Browse Source

Tech ENABLE_LEGACY_OPENGL_REMOVAL - Fixed calculation of normal matrices sent to shaders
Fixed conflicts during rebase with master

enricoturri1966 2 years ago
parent
commit
c468dcbed7

+ 77 - 77
resources/shaders/110/gouraud.vs

@@ -1,77 +1,77 @@
-#version 110
-
-#define INTENSITY_CORRECTION 0.6
-
-// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
-const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
-#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SHININESS  20.0
-
-// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
-const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
-#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
-//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
-//#define LIGHT_FRONT_SHININESS 5.0
-
-#define INTENSITY_AMBIENT    0.3
-
-const vec3 ZERO = vec3(0.0, 0.0, 0.0);
-
-struct SlopeDetection
-{
-    bool actived;
-	float normal_z;
-    mat3 volume_world_normal_matrix;
-};
-
-uniform mat4 view_model_matrix;
-uniform mat4 projection_matrix;
-uniform mat3 normal_matrix;
-uniform mat4 volume_world_matrix;
-uniform SlopeDetection slope;
-
-// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
-uniform vec2 z_range;
-// Clipping plane - general orientation. Used by the SLA gizmo.
-uniform vec4 clipping_plane;
-
-attribute vec3 v_position;
-attribute vec3 v_normal;
-
-// x = diffuse, y = specular;
-varying vec2 intensity;
-
-varying vec3 clipping_planes_dots;
-
-varying vec4 world_pos;
-varying float world_normal_z;
-varying vec3 eye_normal;
-
-void main()
-{
-	// First transform the normal into camera space and normalize the result.
-    eye_normal = normalize(normal_matrix * v_normal);
-
-	// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
-	// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
-	float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
-
-	intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
-    vec4 position = view_model_matrix * vec4(v_position, 1.0);
-    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
-
-	// Perform the same lighting calculation for the 2nd light source (no specular applied).
-	NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
-	intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
-
-    // Point in homogenous coordinates.
-    world_pos = volume_world_matrix * vec4(v_position, 1.0);
-
-    // z component of normal vector in world coordinate used for slope shading
-    world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * v_normal)).z : 0.0;
-
-    gl_Position = projection_matrix * position;
-    // Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
-    clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
-}
+#version 110
+
+#define INTENSITY_CORRECTION 0.6
+
+// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
+const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
+#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SHININESS  20.0
+
+// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
+const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
+#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
+//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
+//#define LIGHT_FRONT_SHININESS 5.0
+
+#define INTENSITY_AMBIENT    0.3
+
+const vec3 ZERO = vec3(0.0, 0.0, 0.0);
+
+struct SlopeDetection
+{
+    bool actived;
+	float normal_z;
+    mat3 volume_world_normal_matrix;
+};
+
+uniform mat4 view_model_matrix;
+uniform mat4 projection_matrix;
+uniform mat3 view_normal_matrix;
+uniform mat4 volume_world_matrix;
+uniform SlopeDetection slope;
+
+// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
+uniform vec2 z_range;
+// Clipping plane - general orientation. Used by the SLA gizmo.
+uniform vec4 clipping_plane;
+
+attribute vec3 v_position;
+attribute vec3 v_normal;
+
+// x = diffuse, y = specular;
+varying vec2 intensity;
+
+varying vec3 clipping_planes_dots;
+
+varying vec4 world_pos;
+varying float world_normal_z;
+varying vec3 eye_normal;
+
+void main()
+{
+	// First transform the normal into camera space and normalize the result.
+    eye_normal = normalize(view_normal_matrix * v_normal);
+
+	// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
+	// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
+	float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
+
+	intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
+    vec4 position = view_model_matrix * vec4(v_position, 1.0);
+    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
+
+	// Perform the same lighting calculation for the 2nd light source (no specular applied).
+	NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
+	intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
+
+    // Point in homogenous coordinates.
+    world_pos = volume_world_matrix * vec4(v_position, 1.0);
+
+    // z component of normal vector in world coordinate used for slope shading
+    world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * v_normal)).z : 0.0;
+
+    gl_Position = projection_matrix * position;
+    // Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
+    clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
+}

