123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- import numpy as np
- ## Some polygon converted to an array
- class ShapeArray:
- def __init__(self, arr, offset_x, offset_y, scale = 1):
- self.arr = arr
- self.offset_x = offset_x
- self.offset_y = offset_y
- self.scale = scale
- @classmethod
- def from_polygon(cls, vertices, scale = 1):
- # scale
- vertices = vertices * scale
- # offset
- offset_y = int(np.amin(vertices[:, 0]))
- offset_x = int(np.amin(vertices[:, 1]))
- # normalize to 0
- vertices[:, 0] = np.add(vertices[:, 0], -offset_y)
- vertices[:, 1] = np.add(vertices[:, 1], -offset_x)
- shape = [int(np.amax(vertices[:, 0])), int(np.amax(vertices[:, 1]))]
- arr = cls.array_from_polygon(shape, vertices)
- return cls(arr, offset_x, offset_y)
- ## Return indices that mark one side of the line, used by array_from_polygon
- # Uses the line defined by p1 and p2 to check array of
- # input indices against interpolated value
- # Returns boolean array, with True inside and False outside of shape
- # Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
- @classmethod
- def _check(cls, p1, p2, base_array):
- """
- """
- if p1[0] == p2[0] and p1[1] == p2[1]:
- return
- idxs = np.indices(base_array.shape) # Create 3D array of indices
- p1 = p1.astype(float)
- p2 = p2.astype(float)
- if p2[0] == p1[0]:
- sign = np.sign(p2[1] - p1[1])
- return idxs[1] * sign
- if p2[1] == p1[1]:
- sign = np.sign(p2[0] - p1[0])
- return idxs[1] * sign
- # Calculate max column idx for each row idx based on interpolated line between two points
- max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
- sign = np.sign(p2[0] - p1[0])
- return idxs[1] * sign <= max_col_idx * sign
- @classmethod
- def array_from_polygon(cls, shape, vertices):
- """
- Creates np.array with dimensions defined by shape
- Fills polygon defined by vertices with ones, all other values zero
- Only works correctly for convex hull vertices
- """
- base_array = np.zeros(shape, dtype=float) # Initialize your array of zeros
- fill = np.ones(base_array.shape) * True # Initialize boolean array defining shape fill
- # Create check array for each edge segment, combine into fill array
- for k in range(vertices.shape[0]):
- fill = np.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0)
- # Set all values inside polygon to one
- base_array[fill] = 1
- return base_array
- class Arrange:
- def __init__(self, x, y, offset_x, offset_y, scale=1):
- self.shape = (y, x)
- self._priority = np.zeros((x, y), dtype=np.int32)
- self._occupied = np.zeros((x, y), dtype=np.int32)
- self._scale = scale # convert input coordinates to arrange coordinates
- self._offset_x = offset_x
- self._offset_y = offset_y
- ## Fill priority, take offset as center. lower is better
- def centerFirst(self):
- self._priority = np.fromfunction(
- lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape)
- ## Return the amount of "penalty points" for polygon, which is the sum of priority
- # 999999 if occupied
- def check_shape(self, x, y, shape_arr):
- x = int(self._scale * x)
- y = int(self._scale * y)
- offset_x = x + self._offset_x + shape_arr.offset_x
- offset_y = y + self._offset_y + shape_arr.offset_y
- occupied_slice = self._occupied[
- offset_y:offset_y + shape_arr.arr.shape[0],
- offset_x:offset_x + shape_arr.arr.shape[1]]
- if np.any(occupied_slice[np.where(shape_arr.arr == 1)]):
- return 999999
- prio_slice = self._priority[
- offset_y:offset_y + shape_arr.arr.shape[0],
- offset_x:offset_x + shape_arr.arr.shape[1]]
- return np.sum(prio_slice[np.where(shape_arr.arr == 1)])
- ## Slower but better (it tries all possible locations)
- def bestSpot2(self, shape_arr):
- best_x, best_y, best_points = None, None, None
- min_y = max(-shape_arr.offset_y, 0) - self._offset_y
- max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y
- min_x = max(-shape_arr.offset_x, 0) - self._offset_x
- max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x
- for y in range(min_y, max_y):
- for x in range(min_x, max_x):
- penalty_points = self.check_shape(x, y, shape_arr)
- if best_points is None or penalty_points < best_points:
- best_points = penalty_points
- best_x, best_y = x, y
- return best_x, best_y, best_points
- ## Faster
- def bestSpot(self, shape_arr):
- min_y = max(-shape_arr.offset_y, 0) - self._offset_y
- max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y
- min_x = max(-shape_arr.offset_x, 0) - self._offset_x
- max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x
- for prio in range(200):
- tryout_idx = np.where(self._priority == prio)
- for idx in range(len(tryout_idx[0])):
- x = tryout_idx[0][idx]
- y = tryout_idx[1][idx]
- projected_x = x - self._offset_x
- projected_y = y - self._offset_y
- if projected_x < min_x or projected_x > max_x or projected_y < min_y or projected_y > max_y:
- continue
- # array to "world" coordinates
- penalty_points = self.check_shape(projected_x, projected_y, shape_arr)
- if penalty_points != 999999:
- return projected_x, projected_y, penalty_points
- return None, None, None # No suitable location found :-(
- def place(self, x, y, shape_arr):
- x = int(self._scale * x)
- y = int(self._scale * y)
- offset_x = x + self._offset_x + shape_arr.offset_x
- offset_y = y + self._offset_y + shape_arr.offset_y
- occupied_slice = self._occupied[
- offset_y:offset_y + shape_arr.arr.shape[0],
- offset_x:offset_x + shape_arr.arr.shape[1]]
- occupied_slice[np.where(shape_arr.arr == 1)] = 1
|