- assert(pl1 < pl2);
- // pl1 was visited for the 1st time.
- // pl2 may have alread been merged with another polyline, even with this one.
- pl2 = &lines[update_merged_polyline_idx(pl2 - lines.data())];
- assert(pl1 <= pl2);
- // Avoid closing a loop, ignore dropped infill lines.
- if (pl1 != pl2 && ! pl1->points.empty() && ! pl2->points.empty()) {
- // Merge the polylines.
- assert(pl1 < pl2);
- assert(pl1->points.size() >= 2);
- assert(pl2->points.size() >= 2);
- double d11 = (pl1->points.front() - pl2->points.front()).cast<double>().squaredNorm();
- double d12 = (pl1->points.front() - pl2->points.back()) .cast<double>().squaredNorm();
- double d21 = (pl1->points.back() - pl2->points.front()).cast<double>().squaredNorm();
- double d22 = (pl1->points.back() - pl2->points.back()) .cast<double>().squaredNorm();
- double d1min = std::min(d11, d12);
- double d2min = std::min(d21, d22);
- if (d1min < d2min) {
- pl1->reverse();
- if (d12 == d1min)
- pl2->reverse();
- } else if (d22 == d2min)
- pl2->reverse();
- pl1->points.back() = (pl1->points.back() + pl2->points.front()) / 2;
- pl1->append(pl2->points.begin() + 1, pl2->points.end());
- pl2->points.clear();
- merged_with[pl2 - lines.data()] = pl1 - lines.data();
- }
- }
- // Keep intersect_line outside the loop, so it does not get reallocated.
- std::vector<std::pair<Intersection*, double>> intersect_line;
- for (size_t min_idx = 0; min_idx < intersections.size();) {
- intersect_line.clear();
- // All the nearest points (T-joints) ending at the same line are projected onto this line. Because of it, it can easily find the nearest point.
- {
- const Vec2d line_dir = intersections[min_idx].closest_line->vector().cast<double>();
- size_t max_idx = min_idx;
- for (; max_idx < intersections.size() &&
- intersections[min_idx].closest_line == intersections[max_idx].closest_line &&
- intersections[min_idx].left == intersections[max_idx].left;
- ++ max_idx)
- intersect_line.emplace_back(&intersections[max_idx], line_dir.dot(intersections[max_idx].intersect_point.cast<double>()));
- min_idx = max_idx;
- assert(intersect_line.size() > 0);
- // Sort the intersections along line_dir.
- std::sort(intersect_line.begin(), intersect_line.end(), [](const auto &i1, const auto &i2) { return i1.second < i2.second; });
- }
- if (intersect_line.size() == 1) {
- // Simple case: The current intersection is the only one touching its adjacent line.
- Intersection &first_i = *intersect_line.front().first;
- update_merged_polyline(first_i);
- if (first_i.fresh()) {
- // Try to connect left or right. If not enough space for hook_length, take the longer side.
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-add_hook0-pre-%d-%d.svg", iRun, iStep), { first_i.intersect_point });
- #endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- add_hook(first_i, scaled_offset, hook_length, scaled_trim_distance, rtree, lines_src);
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-add_hook0-pre-%d-%d.svg", iRun, iStep), { first_i.intersect_point });
- ++ iStep;
- #endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- first_i.used = true;
- }
- continue;
- }
- for (size_t first_idx = 0; first_idx < intersect_line.size(); ++ first_idx) {
- Intersection &first_i = *intersect_line[first_idx].first;
- update_merged_polyline(first_i);
- if (! first_i.fresh())
- // The intersection has been processed, or the polyline has been merged to another polyline.
- continue;
- // Get the previous or next intersection on the same line, pick the closer one.
- if (first_idx > 0)
- update_merged_polyline(*intersect_line[first_idx - 1].first);
- if (first_idx + 1 < intersect_line.size())
- update_merged_polyline(*intersect_line[first_idx + 1].first);
- Intersection &nearest_i = *get_nearest_intersection(intersect_line, first_idx);
- assert(first_i.closest_line == nearest_i.closest_line);
- assert(first_i.intersect_line != nearest_i.intersect_line);
- assert(first_i.intersect_line != first_i.closest_line);
- assert(nearest_i.intersect_line != first_i.closest_line);
- // A line between two intersections points
- Line offset_line = create_offset_line(Line(first_i.intersect_point, nearest_i.intersect_point), first_i, scaled_offset);
- // Check if both intersections lie on the offset_line and simultaneously get their points of intersecting.