+ 45 - 45
resources/shaders/110/gouraud_light.vs

@@ -1,45 +1,45 @@
-#version 110
-
-#define INTENSITY_CORRECTION 0.6
-
-// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
-const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
-#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SHININESS  20.0
-
-// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
-const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
-#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
-
-#define INTENSITY_AMBIENT    0.3
-
-uniform mat4 view_model_matrix;
-uniform mat4 projection_matrix;
-uniform mat3 normal_matrix;
-
-attribute vec3 v_position;
-attribute vec3 v_normal;
-
-// x = tainted, y = specular;
-varying vec2 intensity;
-
-void main()
-{
-    // First transform the normal into camera space and normalize the result.
-    vec3 normal = normalize(normal_matrix * v_normal);
-    
-    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
-    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
-    float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
-
-    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
-    vec4 position = view_model_matrix * vec4(v_position, 1.0);
-    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
-
-    // Perform the same lighting calculation for the 2nd light source (no specular applied).
-    NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
-    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
-
-    gl_Position = projection_matrix * position;
-}
+#version 110
+
+#define INTENSITY_CORRECTION 0.6
+
+// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
+const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
+#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SHININESS  20.0
+
+// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
+const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
+#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
+
+#define INTENSITY_AMBIENT    0.3
+
+uniform mat4 view_model_matrix;
+uniform mat4 projection_matrix;
+uniform mat3 view_normal_matrix;
+
+attribute vec3 v_position;
+attribute vec3 v_normal;
+
+// x = tainted, y = specular;
+varying vec2 intensity;
+
+void main()
+{
+    // First transform the normal into camera space and normalize the result.
+    vec3 normal = normalize(view_normal_matrix * v_normal);
+    
+    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
+    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
+    float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
+
+    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
+    vec4 position = view_model_matrix * vec4(v_position, 1.0);
+    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
+
+    // Perform the same lighting calculation for the 2nd light source (no specular applied).
+    NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
+    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
+
+    gl_Position = projection_matrix * position;
+}

+ 50 - 50
resources/shaders/110/gouraud_light_instanced.vs

@@ -1,50 +1,50 @@
-#version 110
-
-#define INTENSITY_CORRECTION 0.6
-
-// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
-const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
-#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SHININESS  20.0
-
-// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
-const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
-#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
-
-#define INTENSITY_AMBIENT    0.3
-
-uniform mat4 view_model_matrix;
-uniform mat4 projection_matrix;
-uniform mat3 normal_matrix;
-
-// vertex attributes
-attribute vec3 v_position;
-attribute vec3 v_normal;
-// instance attributes
-attribute vec3 i_offset;
-attribute vec2 i_scales;
-
-// x = tainted, y = specular;
-varying vec2 intensity;
-
-void main()
-{
-    // First transform the normal into camera space and normalize the result.
-    vec3 eye_normal = normalize(normal_matrix * v_normal);
-    
-    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
-    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
-    float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
-
-    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
-    vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0);
-    vec4 eye_position = view_model_matrix * world_position;
-    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
-
-    // Perform the same lighting calculation for the 2nd light source (no specular applied).
-    NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
-    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
-
-    gl_Position = projection_matrix * eye_position;
-}
+#version 110
+
+#define INTENSITY_CORRECTION 0.6
+
+// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
+const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
+#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SHININESS  20.0
+
+// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
+const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
+#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
+
+#define INTENSITY_AMBIENT    0.3
+
+uniform mat4 view_model_matrix;
+uniform mat4 projection_matrix;
+uniform mat3 view_normal_matrix;
+
+// vertex attributes
+attribute vec3 v_position;
+attribute vec3 v_normal;
+// instance attributes
+attribute vec3 i_offset;
+attribute vec2 i_scales;
+
+// x = tainted, y = specular;
+varying vec2 intensity;
+
+void main()
+{
+    // First transform the normal into camera space and normalize the result.
+    vec3 eye_normal = normalize(view_normal_matrix * v_normal);
+    
+    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
+    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
+    float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
+
+    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
+    vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0);
+    vec4 eye_position = view_model_matrix * world_position;
+    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
+
+    // Perform the same lighting calculation for the 2nd light source (no specular applied).
+    NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
+    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
+
+    gl_Position = projection_matrix * eye_position;
+}

+ 63 - 63
resources/shaders/110/mm_gouraud.fs

@@ -1,63 +1,63 @@
-#version 110
-
-#define INTENSITY_CORRECTION 0.6
-
-// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
-const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
-#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SHININESS  20.0
-
-// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
-const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
-#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
-
-#define INTENSITY_AMBIENT    0.3
-
-const vec3  ZERO    = vec3(0.0, 0.0, 0.0);
-const float EPSILON = 0.0001;
-
-uniform vec4 uniform_color;
-
-uniform bool volume_mirrored;
-
-uniform mat4 view_model_matrix;
-uniform mat3 normal_matrix;
-
-varying vec3 clipping_planes_dots;
-varying vec4 model_pos;
-
-void main()
-{
-    if (any(lessThan(clipping_planes_dots, ZERO)))
-        discard;
-    vec3  color = uniform_color.rgb;
-    float alpha = uniform_color.a;
-
-    vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
-#ifdef FLIP_TRIANGLE_NORMALS
-    triangle_normal = -triangle_normal;
-#endif
-
-    if (volume_mirrored)
-        triangle_normal = -triangle_normal;
-
-    // First transform the normal into camera space and normalize the result.
-    vec3 eye_normal = normalize(normal_matrix * triangle_normal);
-
-    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
-    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
-    float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
-
-    // x = diffuse, y = specular;
-    vec2 intensity = vec2(0.0);
-    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
-    vec3 position = (view_model_matrix * model_pos).xyz;
-    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
-
-    // Perform the same lighting calculation for the 2nd light source (no specular applied).
-    NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
-    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
-
-    gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
-}
+#version 110
+
+#define INTENSITY_CORRECTION 0.6
+
+// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
+const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
+#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SHININESS  20.0
+
+// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
+const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
+#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
+
+#define INTENSITY_AMBIENT    0.3
+
+const vec3  ZERO    = vec3(0.0, 0.0, 0.0);
+const float EPSILON = 0.0001;
+
+uniform vec4 uniform_color;
+
+uniform bool volume_mirrored;
+
+uniform mat4 view_model_matrix;
+uniform mat3 view_normal_matrix;
+
+varying vec3 clipping_planes_dots;
+varying vec4 model_pos;
+
+void main()
+{
+    if (any(lessThan(clipping_planes_dots, ZERO)))
+        discard;
+    vec3  color = uniform_color.rgb;
+    float alpha = uniform_color.a;
+
+    vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
+#ifdef FLIP_TRIANGLE_NORMALS
+    triangle_normal = -triangle_normal;
+#endif
+
+    if (volume_mirrored)
+        triangle_normal = -triangle_normal;
+
+    // First transform the normal into camera space and normalize the result.
+    vec3 eye_normal = normalize(view_normal_matrix * triangle_normal);
+
+    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
+    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
+    float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
+
+    // x = diffuse, y = specular;
+    vec2 intensity = vec2(0.0);
+    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
+    vec3 position = (view_model_matrix * model_pos).xyz;
+    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
+
+    // Perform the same lighting calculation for the 2nd light source (no specular applied).
+    NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
+    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
+
+    gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
+}

+ 47 - 47
resources/shaders/110/toolpaths_cog.vs

@@ -1,47 +1,47 @@
-#version 110
-
-#define INTENSITY_CORRECTION 0.6
-
-// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
-const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
-#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SHININESS  20.0
-
-// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
-const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
-#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
-
-#define INTENSITY_AMBIENT    0.3
-
-uniform mat4 view_model_matrix;
-uniform mat4 projection_matrix;
-uniform mat3 normal_matrix;
-
-attribute vec3 v_position;
-attribute vec3 v_normal;
-
-// x = tainted, y = specular;
-varying vec2 intensity;
-varying vec3 world_position;
-
-void main()
-{
-    // First transform the normal into camera space and normalize the result.
-    vec3 normal = normalize(normal_matrix * v_normal);
-    
-    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
-    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
-    float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
-
-    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
-    vec4 position = view_model_matrix * vec4(v_position, 1.0);
-    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
-
-    // Perform the same lighting calculation for the 2nd light source (no specular applied).
-    NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
-    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
-
-	world_position = v_position;
-    gl_Position = projection_matrix * position;
-}
+#version 110
+
+#define INTENSITY_CORRECTION 0.6
+
+// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
+const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
+#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SHININESS  20.0
+
+// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
+const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
+#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
+
+#define INTENSITY_AMBIENT    0.3
+
+uniform mat4 view_model_matrix;
+uniform mat4 projection_matrix;
+uniform mat3 view_normal_matrix;
+
+attribute vec3 v_position;
+attribute vec3 v_normal;
+
+// x = tainted, y = specular;
+varying vec2 intensity;
+varying vec3 world_position;
+
+void main()
+{
+    // First transform the normal into camera space and normalize the result.
+    vec3 normal = normalize(view_normal_matrix * v_normal);
+    
+    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
+    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
+    float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
+
+    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
+    vec4 position = view_model_matrix * vec4(v_position, 1.0);
+    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
+
+    // Perform the same lighting calculation for the 2nd light source (no specular applied).
+    NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
+    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
+
+	world_position = v_position;
+    gl_Position = projection_matrix * position;
+}