- // These points are used as start and end of the hook
- Point first_i_point, nearest_i_point;
- bool could_connect = false;
- if (nearest_i.fresh()) {
- could_connect = first_i.intersect_line->intersection(offset_line, &first_i_point) &&
- nearest_i.intersect_line->intersection(offset_line, &nearest_i_point);
- assert(could_connect);
- }
- Points &first_points = first_i.intersect_pl->points;
- Points &second_points = nearest_i.intersect_pl->points;
- could_connect &= (nearest_i_point - first_i_point).cast<double>().squaredNorm() <= Slic3r::sqr(hook_length_max);
- if (could_connect) {
- // Both intersections are so close that their polylines can be connected.
- // Verify that no other infill line intersects this anchor line.
- closest.clear();
- rtree.query(
- bgi::intersects(mk_rtree_seg(first_i_point, nearest_i_point)) &&
- bgi::satisfies([&first_i, &nearest_i, &lines_src](const auto &item)
- { return item.second != (long unsigned int)(first_i.intersect_line - lines_src.data())
- && item.second != (long unsigned int)(nearest_i.intersect_line - lines_src.data()); }),
- std::back_inserter(closest));
- could_connect = closest.empty();
- #if 0
- // Avoid self intersections. Maybe it is better to trim the self intersection after the connection?
- if (could_connect && first_i.intersect_pl != nearest_i.intersect_pl) {
- Line l(first_i_point, nearest_i_point);
- could_connect = ! first_i.other_hook_intersects(l) && ! nearest_i.other_hook_intersects(l);
- }
- #endif
- }
- bool connected = false;
- if (could_connect) {
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-connecting-pre-%d-%d.svg", iRun, iStep), { first_i.intersect_point, nearest_i.intersect_point });
- #endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- // No other infill line intersects this anchor line. Extrude it as a whole.
- if (first_i.intersect_pl == nearest_i.intersect_pl) {
- // Both intersections are on the same polyline, that means a loop is being closed.
- assert(first_i.front != nearest_i.front);
- if (! first_i.front)
- std::swap(first_i_point, nearest_i_point);
- first_points.front() = first_i_point;
- first_points.back() = nearest_i_point;
- //FIXME trim the end of a closed loop a bit?
- first_points.emplace(first_points.begin(), nearest_i_point);
- } else {
- // Both intersections are on different polylines
- Line l(first_i_point, nearest_i_point);
- l.translate((perp(first_i.closest_line->vector().cast<double>().normalized()) * (first_i.left ? scaled_trim_distance : - scaled_trim_distance)).cast<coord_t>());
- Point pt_start, pt_end;
- bool trim_start = first_i .intersect_pl->points.size() == 3 && first_i .other_hook_intersects(l, pt_start);
- bool trim_end = nearest_i.intersect_pl->points.size() == 3 && nearest_i.other_hook_intersects(l, pt_end);
- first_points.reserve(first_points.size() + second_points.size());
- if (first_i.front)
- std::reverse(first_points.begin(), first_points.end());
- if (trim_start)
- first_points.front() = pt_start;
- first_points.back() = first_i_point;
- first_points.emplace_back(nearest_i_point);
- if (nearest_i.front)
- first_points.insert(first_points.end(), second_points.begin() + 1, second_points.end());
- else
- first_points.insert(first_points.end(), second_points.rbegin() + 1, second_points.rend());
- if (trim_end)
- first_points.back() = pt_end;
- // Keep the polyline at the lower index slot.
- if (first_i.intersect_pl < nearest_i.intersect_pl) {
- second_points.clear();
- merged_with[nearest_i.intersect_pl - lines.data()] = first_i.intersect_pl - lines.data();
- } else {
- second_points = std::move(first_points);
- first_points.clear();
- merged_with[first_i.intersect_pl - lines.data()] = nearest_i.intersect_pl - lines.data();
- }
- }
- nearest_i.used = true;
- connected = true;
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-connecting-post-%d-%d.svg", iRun, iStep), { first_i.intersect_point, nearest_i.intersect_point });
- #endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- }
- if (! connected) {
- // Try to connect left or right. If not enough space for hook_length, take the longer side.
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-add_hook-pre-%d-%d.svg", iRun, iStep), { first_i.intersect_point });
- #endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- add_hook(first_i, scaled_offset, hook_length, scaled_trim_distance, rtree, lines_src);
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-add_hook-post-%d-%d.svg", iRun, iStep), { first_i.intersect_point });
- #endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- }
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- ++ iStep;
- #endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- first_i.used = true;
- }
- }
- Polylines polylines_out;
- polylines_out.reserve(polylines_out.size() + std::count_if(lines.begin(), lines.end(), [](const Polyline &pl) { return !pl.empty(); }));
- for (Polyline &pl : lines)
- if (!pl.empty()) polylines_out.emplace_back(std::move(pl));
- return polylines_out;
- }
- #ifndef NDEBUG
- bool has_no_collinear_lines(const Polylines &polylines)
- {
- // Create line end point lookup.
- struct LineEnd {
- LineEnd(const Polyline *line, bool start) : line(line), start(start) {}
- const Polyline *line;
- // Is it the start or end point?
- bool start;
- const Point& point() const { return start ? line->points.front() : line->points.back(); }
- const Point& other_point() const { return start ? line->points.back() : line->points.front(); }
- LineEnd other_end() const { return LineEnd(line, !start); }
- Vec2d vec() const { return Vec2d((this->other_point() - this->point()).cast<double>()); }
- bool operator==(const LineEnd &rhs) const { return this->line == rhs.line && this->start == rhs.start; }
- };
- struct LineEndAccessor {
- const Point* operator()(const LineEnd &pt) const { return &pt.point(); }
- };
- typedef ClosestPointInRadiusLookup<LineEnd, LineEndAccessor> ClosestPointLookupType;
- ClosestPointLookupType closest_end_point_lookup(coord_t(1001. * sqrt(2.)));
- for (const Polyline& pl : polylines) {
- // assert(pl.points.size() == 2);
- auto line_start = LineEnd(&pl, true);
- auto line_end = LineEnd(&pl, false);
- auto assert_not_collinear = [&closest_end_point_lookup](const LineEnd &line_start) {
- std::vector<std::pair<const LineEnd*, double>> hits = closest_end_point_lookup.find_all(line_start.point());
- for (const std::pair<const LineEnd*, double> &hit : hits)
- if ((line_start.point() - hit.first->point()).cwiseAbs().maxCoeff() <= 1000) {
- // End points of the two lines are very close, they should have been merged together if they are collinear.
- Vec2d v1 = line_start.vec();
- Vec2d v2 = hit.first->vec();
- Vec2d v1n = v1.normalized();
- Vec2d v2n = v2.normalized();
- // The vectors must not be collinear.
- assert(std::abs(v1n.dot(v2n)) < cos(M_PI / 12.));
- }
- };
- assert_not_collinear(line_start);
- assert_not_collinear(line_end);
- closest_end_point_lookup.insert(line_start);
- closest_end_point_lookup.insert(line_end);
- }
- return true;
- }
- #endif
- void Filler::_fill_surface_single(
- const FillParams & params,
- unsigned int thickness_layers,
- const std::pair<float, Point> &direction,
- ExPolygon expolygon,
- Polylines &polylines_out) const
- {
- assert (this->adapt_fill_octree);
- Polylines all_polylines;
- {
- // 3 contexts for three directions of infill lines
- std::array<FillContext, 3> contexts {
- FillContext { *adapt_fill_octree, this->z, 0 },
- FillContext { *adapt_fill_octree, this->z, 1 },
- FillContext { *adapt_fill_octree, this->z, 2 }
- };
- // Generate the infill lines along the octree cells, merge touching lines of the same direction.
- size_t num_lines = 0;
- for (auto &context : contexts) {
- generate_infill_lines_recursive(context, adapt_fill_octree->root_cube, 0, int(adapt_fill_octree->cubes_properties.size()) - 1);
- num_lines += context.output_lines.size() + context.temp_lines.size();
- }
- #if 0
- // Collect the lines, trim them by the expolygon.
- all_polylines.reserve(num_lines);
- auto boundary = to_polygons(expolygon);
- for (auto &context : contexts) {
- Polylines lines;
- lines.reserve(context.output_lines.size() + context.temp_lines.size());
- std::transform(context.output_lines.begin(), context.output_lines.end(), std::back_inserter(lines), [](const Line& l) { return Polyline{ l.a, l.b }; });
- for (const Line &l : context.temp_lines)
- if (l.a.x() != std::numeric_limits<coord_t>::max())
- lines.push_back({ l.a, l.b });
- // Crop all polylines
- append(all_polylines, intersection_pl(std::move(lines), boundary));
- }
- // assert(has_no_collinear_lines(all_polylines));
- #else
- // Collect the lines.