+ 60 - 60
resources/shaders/110/variable_layer_height.vs

@@ -1,60 +1,60 @@
-#version 110
-
-#define INTENSITY_CORRECTION 0.6
-
-const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
-#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SHININESS  20.0
-
-const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
-#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
-//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
-//#define LIGHT_FRONT_SHININESS 5.0
-
-#define INTENSITY_AMBIENT    0.3
-
-uniform mat4 view_model_matrix;
-uniform mat4 projection_matrix;
-uniform mat3 normal_matrix;
-uniform mat4 volume_world_matrix;
-uniform float object_max_z;
-
-attribute vec3 v_position;
-attribute vec3 v_normal;
-attribute vec2 v_tex_coord;
-
-// x = tainted, y = specular;
-varying vec2 intensity;
-
-varying float object_z;
-
-void main()
-{
-	// =====================================================
-	// NOTE:
-	// when object_max_z > 0.0  we are rendering the overlay
-	// when object_max_z == 0.0 we are rendering the volumes
-	// =====================================================
-
-    // First transform the normal into camera space and normalize the result.
-    vec3 normal = (object_max_z > 0.0) ? vec3(0.0, 0.0, 1.0) : normalize(normal_matrix * v_normal);
-    
-    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
-    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
-    float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
-
-    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
-    vec4 position = view_model_matrix * vec4(v_position, 1.0);
-    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
-
-    // Perform the same lighting calculation for the 2nd light source (no specular)
-    NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
-    
-    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
-
-    // Scaled to widths of the Z texture.
-    object_z = (object_max_z > 0.0) ? object_max_z * v_tex_coord.y : (volume_world_matrix * vec4(v_position, 1.0)).z;
-        
-    gl_Position = projection_matrix * position;
-}
+#version 110
+
+#define INTENSITY_CORRECTION 0.6
+
+const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
+#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SHININESS  20.0
+
+const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
+#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
+//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
+//#define LIGHT_FRONT_SHININESS 5.0
+
+#define INTENSITY_AMBIENT    0.3
+
+uniform mat4 view_model_matrix;
+uniform mat4 projection_matrix;
+uniform mat3 view_normal_matrix;
+uniform mat4 volume_world_matrix;
+uniform float object_max_z;
+
+attribute vec3 v_position;
+attribute vec3 v_normal;
+attribute vec2 v_tex_coord;
+
+// x = tainted, y = specular;
+varying vec2 intensity;
+
+varying float object_z;
+
+void main()
+{
+	// =====================================================
+	// NOTE:
+	// when object_max_z > 0.0  we are rendering the overlay
+	// when object_max_z == 0.0 we are rendering the volumes
+	// =====================================================
+
+    // First transform the normal into camera space and normalize the result.
+    vec3 normal = (object_max_z > 0.0) ? vec3(0.0, 0.0, 1.0) : normalize(view_normal_matrix * v_normal);
+    
+    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
+    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
+    float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
+
+    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
+    vec4 position = view_model_matrix * vec4(v_position, 1.0);
+    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
+
+    // Perform the same lighting calculation for the 2nd light source (no specular)
+    NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
+    
+    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
+
+    // Scaled to widths of the Z texture.
+    object_z = (object_max_z > 0.0) ? object_max_z * v_tex_coord.y : (volume_world_matrix * vec4(v_position, 1.0)).z;
+        
+    gl_Position = projection_matrix * position;
+}