- std::vector<Line> lines;
- lines.reserve(num_lines);
- for (auto &context : contexts) {
- append(lines, context.output_lines);
- for (const Line &line : context.temp_lines)
- if (line.a.x() != std::numeric_limits<coord_t>::max())
- lines.emplace_back(line);
- }
- // Convert lines to polylines.
- all_polylines.reserve(lines.size());
- std::transform(lines.begin(), lines.end(), std::back_inserter(all_polylines), [](const Line& l) { return Polyline{ l.a, l.b }; });
- // Crop all polylines
- all_polylines = intersection_pl(std::move(all_polylines), expolygon);
- #endif
- }
- // After intersection_pl some polylines with only one line are split into more lines
- for (Polyline &polyline : all_polylines) {
- //FIXME assert that all the points are collinear and in between the start and end point.
- if (polyline.points.size() > 2)
- polyline.points.erase(polyline.points.begin() + 1, polyline.points.end() - 1);
- }
- // assert(has_no_collinear_lines(all_polylines));
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- {
- static int iRun = 0;
- export_infill_lines_to_svg(expolygon, all_polylines, debug_out_path("FillAdaptive-initial-%d.svg", iRun++));
- }
- #endif /* ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT */
- const coordf_t hook_length = std::min<coordf_t>((coordf_t)std::numeric_limits<coord_t>::max(), scale_d(params.anchor_length));
- const coordf_t hook_length_max = std::min<coordf_t>((coordf_t)std::numeric_limits<coord_t>::max(), scale_d(params.anchor_length_max));
- Polylines all_polylines_with_hooks = all_polylines.size() > 1 ? connect_lines_using_hooks(std::move(all_polylines), expolygon, this->get_spacing(), hook_length, hook_length_max) : std::move(all_polylines);
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- {
- static int iRun = 0;
- export_infill_lines_to_svg(expolygon, all_polylines_with_hooks, debug_out_path("FillAdaptive-hooks-%d.svg", iRun++));
- }
- #endif /* ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT */
- if (params.connection == InfillConnection::icNotConnected || all_polylines_with_hooks.size() <= 1)
- append(polylines_out, chain_polylines(std::move(all_polylines_with_hooks)));
- else
- connect_infill(std::move(all_polylines_with_hooks), expolygon, polylines_out, scale_t(this->get_spacing()), params);
- #ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
- {
- static int iRun = 0;
- export_infill_lines_to_svg(expolygon, polylines_out, debug_out_path("FillAdaptive-final-%d.svg", iRun ++));
- }
- #endif /* ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT */
- }
- //static double bbox_max_radius(const BoundingBoxf3 &bbox, const Vec3d ¢er)
- //{
- // const auto p = (bbox.min - center);
- // const auto s = bbox.size();
- // double r2max = 0.;
- // for (int i = 0; i < 8; ++ i)
- // r2max = std::max(r2max, (p + Vec3d(s.x() * double(i & 1), s.y() * double(i & 2), s.z() * double(i & 4))).squaredNorm());
- // return sqrt(r2max);
- //}
- static std::vector<CubeProperties> make_cubes_properties(double max_cube_edge_length, double line_spacing)
- {
- max_cube_edge_length += EPSILON;
- std::vector<CubeProperties> cubes_properties;
- for (double edge_length = line_spacing * 2.;; edge_length *= 2.)
- {
- CubeProperties props{};
- props.edge_length = edge_length;
- props.height = edge_length * sqrt(3);
- props.diagonal_length = edge_length * sqrt(2);
- props.line_z_distance = edge_length / sqrt(3);
- props.line_xy_distance = edge_length / sqrt(6);
- cubes_properties.emplace_back(props);
- if (edge_length > max_cube_edge_length)
- break;
- }
- return cubes_properties;
- }
- static inline bool is_overhang_triangle(const Vec3d &a, const Vec3d &b, const Vec3d &c, const Vec3d &up)
- {
- // Calculate triangle normal.
- auto n = (b - a).cross(c - b);
- return n.dot(up) > 0.707 * n.norm();
- }
- static void transform_center(Cube *current_cube, const Eigen::Matrix3d &rot)
- {
- #ifndef NDEBUG
- current_cube->center_octree = current_cube->center;
- #endif // NDEBUG
- current_cube->center = rot * current_cube->center;
- for (auto *child : current_cube->children)
- if (child)
- transform_center(child, rot);
- }
- OctreePtr build_octree(
- // Mesh is rotated to the coordinate system of the octree.