+ 77 - 77
resources/shaders/140/gouraud.vs

@@ -1,77 +1,77 @@
-#version 140
-
-#define INTENSITY_CORRECTION 0.6
-
-// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
-const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
-#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SHININESS  20.0
-
-// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
-const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
-#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
-//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
-//#define LIGHT_FRONT_SHININESS 5.0
-
-#define INTENSITY_AMBIENT    0.3
-
-const vec3 ZERO = vec3(0.0, 0.0, 0.0);
-
-struct SlopeDetection
-{
-    bool actived;
-	float normal_z;
-    mat3 volume_world_normal_matrix;
-};
-
-uniform mat4 view_model_matrix;
-uniform mat4 projection_matrix;
-uniform mat3 normal_matrix;
-uniform mat4 volume_world_matrix;
-uniform SlopeDetection slope;
-
-// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
-uniform vec2 z_range;
-// Clipping plane - general orientation. Used by the SLA gizmo.
-uniform vec4 clipping_plane;
-
-in vec3 v_position;
-in vec3 v_normal;
-
-// x = diffuse, y = specular;
-out vec2 intensity;
-
-out vec3 clipping_planes_dots;
-
-out vec4 world_pos;
-out float world_normal_z;
-out vec3 eye_normal;
-
-void main()
-{
-	// First transform the normal into camera space and normalize the result.
-    eye_normal = normalize(normal_matrix * v_normal);
-
-	// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
-	// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
-	float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
-
-	intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
-    vec4 position = view_model_matrix * vec4(v_position, 1.0);
-    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
-
-	// Perform the same lighting calculation for the 2nd light source (no specular applied).
-	NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
-	intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
-
-    // Point in homogenous coordinates.
-    world_pos = volume_world_matrix * vec4(v_position, 1.0);
-
-    // z component of normal vector in world coordinate used for slope shading
-    world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * v_normal)).z : 0.0;
-
-    gl_Position = projection_matrix * position;
-    // Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
-    clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
-}
+#version 140
+
+#define INTENSITY_CORRECTION 0.6
+
+// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
+const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
+#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SHININESS  20.0
+
+// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
+const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
+#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
+//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
+//#define LIGHT_FRONT_SHININESS 5.0
+
+#define INTENSITY_AMBIENT    0.3
+
+const vec3 ZERO = vec3(0.0, 0.0, 0.0);
+
+struct SlopeDetection
+{
+    bool actived;
+	float normal_z;
+    mat3 volume_world_normal_matrix;
+};
+
+uniform mat4 view_model_matrix;
+uniform mat4 projection_matrix;
+uniform mat3 view_normal_matrix;
+uniform mat4 volume_world_matrix;
+uniform SlopeDetection slope;
+
+// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
+uniform vec2 z_range;
+// Clipping plane - general orientation. Used by the SLA gizmo.
+uniform vec4 clipping_plane;
+
+in vec3 v_position;
+in vec3 v_normal;
+
+// x = diffuse, y = specular;
+out vec2 intensity;
+
+out vec3 clipping_planes_dots;
+
+out vec4 world_pos;
+out float world_normal_z;
+out vec3 eye_normal;
+
+void main()
+{
+	// First transform the normal into camera space and normalize the result.
+    eye_normal = normalize(view_normal_matrix * v_normal);
+
+	// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
+	// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
+	float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
+
+	intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
+    vec4 position = view_model_matrix * vec4(v_position, 1.0);
+    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
+
+	// Perform the same lighting calculation for the 2nd light source (no specular applied).
+	NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
+	intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
+
+    // Point in homogenous coordinates.
+    world_pos = volume_world_matrix * vec4(v_position, 1.0);
+
+    // z component of normal vector in world coordinate used for slope shading
+    world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * v_normal)).z : 0.0;
+
+    gl_Position = projection_matrix * position;
+    // Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
+    clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
+}