- const indexed_triangle_set &triangle_mesh,
- // Overhang triangles extracted from fill surfaces with stInternalBridge type,
- // rotated to the coordinate system of the octree.
- const std::vector<Vec3d> &overhang_triangles,
- coordf_t line_spacing,
- bool support_overhangs_only)
- {
- assert(line_spacing > 0);
- assert(! std::isnan(line_spacing));
- BoundingBox3Base<Vec3f> bbox(triangle_mesh.vertices);
- Vec3d cube_center = bbox.center().cast<double>();
- std::vector<CubeProperties> cubes_properties = make_cubes_properties(double(bbox.size().maxCoeff()), line_spacing);
- auto octree = OctreePtr(new Octree(cube_center, cubes_properties));
- if (cubes_properties.size() > 1) {
- Octree *octree_ptr = octree.get();
- double edge_length_half = 0.5 * cubes_properties.back().edge_length;
- Vec3d diag_half(edge_length_half, edge_length_half, edge_length_half);
- int max_depth = int(cubes_properties.size()) - 1;
- auto process_triangle = [octree_ptr, max_depth, diag_half](const Vec3d &a, const Vec3d &b, const Vec3d &c) {
- octree_ptr->insert_triangle(
- a, b, c,
- octree_ptr->root_cube,
- BoundingBoxf3(octree_ptr->root_cube->center - diag_half, octree_ptr->root_cube->center + diag_half),
- max_depth);
- };
- auto up_vector = support_overhangs_only ? Vec3d(transform_to_octree() * Vec3d(0., 0., 1.)) : Vec3d();
- for (auto &tri : triangle_mesh.indices) {
- auto a = triangle_mesh.vertices[tri[0]].cast<double>();
- auto b = triangle_mesh.vertices[tri[1]].cast<double>();
- auto c = triangle_mesh.vertices[tri[2]].cast<double>();
- if (! support_overhangs_only || is_overhang_triangle(a, b, c, up_vector))
- process_triangle(a, b, c);
- }
- for (size_t i = 0; i < overhang_triangles.size(); i += 3)
- process_triangle(overhang_triangles[i], overhang_triangles[i + 1], overhang_triangles[i + 2]);
- {
- // Transform the octree to world coordinates to reduce computation when extracting infill lines.
- auto rot = transform_to_world().toRotationMatrix();
- transform_center(octree->root_cube, rot);
- octree->origin = rot * octree->origin;
- }
- }
- return octree;
- }
- void Octree::insert_triangle(const Vec3d &a, const Vec3d &b, const Vec3d &c, Cube *current_cube, const BoundingBoxf3 ¤t_bbox, int depth)
- {
- assert(current_cube);
- assert(depth > 0);
- --depth;
- // Squared radius of a sphere around the child cube.
- // const double r2_cube = Slic3r::sqr(0.5 * this->cubes_properties[depth].height + EPSILON);
- for (size_t i = 0; i < 8; ++ i) {
- const Vec3d &child_center_dir = child_centers[i];
- // Calculate a slightly expanded bounding box of a child cube to cope with triangles touching a cube wall and other numeric errors.
- // We will rather densify the octree a bit more than necessary instead of missing a triangle.
- BoundingBoxf3 bbox;
- for (int k = 0; k < 3; ++ k) {
- if (child_center_dir[k] == -1.) {
- bbox.min[k] = current_bbox.min[k];
- bbox.max[k] = current_cube->center[k] + EPSILON;
- } else {
- bbox.min[k] = current_cube->center[k] - EPSILON;
- bbox.max[k] = current_bbox.max[k];
- }
- }
- Vec3d child_center = current_cube->center + (child_center_dir * (this->cubes_properties[depth].edge_length / 2.));
- //if (dist2_to_triangle(a, b, c, child_center) < r2_cube) {
- // dist2_to_triangle and r2_cube are commented out too.
- if (triangle_AABB_intersects(a, b, c, bbox)) {
- if (! current_cube->children[i])
- current_cube->children[i] = this->pool.construct(child_center);
- if (depth > 0)
- this->insert_triangle(a, b, c, current_cube->children[i], bbox, depth);
- }
- }
- }
- } // namespace FillAdaptive
- } // namespace Slic3r
|