+ 45 - 45
resources/shaders/140/gouraud_light.vs

@@ -1,45 +1,45 @@
-#version 140
-
-#define INTENSITY_CORRECTION 0.6
-
-// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
-const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
-#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SHININESS  20.0
-
-// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
-const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
-#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
-
-#define INTENSITY_AMBIENT    0.3
-
-uniform mat4 view_model_matrix;
-uniform mat4 projection_matrix;
-uniform mat3 normal_matrix;
-
-in vec3 v_position;
-in vec3 v_normal;
-
-// x = tainted, y = specular;
-out vec2 intensity;
-
-void main()
-{
-    // First transform the normal into camera space and normalize the result.
-    vec3 normal = normalize(normal_matrix * v_normal);
-    
-    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
-    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
-    float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
-
-    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
-    vec4 position = view_model_matrix * vec4(v_position, 1.0);
-    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
-
-    // Perform the same lighting calculation for the 2nd light source (no specular applied).
-    NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
-    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
-
-    gl_Position = projection_matrix * position;
-}
+#version 140
+
+#define INTENSITY_CORRECTION 0.6
+
+// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
+const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
+#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SHININESS  20.0
+
+// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
+const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
+#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
+
+#define INTENSITY_AMBIENT    0.3
+
+uniform mat4 view_model_matrix;
+uniform mat4 projection_matrix;
+uniform mat3 view_normal_matrix;
+
+in vec3 v_position;
+in vec3 v_normal;
+
+// x = tainted, y = specular;
+out vec2 intensity;
+
+void main()
+{
+    // First transform the normal into camera space and normalize the result.
+    vec3 normal = normalize(view_normal_matrix * v_normal);
+    
+    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
+    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
+    float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
+
+    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
+    vec4 position = view_model_matrix * vec4(v_position, 1.0);
+    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
+
+    // Perform the same lighting calculation for the 2nd light source (no specular applied).
+    NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
+    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
+
+    gl_Position = projection_matrix * position;
+}

+ 50 - 50
resources/shaders/140/gouraud_light_instanced.vs

@@ -1,50 +1,50 @@
-#version 140
-
-#define INTENSITY_CORRECTION 0.6
-
-// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
-const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
-#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
-#define LIGHT_TOP_SHININESS  20.0
-
-// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
-const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
-#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
-
-#define INTENSITY_AMBIENT    0.3
-
-uniform mat4 view_model_matrix;
-uniform mat4 projection_matrix;
-uniform mat3 normal_matrix;
-
-// vertex attributes
-in vec3 v_position;
-in vec3 v_normal;
-// instance attributes
-in vec3 i_offset;
-in vec2 i_scales;
-
-// x = tainted, y = specular;
-out vec2 intensity;
-
-void main()
-{
-    // First transform the normal into camera space and normalize the result.
-    vec3 eye_normal = normalize(normal_matrix * v_normal);
-    
-    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
-    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
-    float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
-
-    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
-    vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0);
-    vec4 eye_position = view_model_matrix * world_position;
-    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
-
-    // Perform the same lighting calculation for the 2nd light source (no specular applied).
-    NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
-    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
-
-    gl_Position = projection_matrix * eye_position;
-}
+#version 140
+
+#define INTENSITY_CORRECTION 0.6
+
+// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
+const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
+#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
+#define LIGHT_TOP_SHININESS  20.0
+
+// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
+const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
+#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
+
+#define INTENSITY_AMBIENT    0.3
+
+uniform mat4 view_model_matrix;
+uniform mat4 projection_matrix;
+uniform mat3 view_normal_matrix;
+
+// vertex attributes
+in vec3 v_position;
+in vec3 v_normal;
+// instance attributes
+in vec3 i_offset;
+in vec2 i_scales;
+
+// x = tainted, y = specular;
+out vec2 intensity;
+
+void main()
+{
+    // First transform the normal into camera space and normalize the result.
+    vec3 eye_normal = normalize(view_normal_matrix * v_normal);
+    
+    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
+    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
+    float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
+
+    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
+    vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0);
+    vec4 eye_position = view_model_matrix * world_position;
+    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
+
+    // Perform the same lighting calculation for the 2nd light source (no specular applied).
+    NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
+    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
+
+    gl_Position = projection_matrix * eye_position;
+}

+ 2 - 2
resources/shaders/140/mm_gouraud.fs

@@ -22,7 +22,7 @@ uniform vec4 uniform_color;
 uniform bool volume_mirrored;
 
 uniform mat4 view_model_matrix;
-uniform mat3 normal_matrix;
+uniform mat3 view_normal_matrix;
 
 in vec3 clipping_planes_dots;
 in vec4 model_pos;
@@ -45,7 +45,7 @@ void main()
         triangle_normal = -triangle_normal;
 
     // First transform the normal into camera space and normalize the result.
-    vec3 eye_normal = normalize(normal_matrix * triangle_normal);
+    vec3 eye_normal = normalize(view_normal_matrix * triangle_normal);
 
     // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
     // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.

Some files were not shown because too many files changed in this diff